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Abstract: The materials based on concrete with an addition of rubber are well-known. The interaction
between concrete components and rubber particles is in the majority cases insufficient. For this reason,
different substances are introduced into concrete-rubber systems. The aim of this paper is to establish
the influence of five different polymer additives, i.e., 1. an aqueous dispersion of a styrene-acrylic
ester copolymer (silanised) (ASS), 2. water dispersion of styrene-acrylic copolymer (AS), 3. anionic
copolymer of acrylic acid ester and styrene in the form of powder (AS.RDP), 4. water polymer
dispersion produced from the vinyl acetate and ethylene monomers (EVA), 5. copolymer powder
of vinyl acetate and ethylene (EVA.RDP)) on the properties of the self-leveling rubberised concrete.
Scanning electron microscopy has allowed to establish the interaction between the cement paste and
rubber aggregates. Moreover, the compressive strength and flexural strength of the studied materials
were evaluated. The results indicate that the mechanical properties depend extensively on the type
as well as the amount of the polymer additive introduced into the system.

Keywords: polymer additives; rubber; cement-rubber composites; mechanical properties; microstructure

1. Introduction

It is an enormous challenge to cause vulcanised rubber to degrade in the natural
environment. For this reason, many scientists are looking for new possibilities to use that
waste material. Currently, the most popular method of utilisation involves incineration or
landfill disposal [1,2]. Current means of waste utilisation, however, are hazardous for the
natural environment and human health [3,4]. Waste rubber produces air pollutants when
incinerated while landfilling causes contamination of soil and groundwater.

One of the most efficient and environmentally friendly methods of recycling waste rub-
ber is its utilisation by incorporation into concrete and cementitious materials. Rubberised
concrete is a type of clean and eco-friendly composite, which allows utilisation of rubber
waste. Natural aggregates, such as sand, which are fundamental components of concrete,
can be partially replaced by rubber particles varying in size [5], amount [6], shape [7] and
quality of surface [8]. The total number of waste rubber tires is estimated at more than
4 billion annually [9,10]. In contrast, the total number of produced concrete for the building
industry equals 4.4 billion tons per year [11]. Combining these two materials provides an
opportunity to utilise waste and obtain novel composites with unique properties.

In recent years scientists have paid attention to cement-rubber-based materials. Since
2014 the number of reported studies has been increasing every year. Most researchers focus
on the mechanical properties of rubberised concrete, such as compressive and flexural
strength, which belong to the fundamental properties of concrete. According to earlier
reports, the incorporation of rubber particles into the cementitious matrix reduces the
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mechanical properties of concrete [2,12,13], especially its compressive strength [5,14]. It
was established that the reduction in strength of rubber-cement composites corresponds to
the increasing percentage of the weight of rubber, which replaces natural aggregates [15,16].

It should be mentioned that the deterioration of mechanical resistance is caused
by the low stiffness of the rubber aggregates (RA) and the insufficient adhesion energy
between hardened cement paste and rubber aggregates. The introduction of rubber into
concrete results in a wide interfacial transition zone (ITZ) and, in effect, the rubber can
easily withdraw from the matrix [17]. The hydrophobic nature of rubber, which tends
to repel cement paste, is the reason for the formation of the above-mentioned zone [18].
The total porosity of rubberised concrete is higher in comparison with the mixture of
natural aggregates and cement, where the cement paste permeates through rigid aggregates.
During the mixing of water with the mixture of dry ingredients, the air bubbles are trapped
on the RA surface and cause the formation of pores in the rubberised concrete matrix [19,20].
The low stiffness of rubber particles is responsible for high porosity inside the rubber-
cement material as well as the reduction of mechanical characteristics of the obtained
composites. Moreover, the soft rubber aggregates are easily deformed under load and
contribute to the formation of microcracks in concrete. Formed cracks are developing
rapidly in the ITZ, resulting in the general failure of the material [21].

In an aim to improve the mechanical properties of rubberised concrete, scientists
have started researching on enhancing the interface strength between cement paste and
rubber particles. According to literature, the methods which allow to improve mechanical
properties of cement-rubber composites include: modifying the rubber particles surface by
means of chemical treatment [22–25], coating the rubber surface [26], modifying rubber by
applying plasma treatments [27] and introducing additives such as styrene-butadiene latex
rubber and fumed silica [28,29]. Moreover, in the work of Lavagna et al. [30] the parameters
of rubber that can influence the mechanical properties of concrete-based materials have
been discussed. The main parameters include rubber content, granulometry of compo-
nents, the presence of additives such as silica or pozzolana, water-to-cement ratio and
functionalisation or pre-treatments by means of NaOH. Other popular chemical treatments
of rubber presented in literature include silane coupling agent [31], H2O2, CaCl2, H2SO4
and a combination treatment of KMnO4 and NaHSO4 [32], calcium hydroxide, and acetic
acid solutions [33], ethanol, methanol and acetone [34] or a chemical blend of 17.2% acrylic
acid, 13.8% polyethylene glycol and 69% anhydrous ethanol by weight [35].

In the work of R. Nistico et al. [27] rubbermodified using four different plasma atmo-
spheres (N2/H2, N2, N2/O2, O2) was introduced into two different cement matrices. The
mechanical analysis of the obtained composites revealed that they are characterised by
an increase in bending strength and low compressive strength in comparison to concrete
contaning untreated rubber.

This work aims to analyse the structure and the mechanical properties of rubberised
self-leveling concrete with polymer-based additives. The additives used in the study, i.e.,
poly (ethylene-co-vinyl acetate) and acrylic-styrene copolymer, belong to the group of
the most popular polymer additives used in cement-based building materials. They are
frequently introduced into cement in order to increase cohesion and improve mechanical
parameters of the obtained materials. Their influence on the hydration process and mechan-
ical properties of the cement matrix has been tested and described in the literature [36–42].
Moreover, it should be stressed that the selected polymeric additives are resistant to high
pH, and for this reason, they do not coagulate during mixing with the cement paste. There-
fore, the main objective of the presented work is to provide more information concering the
effects of the polymer dispersions and redispersible powders on the mechanical properties
of the cement–rubber composites. For this reason, the compressive strength and flexural
strength of the studied materials were determined. The effect of the introduced polymer-
based additives on the density and porosity of the obtained composites was evaluated.
Furthermore, an adhesive joint between rubber aggregates and cement paste was observed
by means of the scanning electron microscopy (SEM).
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2. Materials and Methods
2.1. Materials

In an aim to form concrete mixtures, ordinary Portland cement (OPC), calcium alumi-
nate cement (CAC), fine aggregates, ethylene propylene diene monomer rubber aggregates
(EPDM), superplasticiser and polymer additives that differed in chemical structure and
physical state were used. Cements as well as aggregates were obtained from local producers:
OPC 52,5 R-NA from “Cemex” (Rudniki, Poland); CAC Górkal 40 from Górka (Trzebina,
Poland); limestone from Czatkowice (Krzeszowice, Poland); anhydrous calcium sulfate
from Nowy Ląd S.A. (Niwnice, Poland); sand from ZWP MOSTY Sp. z o.o., (Chęciny,
Poland); rubber and EPDM aggregates from Unirubber Sp. z o.o. (Węgliniec, Poland).
The properties of all of the aggregates used in the procedure, such as sand, limestone and
rubber aggregates, have been depicted in Table 1.

Table 1. Parameters of used aggregates.

Aggregate Properties Size (mm) Water Absorption (%) Specific Gravity
(g/dm3)

Sand 0.1–0.5 <0.1 1550
Limestone <0.1 <2.0 900–1100

Rubber aggregates <0.1 - 1.58

The physical properties of the cements used in the procedure have been listed in
Table 2.

Table 2. Physical properties of cement.

Physical Properties OPC CAC

Initial setting (min):
Start 181 230
End 218 270

Specific Gravity (g/cm3) 3.1 3.0
Blaine Fineness (cm2/g) 4301 3680

Compressive Strength (MPa):
2 days 35.0 >50.0
28 days 65.3 >50.0

Polymer additives used in this research included as follows: Acronal S 813 (BASF, Lud-
wigshafen, Germany)—water dispersion of a styrene-acrylic ester copolymer (silanised),
Osakryl OSA A (Synthos, Oświęcim, Poland)—water dispersion of styrene-acrylic acid ester
copolymer, Acronal P 5033 (BASF, Ludwigshafen, Germany)—anionic copolymer powder
of acrylic acid ester and styrene, Vinnapas EP 17 (Wacker Chemie, Munich, Germany)-an
aqueous, plasticiser-free polymer dispersion produced from the monomers vinyl acetate
and ethylene, Vinnapas 5044N (Wacker Chemie, Germany)—a copolymer powder of vinyl
acetate and ethylene. In the work the additives have been designated respectively: ASS, AS,
AS.RDP, EVA and EVA.RDP. The details concerning polymer additives have been included
in Table 3. In order to ensure self-leveling properties and to maintain the mixture’s proper
homogeneity, a polycarboxylate-based superplasticiser, named Melflux 2651F, provided by
BASF company (Germany) and a viscosity agent named Starvis 3070F, (BASF, Germany),
which is a type of high molecular weight polymer additive were used.
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Table 3. Chemical and physical properties of polymer additives.

Properties Acronal S 813
(ASS)

Osakryl OSA A
(AS)

Acronal P 5033
(AS.RDP)

Vinnapas EP 17
(EVA)

Vinnapas 5044N
(EVA.RDP)

Appearance Aqueous
dispersion

Aqueous
dispersion White powder Aqueous

dispersion White powder

Polymer Type
styrene-acrylic

ester copolymer
(silanised)

styrene-acrylic acid
ester copolymer

copolymer of
acrylic acid ester

and styrene

Ethylene-vinyl
acetate

Ethylene-vinyl
acetate

Viscosity
(RVT 10 rpm 20 ◦C)

[mPa·s]
100–250 1000–2000 - 2800–4800 -

Solid content [%] 49–51 48–50 >99 59–61 >98
pH 7.6–8.2 4.0–6.0 6.5–8.5 4.0–5.0 6.5–8.5

Tg [◦C] 30.0 −2.8 −15.0 2.8 −7.1

2.2. Sample Preparation

Rubberised concrete, as a reference, and 15 polymer-modified rubberised concrete
types were produced at a water/cement (w/c) ratio of 0.28, with OPC content of 560 g and
CAC content of 80 g. The fine sand content used in the dry cast concrete mixture amounted
to 1007 g, 200 g of limestone and 10 g of superplasticiser, 3 g of viscosity agent and 120 g
of anhydrite were also used. The rubber aggregates were added at a proportion of 1% to
the weight of the sample. Polymer dispersions or redispersible polymer powders were
incorporated into the mix with designated contents of 1%, 5% and 10%. Composition of the
prepared samples is presented in Figure 1.

Figure 1. Composition of the obtained samples.

The mixing process of raw materials was performed in four steps based on the standard
method of mortar preparation. Initially all dry materials, including cement, aggregates,
superplasticiser, viscosity agent and redispersible polymer powder (if applicable) were
mixed together to prevent the agglomeration of rubber aggregates. In the second step, the
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water and polymer dispersion (if applicable) were mixed. Next, the dry part was added
to the liquid part and mixed for 2 min. After 5 min, the mixture was re-mixed for 1 min.
The concrete samples were formed in metal moulds as 160 mm × 40 mm × 40 mm cuboids.
The scheme of sample formation is shown in Figure 2.

Figure 2. The scheme of samples formation.

2.3. Workability

The slump test was carried out using a truncated cone (Figure 3). The slump cone was
placed on a level, stable ground and filled with fresh mortar. Then the surplus fresh mortar
was removed. In the next stage, the slump cone was raised vertically, allowing the concrete
to flow out. On leaving the cone, the fresh material flows freely until it reaches a stable state.
The self-flow properties of fresh concrete were measured in two directions after spontaneous
spreading (Figure 3), and the average value of the final diameter was calculated.

Figure 3. Slump flow test.

2.4. Scanning Electron Microscopy

Microstructural studies of the rubberised self-levelling concrete with polymer addi-
tives were carried out by scanning electron microscopy (SEM). For this purpose the Quanta
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3D FEG SEM/FIB (SEM, FEI Company, Hillsboro, OR, USA) scanning electron microscope
with 1.2 nm resolution capability and the SE signal detection module was applied. The
analysis was carried out in the variable vacuum mode. Photographs were taken at a 5000
and 25,000-fold magnification. Before the analysis, the obtained composites were sprayed
with a nanometric layer of gold.

2.5. Density and Porosity of the Studied Materials

(a) Particle density

The test of solid density was carried out for hardened samples of each of the tested
materials at a temperature of 23 ± 2 ◦C using the pycnometric method in accordance with
the PN-EN 1936: 2010 standard [43]. A sample of the tested material was ground and
weighed (ms). The powdered sample was then placed in the pycnometer (50 mL, Isolab,
Germany) and immersed in 95% ethyl alcohol solution (Avantor Performance Materials
Poland S.A., Gliwice, Poland). The following measurements were taken: the mass of the
pycnometer containing both the sample and alcohol (mp) and the mass of the pycnometer
filled with alcohol only (ma). Mass measurements were carried out using a Radwag model
WLC1/A2/C/2 balance (Radom, Poland). The measurement was performed in triplicates.
The particle density (
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Open pores volume V [cm3] was calculated according to the following Equation (4)

V =
(m3 −m2)
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m3—the mass of the water-saturated sample weighed in air, [g]
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where,
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2.6. Mechanical Properties

In an aim to perform three-point bending tests, three samples of the studied materials,
measuring 40 mm× 40 mm× 160 mm, were formed. In order to determine the compressive
strength, the samples were compressed after the flexural tests. Once moulded, the samples
were allowed to cure in the mould for 24 h. During this period, the moulds were covered
by a polyethylene film. The next step involved demoulding. The samples were kept in
the laboratory at 20 ± 3 ◦C and 50 ± 5% relative humidity for subsequent 27 days. The
specimens were cured under air conditions. The flexural and compressive strength tests
were carried out according to PN EN 13892-2:2004, using testing machine 15/250 kN
Multiserw Morek, Brzeźnica, Poland. About 50 N/s load was applied for the flexural test,
and 2400 N/s load was applied for the compressive test.

3. Results and Discussion
3.1. Workability

Workability is the crucial factor which determines the practical application of concrete.
The workability of fresh state polymer-modified rubberised concrete was determined by
slump flow test, one of the primary tests for self-levelling types of concrete. All samples
were analysed in order to validate the workability of the designed composites. Figure 4
shows the slump flow parameters obtained for the studied composites.

It can be clearly observed that the slump flow parameters of fresh mortar slightly in-
crease after the addition of 1% and 5% of redispersible polymer powder additives (AS.RDP
and EVA.RDP). However, an introduction of 10%wt. of redispersible polymer powders
leads to the reduction in the slump parameter values compared to the control sample and
the composites containing 1 and 5% wt. of AS.RDP or EVA.RDP. In literature [18] the
reduction in workability is often attributed to water adsorption caused by the redispersible
powder. The incorporated redispersible polymer powders form a network structure inside
the cementitious matrix and need water to coalesce, which restrains the concrete slump.
The slight increase in the slump parameter values can be observed at the first stage when
the amount of the additive in the form of powder ranges between 1 and 5%. The same
tendency was observed in the work of Schulze and Killermann [44], where composites
consisting of mortar and three different redispersible powders: vinylacetate–ethylene
powder, ethylene–vinylchlorid–vinyllaurate and styrene/acrylic powder were studied.
The same tendency is not observed in the case of materials containing aqueous polymer
dispersion (ASS, AS and EVA). In the case of composites containing EVA, an increase in
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polymer dispersion content caused an increase in the slump parameter values. According
to literature [45] changes in the workability can be related to the increased viscosity.

Figure 4. Workability of polymer-modified rubberised concrete.

The addition of ASS, however, as well as AS in most cases leads to the decrease of
workability of the obtained composites in comparison to the control sample. In the work of
Colak [45] it was indicated that changes in the workability can be related to the polymer
structure and the interaction between the polymer additive used in the procedure and the
paste. For this reason it is reasonable to assume that it is difficult to predict the slump
parameter values as well as general trends.

3.2. Microstructure of Obtained Materials

SEM was employed to observe the interface between the rubber particles, the cement
matrix and polymer additives. In Figure 5 the microstructure of ethylene propylene diene
monomer rubber, which is one of the components of the studied composites, is shown. It
can be seen that in most cases, the particles of EPDM are characterised by an oval shape,
and the size ranges from 1 to 5 µm.

Figure 5. SEM microstructure of EPDM particles.

The SEM images of the control sample consisting of water, Portland cement, calcium
aluminate cement, sand, limestone and rubber aggregates are presented in Figure 6. It is
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well-known that as a result of the alkali-aggregate reaction, gel shells are formed around
the grain, which swell under the influence of moisture, causing stress that leads to scratches
and cracks. This may be accompanied by efflorescence, stains and infiltrates.

Figure 6. SEM microstructure of reference sample.

Subsequently, micro-cracks seen in Figure 6, chipping and detachment may cause
the aggregate grains to form, reducing the durability of concrete. The symptoms of the
reaction mentioned above include the formation of shells around the aggregate grains, grain
breakout and a change in their volume, changes in the phase composition, the formation of
micro-fissures and fissures, blooms, spots and chipping on surfaces, and consequently the
destruction of concrete elements [46]. Figures 7 and 8 depict the SEM images of materials
with an addition of styrene-acrylic ester copolymer in the form of aqua dispersions (ASS
(silanised) and AS—differ in properties) and redispersible powder (AS.RDP). In the case of
samples containing silanised styrene-acrylic ester copolymer, the compatibility between the
components of concrete and the introduced additive seems to be compact, especially in the
case of the sample containing 1%wt of ASS. An increase in the quantity of the silanised aqua
dispersions styrene-acrylic ester copolymer leads to the formation of the EPDM aggregates
that may be responsible for a slight reduction in the compressive strength of concrete. In
the case of materials with an addition of styrene-acrylic ester copolymer in the form of aqua
dispersion (AS) or redispersible powder (AS.RDP) (Figure 8), the EPDM aggregates and air
gaps in the interface of components and the cement matrix can be observed. The air gaps
can result in weak bonding between cement and the introduced polymer-based additives.
The same tendency was observed in the work of Gupta et al. [18]. However, it should be
taken into account that the redispersible powder weakens the composite structure more
significantly than the aqua dispersion.

The micrographs of samples containing EVA in the form of latex and the redispersible
powder are presented in Figure 9. As can be seen, the addition of EVA-based aqua dispersion
allows for the formation of fibres which improves the flexural strength of the obtained materials.

The presence of the compound mentioned above leads to air retention in the internal
voids that is confirmed by the increase in the porosity of the obtained composites. The same
observations have been made by Silva et al. [47]. The same tendency is not observed in the
case of composites filled with EVA in the form of redispersible powder. The reparation of
cracks and pores of concrete-based materials in the presence of EVA redispersible powder
was also observed in the literature [38,48–50]. Obtained results indicate that the appropriate
distribution of EVA.RDP in the cement matrix allows to obtain composite with improved
compressive strength compared to samples containing EVA in the form of latex.
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Figure 7. SEM microstructure of concrete with an addition of ASS (1%, 5%, 10%).

Figure 8. SEM microstructure of concrete with an addition of AS and AS.RDP (1%, 5%, 10%).
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Figure 9. SEM microstructure of concrete with an addition of EVA and EVA.RDP (1%, 5%, 10%).

The addition of polymer powder and polymer dispersion into concrete leads to the
formation of flexible polymer films which improve adhesion and cohesion in cementitious
materials. The polymer film formation is a result of the coalescence of individual latex
particles after their dehydration [51]. However, it should be stressed that the interaction
between cementitious and polymeric compounds is the source of considerable debate
among scientists. One of the researcher groups indicates that only physical interactions
take place between substrates mentioned above, while the polymeric film formed in the
composite is responsible for the changes in the mechanical properties [47,52,53]. In the
other works the physical and chemical interactions between polymers and cement are
described and discussed [52,54–56]. According to the mentioned literature, introduction of
polymer based-additives can lead to the formation of complex structures and cause changes
in the quantity of calcium hydroxide.

Furthermore, the analysis of literature indicates that different types of polymer la-
texes affect the strength of the material differently [57]. Some polymer-based modifiers
introduced into the concrete mix may decrease compression strength as well as flexural
strength [55].

3.3. Density and Porosity of the Studied Materials

Density and porosity belong to the factors that influence the properties of concrete.
Concrete characterised by higher density, in most cases, displays higher strength and
reduced porosity [58].
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Reactions during concrete formation as well as inadequate compaction result cause
the resulting material to consist of both solid and a pore system [18]. In an aim to establish
the porosity value of concrete-based materials, different methods are applied such as
mercury porosimetry [18], stereological analysis [59], nitrogen adsorption [60] or the water
absorption method [61,62]. It should be stressed that some publications indicate that
mercury porosimetry is an inappropriate method for the measurement of the pore size and
distribution in cement-based materials [63]. In Figure 10a,b the calculated values of particle
density (
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volume (V) and open porosity (Po) were studied.

Figure 10. The particle (a) and bulk (b) density of the studied materials.

In Figure 11 the total porosity (P), and open porosity (Po) are shown. Based on the
obtained results it has been observed that in the case samples containing anionic copolymer
powder of acrylic acid ester and styrene the increase of values of total and open porosity is
correlated with the reduced mechanical properties. The porosity of the ASS samples has
been found to decrease with the increase in the content of the polymer additive.
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Figure 11. The total porosity (a) and open porosity (b) of the studied composites.

The data presented in Figure 12 indicate that in the studied work the introduction
of polymeric additives in different forms, in most scenarios, causes a decrease of values
of open pores volume. This does not, however, result in the higher values of the studied
mechanical properties. Only in the case of composites containing water dispersion of a
styrene-acrylic ester copolymer (silanised), the studied materials achieve higher or equal
values of flexural strength and comprehension strength compared to the control sample.

Figure 12. Changes in open pores volume of the studied concrete-based materials.
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3.4. Compressive Strength

Compressive strength is the feature of a material that allows establishing the mag-
nitude of load that can be carried on its surface without any crack or indentation. In the
case of concrete, the compressive strength depends on the quality of a particular material,
quality control during the production of concrete, water–cement ratio and cement strength.
In an aim to obtain desired properties, the concrete based-materials are designed to display
certain mechanical properties and overall durability.

Figure 13 illustrates the effect of different content of the studied polymer additives
on the compressive strength of the rubberised concrete-based composites. It can be clearly
observed that there is a reduction in the compressive strength with an increasing additives
content, except for the samples containing the ASS additive, where the highest value
of compressive strength was observed in the case of the sample containing 5% of ASS.
Compared to control material, the incorporation of polymer additives, both in the form
of polymer dispersion and redispersible powder, into cementitious mixtures resulted in a
decrease in compressive strength. Only the sample filled with 5% ASS has a similar value
of compressive strength to the control sample.

Figure 13. Compressive strength of the materials with polymer additives.

The obtained results are in accordance with the literature [64–66], which suggests
that the compressive strength decreased with the increase of polymer dispersion as well
as polymer powder content in concrete. The incorporation of polymer dispersions and
redispersible powders into the cementitious matrix causes a decrease in compressive
strength which is caused by the lower mechanical capacity of polymers in comparison to
concrete. G. Barluenga and F. Hernández-Olivares [66] have shown that the addition of
polymer latexes to the concrete matrix leads to a decrease in the compressive strength (CS)
of latex-modified concrete. In the work of S. Gwon et al. [65], it was established that the
reduction in compressive strength is caused by the formation of a finer load-carrying pore
structure with a higher polymer ratio and the formation of a monolithic structure between
the polymer phases and cement hydrates. Moreover, it was indicated that CS decrease can
also be the result of air entrainment by surfactants contained in the polymer powder as
well as retention of water by micelles in the polymer emulsion [67].

The differences in compressive strength of polymer-modified concrete between styrene-
acrylic and ethylene-vinyl acetate polymers are observed. The changes can be explained by the
co-matrix formation which depends on cement hydration as well as the polymer film formation.
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Many researchers have studied the interaction between polymers and cement mineral
phases [54,68–71]. It is generally believed that the vinyl acetate group in the EVA polymer
is hydrolyzed in an alkaline environment. The acetate anion CH3COO− which forms
during the alkaline hydrolysis of EVA in a Ca(OH)2 saturated cement pore solution, reacts
with Ca2+ (originating from the dissolution of cement grains) and forms calcium acetate
Ca(CH3COO)2, according to the following reaction (6) [69]. As a result of EVA-cement
interaction, the Ca(OH)2 content decreases. Moreover, the Hadley’s grains appear inside
the matrix and the ettringite crystals are well-formed [36,54].

Ca(OH)2 + 2CH3COO→ Ca(CH3COO)2 + 2OH− (6)

R. Wang et al. [37] have shown that the presence of styrene-acrylic copolymer in the
cement paste influences cement hydration and, as a result, Ca2+-carboxyl complexes are
formed. Su et al. [72] indicated that styrene-acrylate dispersion retards the hydration of
cement. Larbi and Bijen [73] showed that Ca2+ ions are chelated by SAE. Subsequent studies
prove that the fine-particles of latex (around 0.1 µm diameter) influence the crystallisation
of calcium hydroxide. These polymer particles adhere to the surface of formed crystals [37].
All of the processes mentioned above significantly influence the observed differences in the
studied compressive strength.

Moreover, it can be clearly observed, that the compressive strength values of concrete
modified by means of styrene-acrylic ester polymers in dispersion form are significantly
higher than in the case of composites containing redispersible powder. This is likely to
result from a different structure of the polymer. The SEA powder particles are partially
covered with special additives during spray drying [74]. It should also be stressed that
S. Gwon et al. [65] have also observed a reduction in compressive strength after the intro-
duction of redispersible acrylic powder into the cementitious matrix.

Comparing the values of compressive strength with the total porosity and open poros-
ity of concrete-based materials, a correlation between these parameters can be observed.
Obtained results indicate a dependency between a decrease in the compressive strength
of concrete and an increase in porosity of concrete. Among the samples containing 1% of
polymer additives, the lowest compressive strength has been observed in the case of 1%
AS.RDP material which is characterised by the highest total porosity as well as the highest
open porosity. In the case of samples containing 5% of polymer additives, a similar depen-
dency has been observed. Moreover, it should be stressed that the sample with the lowest total
porosity and open porosity had the highest compressive strength. The same tendency was
observed in the case of samples with 10% of polymer additives. The composites containing
10% AS and 10% AS.RDP have achieved the same level of compressive strength. In addition,
the tests revealed that these were the samples with the lowest strength.

It should be emphasised that the values of the total porosity for the 10% AS and 10%
AS.RDP samples were the highest among the composites filled with 10% polymer additives
and amounted to 30.34% and 29.83%, respectively. On the other hand, in the case of open
porosity, the highest values of the discussed parameter were found in 10% AS.RDP (22.94%)
and 10% EVA (19.89%) samples, while for the 10% AS material, the open porosity was only
4.01%. These observations suggest that the value of the compressive strength depends
more significantly on the total porosity than on the open porosity.

3.5. Flexural Strength

Flexural strength is one of the parameters which allows to establish the tensile strength
of concrete. Experimental results illustrated in Figure 10 show the effect of the polymer
additives in the form of both disperse and redispersible powder on the flexural strength of
rubberised concrete. As can be seen in Figure 14 in the case of six samples: 1% ASS, 1% AS,
1% EVA, 5% ASS, 10% ASS, 10% EVA the value of flexural strength is significantly higher in
relation to reference material. The addition of AS to rubberised concrete caused a decrease
of flexural strength with an increase in the AS content. The same tendency was observed
in the work of A.F. Angelin et al. [7]. Moreover, it should be stressed that significantly
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lower flexural strength values were obtained in the case of samples with an addition of
redispersible polymer powders, both styrene-acrylic ester, and ethylene-vinyl acetate.

Figure 14. Flexural strength of the specimens with polymer addition.

Differences in flexural strength of polymer-modified rubberised concrete are caused
by the changes in the concrete matrix. Enhancement samples are characterised by filled
pore, especially by the ettringite which, in the case of sample ASS 1%, can be clearly seen on
the SEM image (Figure 7). Moreover, it should be noted that in relation to the composite in
question, the polymer matrix has been concentrated and has covered the ettringite crystals
(Figure S1). Samples with a lower value of flexural strength than the reference sample are
characterised by a discontinuous porous microstructure (Figure 8).

Comparison of the flexural strength with the total porosity, open porosity and pore
volume of the studied concrete-based materials clearly indicates that there is no correlation
between these parameters. However, it should be emphasised that Jiang and Guan [75]
reported that only pores with a radius above 100 nm have a significant impact on the
compressive strength. This is likely to be the reason why the obtained results are not in
direct relation with mechanical properties.

4. Conclusions

The self-leveling rubberised concrete was modified using five different polymer additives:

- An aqueous dispersion of a styrene-acrylic ester copolymer (silanised);
- Water dispersion of styrene-acrylic copolymer;
- Anionic copolymer of acrylic acid ester and styrene in form of powder;
- Water polymer dispersion produced from the monomers vinyl acetate and ethylene;
- Copolymer powder of vinyl acetate and ethylene.

The effect of the additives on the microstructure and mechanical properties of concrete
was determined. Based on the obtained results the following conclusions have been drawn:

- Introduction of polymer additives in the form of an aqueous dispersion as well
as in the form of redispersive powders into the self-leveling rubberised concrete
significantly influences the microstructure of the obtained materials. However, it
should be stressed that silanisation of styrene-acrylic ester copolymer dispersion
allows to obtain composites characterised by the lowest values of porosity and the
highest values of compressive as well as flexural strength. In the case of other studied
addtives there is no simple correlation between porosity and mechanical properties of
the obtained concrete-based composites.
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- Modification of the self-leveling rubberised concrete by means of 1% and 5% of
redispersible powders increases the workability of the obtained composites, while
the introduction of 10%wt. of polymeric additive leads to a reduction of studied
parameter. The reduction of workability is a result of water adsorption caused by the
higher amount of used redispersible powders.

- The addition of 1% aqueous polymer dispersions improved the flexural strength of the
studied materials, while the admixtures in the form of powder caused the value of the
studied property to decrease. The additives selected for the tests reduce the flexural
strength value, with a notable exception of AS, in a larger amount (5 and 10%).

Overall, these findings suggest that the modification of the self-leveling rubberised
concrete can be effective and the results of such modification significantly depend on the
type and amount of the polymer additive used in the process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15010249/s1, Figure S1. SEM images of 10% AS composite
(a) 5000×, (b) 25,000×.
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