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Abstract: In this paper, a general and effective strategy was first developed to maintain the CALPHAD
atomic mobility database of multicomponent systems, based on the pragmatic numerical method and
freely accessible HitDIC software, and then applied to update the atomic mobility descriptions of the
hcp Mg–Al–Zn, Mg–Al–Sn, and Mg–Al–Zn–Sn systems. A set of the self-consistent atomic mobility
database of the hcp Mg–Al–Zn–Sn system was established following the new strategy presented.
A comprehensive comparison between the model-predicted composition–distance profiles/inter-
diffusivities in the hcp Mg–Al–Zn, Mg–Al–Sn, and Mg–Al–Zn–Sn systems from the presently updated
atomic mobilities and those from the previous ones that used the traditional method indicated that
significant improvement can be achieved utilizing the new strategy, especially in the cases with
sufficient experimental composition–distance profiles and/or in higher-order systems. Furthermore,
it is anticipated that the proposed strategy can serve as a standard for maintaining the CALPHAD
atomic mobility database in different multicomponent systems.

Keywords: atomic mobility; CALPHAD; diffusion couple; HitDIC; Hcp Mg–Al–Zn–Sn alloys

1. Introduction

As is well known, the mechanical properties of metallic materials, such as strength,
ductility, and hardness, are closely related to their microstructural formation during various
preparation processes such as solidification, solid solution, and aging [1,2]. To achieve
a comprehensive understanding of different preparation processes, accurate diffusion
coefficients of composition and temperature dependence should be the prerequisite. For
typical multicomponent technical alloys, direct experimental measurement of the complex
diffusion coefficient matrices seems to be very difficult [3]. One alternative substitution
in the CALPHAD (CALculation of PHAse Diagram) community is to predict a variety of
composition- and temperature-dependent diffusion coefficients from the established atomic
mobility database of the target alloys together with the corresponding thermodynamic
database [4].

In terms of the CALPHAD framework, the traditional procedure for establishing the
atomic mobility database of multicomponent alloys is referred to Figure 6.3 of a recent book
chapter by Zhang and Chen [5], and it is also briefly described as follows: (i) Step 1: conduct
a literature review of various diffusion properties in boundary unary, binary, ternary, and
higher-order systems including the diffusion coefficients such as self/impurity diffusion
coefficients for unary systems, interdiffusion coefficients for binary and ternary systems,
and tracer coefficients for binary and higher-order systems as well as the experimental
composition–distance profiles for quaternary and higher-order systems; (ii) Step 2: sup-
plement the diffusion coefficients in boundary unary, binary, and ternary systems lacking
the diffusion coefficients. The self/impurity diffusion coefficients of unary systems and
tracer diffusion coefficients for binary and higher-order systems can be determined by
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the tracer method [6], first-principles [7], molecular dynamics [8], and also some indirect
methods [9,10]. The interdiffusion coefficients in binary and ternary systems can be deter-
mined by either traditional Matano methods [11–15] or numerical inverse methods [16–19].
(iii) Step 3: Select the reasonable diffusion model(s) for the target phase(s). For detail infor-
mation on this aspect, please also refer to the recent book chapter [5]. (iv) Step 4: Assess
the atomic mobilities from the unary to binary and then ternary systems. (v) Extrapolate
and validate the atomic mobilities of quaternary and higher-order systems, which can
be directly extrapolated from those of boundary ternary systems, and then validated by
comparing the model-predicted composition–distance profiles with the experimental ones.
If most of the predicted results are inconsistent with the experimental data, Step 4 (maybe
together with Step 3) should be repeated, until good agreement between the predicted and
experimental observations of higher-order systems is achieved.

After the first version of the CALPHAD atomic mobility database is established, main-
tenance of the released database is essential, because some new experimental observations
and theoretical calculations are likely to be produced from time to time. In general, for
a technologically important multicomponent system, the atomic mobility descriptions in
boundary unary and binary systems are typically reasonable, since sufficient and reliable
diffusion coefficients are usually available [20]; thus, there is no need to update those
atomic mobility descriptions frequently. For the boundary ternary systems, only scattered
experimental interdiffusion coefficients are available in most cases due to the low efficiency
of the Matano–Kirkaldy (M–K) method [12] with which only four independent interdiffu-
sion coefficients can be obtained at the intersection point from the diffusion paths of two
diffusion couples [21]. In order to improve the quality of the atomic mobility database,
more interdiffusion coefficients covering wider compositions and temperature ranges are
indispensable. Thus, continuous renewal of the corresponding atomic mobilities is neces-
sary, but it is a really time- and cost-consuming process. While for the boundary quaternary
and higher-order systems, some new experimental composition–distance profiles from
the diffusion couples/multiples may appear and only be used to validate the established
atomic mobility database, it cannot be directly employed to update the database [21] ac-
cording to the traditional approach to CALPHAD database development. Therefore, there
is an urgent need to improve the current situation.

One more superior approach is to utilize the numerical inverse method for maintain-
ing the atomic mobility database of the target multicomponent system. Very recently, two
of the present authors [22] developed a computational framework for the establishment
of an atomic mobility database directly from the experimental composition–distance pro-
files based on the pragmatic numerical inverse method [16] and incorporated it into the
freely accessible HitDIC (High-Throughput Determination of Interdiffusion Coefficients,
https://hitdic.com/, accessed on 17 October 2021, version 2.3.0) software [23]. With this
computational framework and HitDIC, the experimental composition–distance profiles,
instead of interdiffusion coefficients, can be directly used as the input for the assessment
of atomic mobilities and their related uncertainties. Then, for the ternary systems, the
complex computational process of interdiffusion coefficients can be avoided, resulting in
accuracy and efficiency improvements. One more important advantage lies in that the
experimental composition–distance profiles in quaternary and higher-order systems can
also be employed to assess the atomic mobility parameters in the target system with the
computational framework and HitDIC.

Due to the fact of their good castability and low cost, Mg–Al–Zn (AZ) series alloys
are widely used in various fields such as automobile, aerospace, and additive manufactur-
ing [24–28]. Sn, as an important alloying element, is usually introduced to improve the
mechanical properties of AZ series alloys [29–31]. In order to precisely design the optimal
additional amount of Sn in AZ alloys, accurate diffusion coefficients in hcp (hexagonal
close-packed) Mg–Al–Sn–Zn alloys are needed. Up to now, the atomic mobilities in the
hcp Mg–Al–Zn–Sn quaternary system have only been assessed by Zhong et al. [32] ac-
cording to the traditional approach. Moreover, the composition–distance profiles in one

https://hitdic.com/
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hcp Mg–Al–Zn–Sn quaternary diffusion couple measured by Bryan et al. [33] can only
be used to validate the simulation results but cannot be employed in the optimization
process of Zhong et al. [32] due to the limitations of the traditional approach. Furthermore,
Zhang et al. [34] measured the new composition–distance profiles of the hcp Mg–Al–Sn
ternary system at elevated temperatures recently, which should be considered during the
update of the atomic mobility database of the hcp Mg–Al–Sn system.

Consequently, the major objectives of this paper were (i) to develop an efficient strategy
for the maintenance of an atomic mobility database of multicomponent alloys based on the
pragmatic numerical inverse method and HitDIC and (ii) to apply the developed efficient
strategy to update the atomic mobility database of the hcp Mg–Al–Zn–Sn quaternary
system and validate the reliability of the updated atomic mobility database.

2. An Effective Strategy to Maintain the CALPHAD Atomic Mobility Database of
Multicomponent Systems

Starting from the pragmatic numerical inverse method and HitDIC software, an
effective strategy to maintain the atomic mobility database of multicomponent systems is
proposed in Figure 1, and it can be separated into the following steps:

1. The original atomic mobility descriptions of the target multicomponent system, to-
gether with the thermodynamic descriptions, should be ready or re-constructed
according to the corresponding publication(s).

2. A critical review of all the composition–distance profiles of diffusion multiples/couples
in ternary and higher-order systems available in the literature should be conducted
both before and after the publication/release of the original atomic mobility database.

3. The atomic mobility descriptions in each boundary ternary system should be updated
by means of the HitDIC software based on the reviewed composition–distance profiles.
It should be noted that the atomic mobility descriptions in all the boundary binaries
are fixed during the entire stage. Moreover, the reliability of the updated atomic
mobilities should be validated by the experimental composition–distance profiles as
well as the evaluated interdiffusion coefficients available in the literature.

4. Based on the updated atomic mobilities of boundary ternary systems, all the
composition–distance profiles in the higher-order systems should be input into the
HitDIC software to assess the possible interaction parameters in high-order systems.
The interaction parameters in higher-order systems are introduced if their addition can
really improve the fit to most of the experimental composition profiles. During this
step, it should be noted that the interaction parameters of ternary atomic mobilities
can be updated if a better fit to the experimental composition profiles in higher-order
system can be achieved.

5. One needs to validate the updated atomic mobility database by comprehensively com-
paring the predicted diffusion properties with the experimental ones in all the related
ternary, quaternary, and higher-order systems, verify the updated atomic mobility
database by applying real applications if available, and finalize the documentation.
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3. Literature Review on Diffusion Information in Hcp Mg–Al–Zn–Sn Alloys

In this paper, the atomic mobilities of three boundary binaries (i.e., hcp Mg–Al, Mg–Zn,
and Mg–Sn) were directly taken from Zhong et al. [32] and fixed during the subsequent
assessment of atomic mobilities in higher-order systems (i.e., hcp Mg–Al–Zn, Mg–Al–Sn,
and Mg–Al–Zn–Sn); thus, there was no need to conduct the literature review for those
boundary binaries. In the following, all the measured composition–distance profiles in
the hcp Mg–Al–Zn, Mg–Al–Sn, and Mg–Al–Zn–Sn systems available in the literature are
briefly introduced and are also summarized in Table 1. Moreover, in order to validate the
reliability of the subsequently assessed mobilities, the experimental reports on different
diffusivities in the hcp Mg–Al–Zn, Mg–Al–Sn, and Mg–Al–Zn–Sn systems were also briefly
described as follows.

For the hcp Mg–Al–Zn ternary system, the interdiffusion behaviors in seven groups of
diffusion couples at 673 and 723 K were investigated by Kammerer et al. [35]. Thereinto, the
composition–distance profiles of four groups (i.e., Mg-9.08Al/Mg-2.55Zn, Mg-0.87Al/Mg-
1.12Zn, Mg-9.10Al/Mg-2.03Zn, and Mg-2.27Al/Mg-1.06Zn, in at.%) were reported, while
only the diffusion paths were given for the other three groups (i.e., Mg-3Al/Mg-1Zn, Mg-
3Al/Mg-0.5Zn, and Mg/Mg-3Al-0.5Zn, in at.%). However, it should be noted that the
composition–distance profiles of Mg-0.87Al/Mg-1.12Zn from Kammerer et al. [35] were
not reasonable based on the analysis of Wang et al. [36]. In addition, the composition–
distance profiles in the AZ91 (Mg-9Al-1Zn, in wt.%)/Mg diffusion couple at 663 and
708 K were also determined by Bryan et al. [33]. But Zhong et al. [32] pointed out that the
existence of MgO on the surface of the diffusion couples showed a noticeable effect on
the interdiffusion between pure Mg and AZ91 in the work of Bryan et al. [33]. Hence, the
composition–distance profiles of three groups (i.e., Mg-9.08Al/Mg-2.55Zn, Mg-9.10Al/Mg-
2.03Zn, and Mg-2.27Al/Mg-1.06Zn, in at.%) from Kammerer et al. [35] were employed in
the present optimization, while the composition–distance profiles from Bryan et al. [33]
as well as the composition–distance profiles of Mg-0.87Al/Mg-1.12Zn and diffusion paths
from Kammerer et al. [35] were not.

For the hcp Mg–Al–Sn ternary system, Zhou et al. [37] determined the composition–
distance profiles at 673 and 723 K based on the diffusion couple technique. Moreover, the
composition–distance profiles for the Mg–Al–Sn ternary diffusion couples at 723, 773, and
823 K were determined by Zhang et al. [34], respectively. The experimental data from both
Zhou et al. [37] and Zhang et al. [34] were employed in the present optimization.
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Table 1. List of the composition–distance profiles of different hcp_A3 Mg–Al–Zn, Mg–Al–Sn, and
Mg–Al–Zn–Sn alloys available in the literature.

Type of Diffusion Couple (in
at.%)

Diffusion
Temperature (K)

Diffusion
Time (h) References Code

Mg–Al–Zn ternary system

Mg-9.08Al/Mg-2.55Zn

673

8

[35]

N
Mg/Mg-0.87Al-1.12Zn 24 4

Mg-3Al/Mg-1Zn 20 4
Mg-3Al/Mg-0.5Zn 24 4

Mg-9.10Al/Mg-2.03Zn
723

4
[35]

N
Mg-2.77Al/Mg-1.06Zn 5 N

Mg/Mg-3Al-0.5Zn 4 4

Mg/Mg-8.41Al-0.45Zn 663 144 [33] 4

Mg/Mg-8.50Al-0.41Zn 708 144 [33] 4

Mg–Al–Sn ternary system

Mg-0.52Sn/Mg-7.81Al

673

216

[37]

N
Mg-1.00Sn/Mg-7.37Al 216 N
Mg-2.30Al-0.83Sn/Mg 216 N
Mg-8.00Al-0.46Sn/Mg 216 N

Mg-1.04Sn/Mg-3.59Al

723

216

[37]

N
Mg-1.07Sn/Mg-7.63Al 216 N
Mg/Mg-7.86Al-0.53Sn 216 N

Mg-2.3Al-0.9Sn/Mg 216 N

Mg-2.63Al-0.94Sn/Mg
723

9
[34]

N
Mg-1.43Sn/Mg-3.80Al 9 N
Mg-1.89Al/Mg-0.97Sn 9 N

Mg/Mg-2.77Al-0.97Sn

773

6

[34]

N
Mg-1.46Sn/Mg-3.81Al 6 N
Mg-0.96Al-1.48Sn/Mg 6 N
Mg-0.98Sn/Mg-1.92Al 6 N

Mg/Mg-1.43Al-0.92Sn
823

3
[34]

N
Mg-1.45Sn/Mg-3.74Al 3 N
Mg-0.98Sn/Mg-1.83Al 3 N

Mg–Al–Zn–Sn quaternary system

Mg-0.64Al-0.04Sn-0.59Zn/Mg-
0.79Al-2.42Sn-0.66Zn 773 250 [33] N

N, used in the optimization process;4, only used for comparison.

As for the hcp Mg–Al–Zn–Sn quaternary system, the composition–distance profiles in
one quaternary diffusion couple annealed at 773 K for 250 h were measured by Bryan et al. [33]
and thus were considered during the present assessment of the atomic mobilities.

Besides the above experimental information on the composition–distance profiles,
there are also some reports on the inter-diffusivities available in the literature. Based on the
experimental composition profiles in the hcp Mg–Al–Zn system by Kammerer et al. [35],
Wang et al. [36] evaluated the main interdiffusion coefficients (i.e., D̃Mg

AlAl and D̃Mg
ZnZn) and

cross-interdiffusion coefficients (i.e., D̃Mg
AlZn and D̃Mg

ZnAl) at common intersection points
using the Whittle–Green (W–G) method [38]. For the hcp Mg–Al–Sn ternary system,
the interdiffusion coefficients (i.e., D̃Mg

AlAl, D̃Mg
SnSn, D̃Mg

AlSn, and D̃Mg
SnAl) at the intersection

compositions along diffusion paths were determined by Zhou et al. [37] also using the
W–G method. Moreover, the inter-diffusivities of the hcp Mg–Al–Sn system were also
determined by Zhang et al. [34] by means of the M–K method. As indicated above, all
the related interdiffusion coefficients in ternary systems were not used in the assessment
procedure but employed to validate the finally obtained atomic mobilities.
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4. Results and Discussion

The thermodynamic descriptions for the Mg–Al–Zn–Sn quaternary system from our
previous publications [39–41] were directly employed in the present work for providing
accurate thermodynamic properties. In the following, the atomic mobilities in the hcp Mg–
Al–Zn and hcp Mg–Al–Sn ternary systems were first updated by fixing the atomic mobilities
in boundary binaries, from which the atomic mobility database in the hcp Mg–Al–Zn–Sn
quaternary system was then established.

In the hcp Mg–Al–Zn ternary system, the composition–distance profiles measured by
Kammerer [35] (except for those in the Mg-0.87Al/Mg-1.12Zn diffusion couple, in at.%)
together with the atomic mobility descriptions of boundary binaries as well as the ther-
modynamic descriptions were first provided as input in HitDIC software. Subsequently,
the initial values of the interaction parameters (i.e., ΦMg,Zn

Al and ΦMg,Al
Zn ) of the ternary

system were automatically set, and the optimization of the two parameters was carried
out automatically by the HitDIC software until the best fit between the model-predicted
composition–distance profiles and the experimental data was achieved. Finally, the estab-
lished atomic mobility database of the hcp Mg–Al–Zn ternary system was validated by
comparing the predicted diffusion properties with the corresponding experimental data.
Moreover, a similar strategy was adopted for the hcp Mg–Al–Sn ternary system.

As for the hcp Mg–Al–Zn–Sn quaternary system, the experimental composition–
distance profiles by Bryan et al. [33] together with the updated atomic mobility descriptions
of the hcp Mg–Al–Zn and Mg–Al–Sn as well as the thermodynamic descriptions of the
hcp Mg–Al–Zn–Sn quaternary systems were first provided as the input in the HitDIC
software. Subsequently, the assessment of the interaction parameters in the ternary and/or
quaternary systems was automatically performed. It was found that introduction of an
interaction parameter (i.e., ΦMg,Sn

Zn ) can result in the best fit to the experimental data. The
finally obtained atomic mobility parameters of the hcp Mg–Al–Zn–Sn quaternary system
are summarized in Table 2.

4.1. Hcp Mg–Al–Zn Ternary System

The model-predicted composition–distance profiles of four diffusion couples (i.e.,
Mg-9.08Al/Mg-2.55Zn at 673 K for 8 h, Mg/Mg-0.87Al-1.12Zn at 673 K for 24 h, Mg-
9.10Al/Mg-2.03Zn at 723 K for 4 h, and Mg-2.77Al/Mg-1.06Zn at 723 K for 5 h, in at.%)
according to the present atomic mobilities (solid lines) are displayed in Figure 2, compared
with the corresponding experimental data (in symbols) by Kammerer et al. [35]. The
model-predicted results by Zhong et al. [32] are also superimposed as dashed lines in
the figure for direct comparison with the present results. Without specification, all the
model-predicted results of Zhong et al. [32] are taken exactly from their original publication.
As can be seen in Figure 2, the predicted results from the present work are consistent
with those from Zhong et al. [32], and both predicted results are in good agreement with
the experimental composition–distance profiles [35], expect for Figure 2b. As shown in
Figure 2b, a large deviation between the model-predicted composition–distance profile
of Zn and the experimental ones can be observed. This fact is quite normal because
the composition–distance profiles of Mg/Mg-0.87Al-1.12Zn at 673 K for 24 h are not
reasonable based on the suggestion by Wang et al. [36] and, thus, were not employed in
the present optimization. Furthermore, the model-predicted diffusion paths at 673 and
723 K, based on the present atomic mobilities together with those by Zhong et al. [32],
are shown in Figure 3 compared with the experimental data [35]. The diffusion paths
predicted according to the present atomic mobilities are in very good agreement with the
experimental data [35] and also the ones by Zhong et al. [32]. Moreover, the comparison
between the model-predicted composition–distance profiles due to the present atomic
mobilities and the experimental data by Bryan et al. [33] as well as those by Zhong et al. [32]
are displayed in the Supplementary Materials for readers’ reference. As can be seen
Figur S1, certain deviations exist between the simulated composition profiles of Al/Zn and
the experimental data. This is because MgO exits on the surface of the diffusion couples, as
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pointed out by Zhong et al. [32], and hinders the diffusion of both Al and Zn. Thus, the
composition–distance profiles of Bryan et al. [33] were not considered in the present update
of atomic mobilities.

Table 2. List of the atomic mobility parameters of hcp the Mg–Al–Zn–Sn system assessed in the
present work together with those taken in the literature [32].

Mobility Parameters References

Mobility of Mg

ΦMg
Mg = −125,748.3 − 86.924 × T [32]

ΦAl
Mg = −105,022.4 − 100.826 × T [32]

ΦZn
Mg = −97,239.0 − 87.338 × T [32]

ΦSn
Mg = −76,913.9 − 71.922 × T [32]

ΦMg,Al
Mg = 154,978.2 [32]

Mobility of Al

ΦAl
Al = −115,705.9 − 104.143 × T [32]

ΦMg
Al = −133,378.9 − 86.232 × T [32]

ΦZn
Al = −97,239.0 − 87.338 × T [32]

ΦSn
Al = −76,913.9 − 71.922 × T [32]

ΦMg,Al
Al = 125,172.6 [32]

ΦMg,Zn
Al = 313,977.051 This work

ΦMg,Sn
Al = 214,599.609 This work

Mobility of Zn

ΦZn
Zn = −97,239.0 − 87.338 × T [32]

ΦMg
Zn = −125,731.0 − 76.734 × T [32]

ΦAl
Zn = −115,705.9 − 104.143 × T [32]

ΦSn
Zn = −76,913.9 − 71.922 × T [32]

ΦMg,Zn
Zn = 80,988.7 [32]

ΦMg,Al
Zn = 90,957.031 This work

ΦMg,Sn
Zn = −11,209.270 This work

Mobility of Sn

ΦSn
Sn = −76,913.9 − 71.922 × T [32]

ΦMg
Sn = −143,787.3 − 72.615 × T [32]

ΦAl
Sn = −115,705.9 − 104.143 × T [32]

ΦZn
Sn = −97,239.0 − 87.338 × T [32]

ΦMg,Sn
Sn = −162,023.5 [32]

ΦMg,Al
Sn = 191,345.215 This work

According to the presently updated atomic mobility descriptions together with the
thermodynamic descriptions [42], the interdiffusion coefficients of the hcp Mg–Al–Zn
system over the composition range of 0–5.0 at.% Al and 0–3.0 at.% Zn at 623, 673, and 723 K
are predicted in Figure 4. Figure 4a,b show the calculated main interdiffusion coefficients,
D̃Mg

AlAl and D̃Mg
ZnZn, in three-dimensional space, respectively. As shown in Figure 4a,b, D̃Mg

ZnZn

was larger than D̃Mg
AlAl at the same temperature by approximately one order of magnitude,

which means that the diffusion rate of Zn in hcp Mg–Al–Zn alloys is faster than that of
Al. Moreover, it can be observed that both D̃Mg

AlAl and D̃Mg
ZnZn increased with the increase

in temperature and concentrations of both Al and Zn. Figure 4c displays variations in the
cross-interdiffusion coefficient D̃Mg

AlZn along with the concentrations of Al and Zn. It should

be noted that the predicted D̃Mg
AlZn over wide composition and temperature range is negative.

Hence, the log10(−D̃Mg
AlZn) was adopted for the label of ordinate of Figure 4c in order to

facilitate the analysis. The sign of cross-interdiffusion coefficients had been analyzed in
detail by Liu et al. [43] in terms of thermodynamics. According to Liu et al. [43], the



Materials 2022, 15, 283 8 of 19

cross-interdiffusion coefficient D̃Mg
AlZn in the hcp Mg–Al–Zn ternary system can be expressed

as follows:

D̃Mg
AlZn =

[
(1− xAl)

2xAl MAl + x2
Al xZn MZn + x2

Al xMg MMg

]∂(µAl − µMg)

∂xZn
(1)

where MAl, MZn, and MMg are the atomic mobilities for Al, Zn, and Mg, respectively.
xAl, xZn, and xMg are the mole fractions for Al, Zn, and Mg, respectively. µAl and µMg
represent the chemical potentials of Al and Mg, respectively. Because the term before
∂(µAl − µMg)/∂xZn in Equation (1) is positive, the negative sign of D̃Mg

AlZn is determined by

the ∂(µAl − µMg)/∂xZn. As can be seen in Figure 4c, the D̃Mg
AlZn was lower than the main

interdiffusion coefficients, D̃Mg
AlAl and D̃Mg

ZnZn, at the same temperature by approximately one

to two orders of magnitude. Moreover, the D̃Mg
AlZn increased with the increase in temperature

and Zn concentration. While D̃Mg
AlZn increased rapidly as the Al concentration increased in

the region where the Al concentration was close to zero, but then increased slowly with
the further increase in Al concentration. Furthermore, it is interesting to see in Figure 4c
that the cross-interdiffusion coefficients D̃Mg

AlZn at 623, 673, and 723 K were all approaching
zero as the concentration of Al approaches zero. It should be noted that such an interesting
phenomenon is reasonable and can be obviously proved by Equation (1). The relationship
between the cross-interdiffusion coefficient D̃Mg

ZnAl and concentrations of both Al and Zn

is displayed in Figure 4d. Different from D̃Mg
AlZn, the presently predicted D̃Mg

ZnAl is positive,
and can be expressed as the following equation similar to Equation (1):

D̃Mg
ZnAl =

[
(1− xZn)

2xZn MZn + x2
ZnxAl MAl + x2

ZnxMg MMg

]∂(µZn − µMg)

∂xAl
(2)
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Figure 2. Model-predicted composition–distance profiles of different hcp Mg–Al–Zn diffusion
couples annealed at (a) 673 K for 8 h, (b) 673 K for 24 h, (c) 723 K for 4 h, and (d) 723 K for 5 h, due to
the present atomic mobilities (solid lines), compared with those of Zhong et al. [32] (dashed lines)
and the experimental data [35] (in symbols).
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and the experimental data [35] (in symbols).
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Figure 4. Model-predicted composition-dependent inter-diffusivities of (a) D̃Mg
AlAl, (b) D̃Mg

ZnZn,

(c) D̃Mg
AlZn, and (d) D̃Mg

ZnAl over the composition range of 0–5.0 at.% Al and 0–3.0 at.% Zn at 623,
673, and 723 K according to the present atomic mobilities together with the thermodynamic descrip-
tions [42].

According to Equation (2), the positive sign of D̃Mg
ZnAl is due to the positive

∂(µZn − µMg)/∂xAl . As shown in Figure 4d, the value of D̃Mg
ZnAl is in the same order of the

absolute one of D̃Mg
AlZn, but lower than the main interdiffusion coefficients, D̃Mg

AlAl and D̃Mg
ZnZn.

In addition, the D̃Mg
ZnAl increased with the increase in temperature and Al concentration,

while the D̃Mg
ZnAl increased rapidly in the region where the Zn concentration was close to

zero, and then increased slowly with the further increase of Zn. Moreover, an interesting
phenomenon can also be found with the cross-interdiffusion coefficients D̃Mg

ZnAl at 623, 673,
and 723 K all approaching zero as the concentration of Zn approached zero.
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To further illustrate the reliability of the presently updated atomic mobilities, the
calculated main inter-diffusivities according to the present work are compared with the
determined ones by Wang et al. [36] in Figure 5a. Along the diagonal lines, the model-
predicted values are exactly equal to the experimental ones. The region of empirical errors
for inter-diffusivities is constructed by the two dashed lines that represent the interdiffusion
coefficients multiplied with a pre-factor of 2 or 0.5, respectively, according to the suggestion
in [44]. A similar plot was also made in Figure 5b between the calculated main inter-
diffusivities by Zhong et al. [32] and the ones determined by Wang et al. [36]. Based on
the comparison in Figure 5a,b, it can be found that the calculated main interdiffusion
coefficients from the present work are consistent with those of Zhong et al. [32], and the
calculated main interdiffusion coefficients in both the present work and Zhong et al. [32]
agree well with all the experimental data (within the dashed lines), expected for 6 values
marked by black circles in the figure. It should be noted that those 6 points marked by
black circles were determined by Wang et al. [36] based on three diffusion couples (i.e., Mg-
3Al/Mg-1Zn, Mg-3Al/Mg-0.5Zn, and Mg-0.87Al/Mg-1.12Zn) from Kammerer et al. [35] of
which the composition–distance profiles were not employed in the present optimization
because the original experimental data were either unreasonable (i.e., Mg-0.87Al/Mg-
1.12Zn) or not provided (i.e., Mg-3Al/Mg-1Zn and Mg-3Al/Mg-0.5Zn) according to the
original publications.
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Figure 5. Model-predicted main inter-diffusivities in the hcp Mg–Al–Zn system due to (a) the present
atomic mobilities and (b) Zhong et al. [32] at 673 and 723 K compared with the experimental data [36].
Along the diagonal lines, the model-predicted values are exactly equal to the experimental ones. The
dashed lines represent the interdiffusion coefficients multiplied by a pre-factor of 2 or 0.5.

Based on the above analysis, the presently updated atomic mobilities of the hcp Mg–
Al–Zn based on the newly proposed strategy are reliable and can give as good fit to all the
experimental properties as of the recent publication [32] using the traditional approach.

4.2. Hcp Mg–Al–Sn Ternary System

Figures 6 and 7 display the model-predicted composition–distance profiles of eight dif-
fusion couples (i.e., Mg-0.52Sn/Mg-7.81Al, Mg-1.00Sn/Mg-7.37Al, Mg-2.30Al-0.83Sn/Mg,
and Mg-8.00Al-0.46Sn/Mg, annealed at 673 K for 216 h, in at.%; Mg-1.04Sn/Mg-3.59Al,
Mg-1.07Sn/Mg-7.63Al, Mg/Mg-7.86Al-0.53Sn, and Mg-2.3Al-0.9Sn/Mg, annealed at 723 K
for 216 h, in at.%) from the present work (solid lines) compared with the experimental data
(in symbols) by Zhou et al. [37]. The model-predicted results according to Zhong et al. [32]
(dashed lines) are also superimposed in the figure for direct comparison. Figures 8 and 9
also show the model-predicted composition–distance profiles of 10 diffusion couples (i.e.,
Mg/Mg-2.77Al-0.97Sn, Mg-1.46Sn/Mg-3.81Al, Mg-0.96Al-1.48Sn/Mg, and Mg-0.98Sn/Mg-
1.92Al, annealed at 773 K for 6 h, in at.%; Mg-2.63Al-0.94Sn/Mg, Mg-1.43Sn/Mg-3.80Al,
and Mg-1.89Al/Mg-0.97Sn, annealed at 723 K for 9 h, in at.%; Mg/Mg-1.43Al-0.92Sn, Mg-
1.45Sn/Mg-3.74Al, and Mg-0.98Sn/Mg-1.83Al, annealed at 823 K for 3 h, in at.%) according
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to the present atomic mobilities and also those from Zhong et al. [32] compared with the
experimental data by Zhang et al. [34]. As can be seen in Figures 6–9, the model-predicted
composition–distance profiles according to the present work are in better agreement with
the experimental data by Zhou et al. [37] and Zhang et al. [34] than the model-predicted
ones due from Zhong et al. [32], especially in the figures, i.e., Figure 6a,b, Figure 7a,b,
Figure 8b,d and Figure 9b,c,e,f. Furthermore, the model-predicted diffusion paths at 673,
723, 773, and 823 K, based on the presently updated atomic mobilities and also those by
Zhong et al. [32], are displayed in Figure 10 compared with the experimental data from
Zhou et al. [37] and Zhang et al. [34]. As can be seen in Figure 10, the model-predicted
diffusion paths by the present work again agree better with the experimental data [34,37]
than the model-predicted ones by Zhong et al. [32].
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Based on the updated atomic mobility descriptions by the present work together
with the thermodynamic descriptions [39], the inter-diffusivities of the hcp Mg–Al–Sn
system over the composition range of 0–5.0 at.% Al and 0–2.0 at.% Sn at 723, 773, and
823 K are predicted in Figure 11. Similar to the hcp Mg–Al–Zn system, the interdiffusion
coefficients of the hcp Mg–Al–Sn system were also processed with a logarithm. As shown in
Figure 11a,b, the main interdiffusion coefficient D̃Mg

AlAl was in the same order of magnitude

as the D̃Mg
SnSn at the same temperature. Besides, both D̃Mg

AlAl and D̃Mg
SnSn increased with

the increase in temperature and concentrations of Al and Sn. Figure 11c,d show that
the cross-interdiffusion coefficients, D̃Mg

AlSn and D̃Mg
SnAl, varied apparently along with the

concentrations of Al and Sn. Similar to Equations (1) and (2), D̃Mg
AlSn and D̃Mg

SnAl can be
expressed as:

D̃Mg
AlSn =

[
(1− xAl)

2xAl MAl + x2
Al xSn MSn + x2

Al xMg MMg

]∂(µAl − µMg)

∂xSn
(3)
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D̃Mg
SnAl =

[
(1− xSn)

2xSn MSn + x2
SnxAl MAl + x2

SnxMg MMg

]∂(µSn − µMg)

∂xAl
(4)

where MAl, MSn, and MMg are the atomic mobilities for Al, Sn, and Mg, respectively.
xAl, xSn, and xMg are the mole fractions for Al, Sn, and Mg, respectively. µAl, µSn, and
µMg represent the chemical potentials of Al, Sn, and Mg, respectively. Here, it should be

noted that the signs of D̃Mg
AlSn and D̃Mg

SnAl are positive, which are determined by the terms
∂(µAl − µMg)/∂xSn and ∂(µSn − µMg)/∂xAl , respectively. As can be seen in Figure 11c,d,

the cross-interdiffusion coefficient D̃Mg
AlSn was in the same order of the main interdiffusion

coefficients, D̃Mg
AlAl and D̃Mg

SnSn, at the same temperature, while the cross-interdiffusion

coefficient D̃Mg
SnAl was lower than the main interdiffusion coefficients, D̃Mg

AlAl and D̃Mg
SnSn, by

approximately one order of magnitude. Moreover, D̃Mg
AlSn increased with the increase in

temperature and Sn concentration, while D̃Mg
AlSn increased rapidly in the region where the Al

concentration was close to zero, and then increased slowly with the further increase in Al.
As the concentration of Al (Sn) approached zero, the cross-interdiffusion coefficient, D̃Mg

AlSn

(D̃Mg
SnAl) at 723, 773, and 823 K were all approaching zero, which can be reasonably explained

by Equations (3) and (4). Figure 12a,b respectively show the calculated main interdiffusion
coefficients according to the present atomic mobilities and those of Zhong et al. [32],
compared with the experimental data [34,37]. Along the diagonal lines, the model-predicted
values are exactly equal to the experimental ones. The two dashed lines represent the
interdiffusion coefficients multiplied by a pre-factor of 2 or 0.5, respectively. A comparison
between Figure 12a,b clearly indicates that the calculated interdiffusion coefficients from
the present work can reproduce more experimental data than those by Zhong et al. [32].
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over the composition range of 0–5.0 at.% Al and 0–2.0 at.% Sn at 723, 773, and 823 K are 
predicted in Figure 11. Similar to the hcp Mg–Al–Zn system, the interdiffusion coefficients 
of the hcp Mg–Al–Sn system were also processed with a logarithm. As shown in Figure 
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(solid lines) compared with these of Zhong et al. [32] (dashed lines) and the experimental data [34]
(in symbols).
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Figure 10. Model-predicted diffusion paths in the hcp Mg–Al–Sn system at (a) 673 K for 216 h,
(b) 723 K for 216 and 9 h, (c) 773 K for 6 h, and (d) 823 K for 3 h from the present mobilities (solid
lines) compared with those of Zhong et al. [32] (dashed lines) and the experimental data [34,37]
(in symbols).

Based on the above comprehensive comparison among the model-predicted results
from the present work, the ones by Zhong et al. [32], and the experimental data [34,37], the
reliability of the atomic mobility descriptions of the hcp Mg–Al–Sn system was significantly
improved by using the newly proposed strategy compared with the traditional approach.
The major reason lies in that although 18 groups of diffusion couples were investigated
by Zhou et al. [37] and Zhang et al. [34], only very scattered experimental interdiffusion
coefficients at the intersection compositions of diffusion paths can be determined by the
traditional methods and then utilized in the traditional optimization process, which may
lead to the lower accuracy of the obtained atomic mobility descriptions. By contrast, all
18 groups of composition–distance profiles can be employed in the optimization process
using the new strategy based on HitDIC, which can largely improve the reliability of the
atomic mobility descriptions.

4.3. Hcp Mg–Al–Zn–Sn Quaternary System

Figure 13 displays the comparison between the model-predicted composition–distance
profiles of the only quaternary diffusion couple, Mg-0.64Al-0.04Sn-0.59Zn/Mg-0.79Al-
2.42Sn-0.66Zn, annealed at 773 K for 250 h due to the present atomic mobilities (solid
lines) and the experimental data (in symbols) by Bryan et al. [33]. The model-predicted
composition–distance profiles from Zhong et al. [32] (dashed lines) are also superimposed
in the figure for direct comparison. As can be seen in Figure 13, the model-predicted
composition–distance profiles of Sn and Al in the present work show much better agree-
ment with the experimental data of Bryan et al. [33], compared with the results from
Zhong et al. [32]. The model-predicted composition–distance curve of Zn from both
the present work and Zhong et al. [32] slightly deviate from the experimental data of
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Bryan et al. [33]. It should be noted that the difference in the Zn concentration in both end
alloys was only 0.07 at.%, which may cause large difficulties in the accurate experimental
measurement of Zn concentration.
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Figure 11. Model-predicted composition-dependent inter-diffusivities of (a) D̃Mg
AlAl, (b) D̃Mg

SnSn,

(c) D̃Mg
AlSn, and (d) D̃Mg

SnAl over the composition range of 0–5.0 at.% Al and 0–2.0 at.% Sn at 723, 773, and
823 K according to the present atomic mobilities together with the thermodynamic descriptions [39].
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Figure 12. Model-predicted main inter-diffusivities in the hcp Mg–Al–Sn system due to (a) the
present atomic mobilities and (b) Zhong et al. [32] at 673, 723, 773, and 823 K compared with the
experimental data [34,37]. Along the diagonal lines, the model-predicted values are exactly equal to
the experimental ones. The dashed lines represent the interdiffusion coefficients multiplied with a
pre-factor of 2 or 0.5.
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Figure 13. Model-predicted composition–distance profiles of the only quaternary diffusion couple in
quaternary system, Mg-0.64Al-0.04Sn-0.59Zn/Mg-0.79Al-2.42Sn-0.66Zn, annealed at 773 K for 250 h
from the present atomic mobilities (solid lines) compared with these of Zhong et al. [32] (dashed
lines) and the experimental data [33] (in symbols).

Based on the above analysis, a real improvement in the reproduction of the experimen-
tal data was achieved by the present work compared with the results of Zhong et al. [32],
even though only one more quaternary diffusion couple was included in the present work.
It is anticipated that the reliability of the atomic mobilities in the hcp Mg–Al–Zn–Sn qua-
ternary system can be further improved by using the newly proposed strategy if more
experimental composition profiles in the quaternary Mg–Al–Zn–Sn system are available.
By contrast, the reliability of atomic mobilities in the hcp Mg–Al–Zn–Sn quaternary system
cannot be improved based on the traditional method, no matter whether the experimental
data for Mg–Al–Zn–Sn system are sufficient.

To illustrate the influence of Sn concentration and temperature on the inter0diffusivities
of the hcp Mg–Al–Zn–Sn quaternary system, the matrix (α-Mg) phase with an average
composition of 2.4 at.% Al and 0.56 at.% Zn in as-cast AZT640 (Mg-6Al-4Zn-0.6Sn, in wt.%),
according to Dong et al. [45], was chosen as the target in the present work. According
to the presently updated atomic mobility descriptions together with the thermodynamic
descriptions [40], the interdiffusion coefficients of the Mg–Al–Zn–Sn quaternary system
over a compositions range of 2.4 at.% Al, 0.56 at.% Zn, and 0–0.6 at.% Sn at 623, 673, and
723 K were predicted in Figure 14. As can be seen in Figure 14a, the D̃Mg

AlAl and D̃Mg
SnSn

were quite close to each other and lower than D̃Mg
ZnZn by approximately one order of magni-

tude. Moreover, the D̃Mg
AlAl and D̃Mg

SnSn increased with the increase in temperature and Sn

concentration, while D̃Mg
ZnZn increased with the increase in temperature and kept nearly

constant with the increment in Sn concentration. Figure 14b displays the variations in
cross-interdiffusion coefficients, D̃Mg

AlSn and D̃Mg
ZnSn, with Sn concentration. D̃Mg

ZnSn was larger

than D̃Mg
AlSn but lower than the main interdiffusion coefficients, D̃Mg

AlAl and D̃Mg
SnSn. In ad-

dition, D̃Mg
ZnSn increased with the increase in temperature but kept nearly constant with

the increment in Sn concentration, while D̃Mg
AlSn rose with the increase in temperature and

Sn concentration.
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Figure 14. Model-predicted component-dependent inter-diffusivities of (a) D̃Mg
AlAl, D̃Mg

ZnZn, and D̃Mg
SnSn

and (b) D̃Mg
AlSn and D̃Mg

ZnSn over a composition range of 2.4 at.% Al, 0.56 at.% Zn, and 0–0.3 at.% Sn
at 623, 673, and 723 K according to the present atomic mobilities together with the thermodynamic
descriptions [40].

5. Conclusions

• A general and effective strategy for the maintenance of the CALPHAD atomic mobility
database of multicomponent systems was developed based on the pragmatic numerical
inverse method and HitDIC software;

• Following the newly proposed strategy, the atomic mobility descriptions of the hcp
Mg–Al–Zn and Mg–Al–Sn ternary systems were updated based on the experimental
composition profiles in the respective ternary systems. It was found that the presently
updated atomic mobilities of the hcp Mg–Al–Zn system provided a good fit for all of
the experimental diffusion properties as did the previous assessment [32] using the
traditional approach, while the presently updated atomic mobilities of the hcp Mg–Al–
Sn system showed better agreement with the experimental diffusion properties than
the previous assessment [32] using the traditional approach. Moreover, the variation
trend of inter-diffusivities of the hcp Mg–Al–Zn and Mg–Al–Sn systems with the
temperature and solute (i.e., Al, Zn, and Sn) concentrations was also fully analyzed;

• Based on the updated atomic mobility descriptions of the hcp Mg–Al–Zn and Mg–Al–
Sn systems, together with only one set of composition–distance profiles, the atomic
mobility descriptions of the hcp Mg–Al–Zn–Sn quaternary system were further up-
dated following the newly proposed strategy. A real improvement in the reproduction
of experimental data was achieved by the present work compared with the previous
assessment. Furthermore, the influence of Sn concentration and temperature on the
inter-diffusivities of the hcp Mg–Al–Zn–Sn quaternary alloys was also illustrated;

• It is anticipated that the presently proposed strategy can serve as a standard for main-
taining the CALPHAD atomic mobility database of different multicomponent systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma15010283/s1, Figure S1: Model-predicted composition–distance profiles of different
hcp Mg–Al–Zn diffusion couples annealed at (a) 663 K for 144 h and (b) 708 K for 144 h as well as
an enlarged composition–distance curve of Zn annealed at (c) 663 K for 144 h and (d) 708 K for
144 h from the present atomic mobilities (solid lines) compared with those of Zhong et al. [32]
(dashed lines) and the experimental data [33] (symbols).
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