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Abstract: The melt-spun ribbons of LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) compounds are prepared by
the melt fast-quenching method. The doping of C is beneficial to the nucleation and precipitation
of the La (Fe, Si)13 phase, which is indicated by the microstructure observation and the elemental
analysis. Subsequently, the ribbons of LaFe11.5Si1.5C0.2 are annealed at different times, and the phase
composition, the microstructures, and the magnetic properties are investigated. The LaFe11.5Si1.5C0.2

ribbons annealed at 1273 K for 2 h achieved the best magnetic properties, and the maximum isothermal
magnetic entropy change with a value of 9.45 J/(kg·K) upon an applied field of 1.5 T at an increased
Curie temperature 255 K.

Keywords: microstructure; magnetocaloric effect; rapid solidification; annealing; maximum isother-
mal magnetic entropy

1. Introduction

Magnetic refrigeration, as a new pollution-free and efficient refrigeration technology,
has attracted widespread attention and systematic research [1]. Among the magnetic refrig-
eration materials currently developed, the LaFe13-xSix (1.2 ≤ x ≤ 1.6) alloy is a promising
candidate because of its large magnetocaloric effect, low cost, and environmentally friendly
properties [1–6]. However, there are still some issues, such as the low Curie/working
temperature and the long annealing time to generate the La (Fe, Si)13 phase producing the
large magnetocaloric effect, that hinder this kind of material from practical applications.
At present, transition elements such as Co [7,8] and Ni are widely used to replace Fe, or
elements such as B [9], H [10], and C [11–13] with a small atomic radius can be doped as
interstitial atoms to improve the Curie temperature of the La-Fe-Si alloy. The addition of a
few rare earth elements, such as Ce instead of La, can greatly improve the magneto-thermal
performance of the LaFe13-xSix alloy, but there is the problem of the Curie temperature re-
duction. Although Co replacing Fe can improve the Curie temperature of the La-Fe-Si alloy,
the maximum isothermal magnetic entropy change of the alloy isreduced significantly [14].
Furthermore, the H element is doped as gap atoms in the La-Fe-Si alloy, while the Curie
temperature increases, but the hydride is chemically unstable above 330 K, which is an
unavoidable problem in practical applications [15].

In 2016, the structural and magnetothermal properties of the LaFe13-xSixCy carbide
were investigated by V. Paul-Boncour et al. [16], who found that C atom doping leads
to an increase in the Curie temperature and a drastic decrease of the magnetic entropy
change. An almost single 1:13 phase was obtained after only a 30 min of heat treatment
at 1393 K for the ball-milled samples. Even though doping C in the La-Fe-Si alloy ingot
can increase the Curie temperature and obtain the optimal magnetic properties with a
maximum isothermal magnetic entropy 12.7 J/(kg·K) (∆H = 5 T) [17,18], the alloy ingot
needs a long-time heat treatment for around 1 week for the formation of the La (Fe, Si)13
phase. Therefore, in order to increase the Curie temperature and reduce the heat-treatment
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time simultaneously, we investigated melt-spun ribbons of LaFe11.5Si1.5Cx (x = 0, 0.2)
compounds prepared using the melt fast-quenching method. The formation of La (Fe, Si)13
phase in solidification and subsequent heat treatments by doping C was studied using an
X-ray diffraction analyzer. The magneto-thermal properties were systematically studied
using a vibration sample magnetometer.

2. Experimental Details

The raw materials used in this experiment were Fe (purity not less than 99.55%), La
(purity not less than 99.9%), Si (purity not less than 99.999%), and graphite (purity not less
than 99.9%). Considering the volatile rare earth elements in the melting process, the burn
loss of the rare earth element La was measured by 10%. To make the sample composition
uniform, electromagnetic stirring was initiated during the melting process and each sample
was flipped and melted four times. The ingots were melt and spun into ribbons using a
melt-spinner with a copper wheel at a surface speed of 35 m/s. For the subsequent heat
treatment in a muffle furnace, the melt-spun ribbons were sealed in glass tubes filled with
inert gas. The heat-treatments at a temperature of 1273 K to the LaFe11.5Si1.5C0.2 ribbons
were 3 min and 2 h, respectively.

The phase structure analysis to the melt-spun ribbons was conducted by an X-ray
diffraction instrument, D/MAX-2200-type (Cu target, Kα-ray). The magnetic properties
were determined by a vibration sample magnetometer, namely the Lakeshore7470. The
thermal magnetic curve was tested under the 0.1 T magnetic field. The isothermal magneti-
zation curve was tested under the 0–1.5 T magnetic field. The magnetic entropy variation
was calculated using the Maxwell Equation (1).

∆SM(T, H) = SM(T, H)− SM(T, H = 0) =
∫ H

0
(

∂M
∂T

)
H

dH (1)

3. Result and Discussions
3.1. Nucleation Rate and Phase Structure

Figure 1a shows the XRD pattern of unannealed LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3)
ribbons. It is not hard to see from the XRD pattern that in the fast-spun ribbons of
LaFe11.5Si1.5Cx (x = 0.2) compounds without heat treatment, the main phases are all α-(Fe,
Si) phases, and only a small amount of La (Fe, Si)13 phases are contained. With the increase
in C content, the relative content of the NaZn13 type phase with a magnetocaloric effect
increases first and then decreases, and the relative content of the La (Fe, Si)13 phase reaches
a maximum in the sample of x = 0.2. With the continued increase in C content, the relative
content of the La (Fe, Si)13 phases tended to decrease. The doping of C favors the formation
of the La (Fe, Si)13 phases in the LaFe11.5Si1.5Cx(x = 0, 0.1, 0.2, and 0.3) alloy. This is because
during the rapid solidification process, the La (Fe, Si)13 phase competed with the α-(Fe, Si)
phase, while the doping of C favored the shaped nucleus and the dissolution of the La (Fe,
Si)13 phase.

According to the analysis of the jade software, the 2θ of the main peak of the La (Fe,
Si)13 phase in the unannealed LaFe11.5Si1.5CX (x = 0, 0.1, 0.2, 0.3) alloy was 46.762◦, 46.677◦,
46.642◦, and 46.512◦, respectively, as well as with the doping of the C element. According
to the Bragg formula 2dsinθ = λ (d is the interplanar spacing, θ is the diffraction half angle,
λ is the wavelength), it can be seen that the interplanar spacing of the La (Fe, Si)13 phase in
the alloy rapid quenching band was increasing, which shows that C atoms as interstitial
atoms entered the lattice of the La (Fe, Si)13 phase of the NaZn13 cubic structure, which
caused the expansion of the crystal structure and the increase of the lattice constant. The
results are shown in Table 1.



Materials 2022, 15, 343 3 of 12
Materials 2022, 15, x FOR PEER REVIEW 3 of 12 
 

 

 
(a) 

  
Figure 1. X-ray diffraction patterns of unannealed LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) ribbons at a sur-
face speed of 35 m/s (a); calculated nucleation rates of the α-(Fe, Si) and La (Fe, Si)13 phases versus 
under-cooling degrees at different C contents; (b) x = 0; (c) x = 0.2. 

Table 1. Lattice parameters of unannealed LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) ribbons. 

C Content Lattice Parameters (Å) 
x = 0 11.4883 

x = 0.1 11.4931 
x = 0.2 11.4985 
x = 0.3 11.5024 

With the increase in C content, the relative content of the La (Fe, Si)13 phase decreased. 
The doping C was beneficial to the nucleation and precipitation of the La (Fe, Si)13 phase 
in the LaFe11.5Si1.5C0.2 ribbons, because there was a competitive nucleation relationship be-
tween the La (Fe, Si)13 phase and the α-(Fe, Si) phase during rapid solidification. 
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Figure 1. X-ray diffraction patterns of unannealed LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) ribbons at a
surface speed of 35 m/s (a); calculated nucleation rates of the α-(Fe, Si) and La (Fe, Si)13 phases
versus under-cooling degrees at different C contents; (b) x = 0; (c) x = 0.2.

Table 1. Lattice parameters of unannealed LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) ribbons.

C Content Lattice Parameters (Å)

x = 0 11.4883
x = 0.1 11.4931
x = 0.2 11.4985
x = 0.3 11.5024

With the increase in C content, the relative content of the La (Fe, Si)13 phase decreased.
The doping C was beneficial to the nucleation and precipitation of the La (Fe, Si)13 phase
in the LaFe11.5Si1.5C0.2 ribbons, because there was a competitive nucleation relationship
between the La (Fe, Si)13 phase and the α-(Fe, Si) phase during rapid solidification.

The heterogeneous nucleation rate [19,20] can be calculated by the following

I =
kBTNn

3πη(T)a3
0
· exp

[
−∆G∗

kBT

]
(2)

Figure 1b,c shows the nucleation rates of the α-(Fe, Si) and La (Fe, Si)13 phases versus
the under-cooling degree at different C contents. During the solidification process of the
ribbons, the degree of under-cooling affects the phase formation mechanism of the La-Fe-Si
alloy. Figure 1b shows that in the solidification process of the La-Fe-Si alloy, the nucleation
rate of the α-(Fe, Si) phase is higher than that of the La (Fe, Si)13 phase when the under-
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cooling degree is small. Thus, the lower under-cooling degree is not conducive to the
formation of the La (Fe, Si)13 phase, and the main phase of the alloy is the α-(Fe, Si) phase.
When the over cooling degree is large, the shaped nucleus rate of the La (Fe, Si)13 phase is
higher than the α-(Fe, Si) phase, facilitating the formation of more La (Fe, Si)13 phases. The
results show that the undercooling degree affects the competitive precipitation of the La
(Fe, Si)13 phase and α-(Fe, Si) phase.

Under certain chamber pressure, the faster quenching speed, that is, the larger under-
cooling degree, creates conditions for the nucleation and precipitation of the La (Fe, Si)13
phase, which is beneficial to the effective formation of the La (Fe, Si)13 single phase. Sec-
ondly, the large undercooling degree during rapid solidification is conducive to the forma-
tion of a small La-Fe-Si alloy microstructure [21].

The non-equilibrium rapid solidification process in the La-Fe-Si ribbons provides a
high degree of undercooling for the nucleation and precipitation of the La (Fe, Si)13 phase,
which induces the primary precipitation of the competitive La (Fe, Si)13 phase. Meanwhile,
the crystal structure of the α-(Fe, Si) phase and La-Fe-Si phase grows slowly, and the
nanoscale α-(Fe, Si) phase is distributed periodically and uniformly, which is beneficial
to the diffusion of La, Fe, and Si atoms during heat treatment and promotes the inclusion
reaction of the La (Fe, Si)13 phase. Therefore, the single-phase La (Fe, Si)13 phase can be
obtained only in a short time by using a fast quenching method to prepare La-Fe-Si alloy
rapid quenching strips.

In Figure 2a, region I is small, corresponding to the La (Fe, Si)13 phase when x = 0, and
region II is the α-(Fe, Si) phase. The regions between region I and region II are the transition
regions. Figure 2b shows that region I (La (Fe, Si)13 phase) is significantly increased when
x = 0.2. Figure 2c is an enlarged diagram of region II, and Figure 2d is an enlarged diagram
of the transition region. Table 2 is the EDS analysis of the micro-structure of the La-Fe-Si
alloys. With the increasing C content, the content change of each element is not obvious.
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Table 2. The EDS analysis of the micro-structure of LaFe11.5Si1.5Cx (x = 0, 0.2) alloys.

Chemical Composition La (at %) Fe (at %) Si (at %) Phase

x = 0 white point 14.28 70.58 15.14 La (Fe, Si)13
dark gray 0 94.48 5.52 α-(Fe, Si)
gray white 34.26 32.65 33.09 LaFeSi

x = 0.2 white point 13.87 71.14 14.99 La (Fe, Si)13
dark gray 0 94.45 5.55 α-(Fe, Si)
gray white 33.64 32.97 33.39 LaFeSi

3.2. LaFe11.5Si1.5C0.2 Heat Treatment

Figure 3 shows the XRD pattern of the LaFe11.5Si1.5C0.2 ribbons annealed at a tem-
perature of 1273 K with different times. As shown in the diagram, the main phase is
the α-(Fe, Si) phase and the secondary phase is the La (Fe, Si)13 phase to the unannealed
LaFe11.5Si1.5C0.2 ribbons. After heat treatment, the main phase changes from the α-(Fe, Si)
to the La (Fe, Si)13 phase, and the secondary phase changes from the La (Fe, Si)13 phase to
the α-(Fe, Si) phase. When the heat-treatment time increases from 3 min to 2 h, the relative
content of the α-phase decreases. This is due to the inclusion reaction between the α-(Fe,
Si) phase and the La (Fe, Si)13 phase when the heat treatment of the ribbons is carried out
at a temperature of 1273 K for 2 h.
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Figure 3. X-ray diffraction patterns of LaFe11.5Si1.5C0.2 ribbons at a wheel speed of 35 m/s annealed
at 1273 K for different times.

Through the analysis of jade software, it is found that with the extension of heat
treatment time, the 2θ of the main peak of the 13 phases of La (Fe, Si) in the fast quenched
strip are 46.800◦, 46.730◦, and 46.698◦, respectively. The main peak of La (Fe, Si)13 phase
shifts to a small angle, because with the increase in heat treatment time, C atoms are
fully spaced from the lattice of the La (Fe, Si)13 phase with a NaZn13 cubic structure,
which makes its lattice expand and causes the lattice constant of the La (Fe, Si)13 phase to
increase [22]. In addition, it can be clearly seen from the figure that the La (Fe, Si)13 phase
in the alloy has become the main phase when the LaFe11.5Si1.5C0.2 strip is heat treated
for 3 min. Compared with the alloy samples prepared by the traditional melting ingot
method, the melt quenching process with a certain rapid quenching speed provides deep
undercooling conditions for the formation of the La (Fe, Si)13 phase in the peritectic reaction
process. It promotes the competitive nucleation and precipitation of La (Fe, Si)13 phase in
the rapid solidification process, and the La (Fe, Si)13 phase formed in the early stage and the
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refined La (Fe, Si)13 phase grains in the melt rapid quenching shorten the time required for
inclusion reaction in the heat treatment process. The results in Table 3 show that the lattice
parameters are 11.4985 Å, 11.5036 Å, and 11.5107 Å at a wheel speed of 35 m/s annealed at
1273 K for as spun, 3 min and 2 h, respectively. In other words, the longer annealing time,
the bigger the expansion of the alloy lattice.

Table 3. Lattice parameters of annealed LaFe11.5Si1.5C0.2 ribbons at 1273 K for different times.

Annealing Time Lattice Parameters (Å)

as spun 11.4985
3 min 11.5036

2 h 11.5107

Figure 4 is a free surface SEM appearance of the LaFe11.5Si1.5C0.2 fast quenching strip
at 35 m/s at different times at a temperature of 1273 K. As is seen in Figure 4a, the free
surface of the rapid quenching ribbon without heat treatment has a flat surface, no obvious
branch crystal tissue, with cluster boundaries similar to the crystal boundary, probably due
to the fast cooling speed and small grain size. After 3 min of heat treatment, some white
particles of the rapid quenching ribbon began to precipitate through the EDS analysis (see
Table 4). After the preliminary analysis of the research group, it can be inferred that the
white particles are La2O3 [23]. Through the energy spectrum analysis of the free surface
grain after heat treatment (see Table 4), in the atomic percentage of each element at different
times, the internal phase composition of the grain is close to the La (Fe, Si)13 phase, and
the analysis results are consistent with the results of the XRD in Figure 3. As can be seen
from Figure 4c, in the free surface of the ribbon after heat treatment for 2 h, the triangle
appearance has grown almost completely into a quadrilateral appearance, has spread over
the whole surface, the crystal boundary is relatively flat, and the white particles of the
La-rich phase are mostly distributed at the grain boundary of the circle particles, rarely at
the quadrilateral crystal boundary.
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Table 4. Inside grains and white grains the EDS analysis of LaFe11.5Si1.5C0.2 ribbons at a wheel speed
of 35 m/s annealed at 1273 K for different times.

Heat Treatment Time Area La (at%) Fe (at%) Si (at%) O (at%) C (at%) Phase

0 min
I (white particles) 9.11 74.82 7.43 4.97 3.66 La2O3
II (intracrystalline) 11.84 72.56 10.94 0.08 4.58 La (Fe, Si)13

3 min
I (white particles) 15.28 49.74 6.36 21.63 6.99 La2O3
II (intracrystalline) 11.73 71.62 11.01 1.33 4.31 La (Fe, Si)13

2 h
I (white particles) 18.97 25.93 4.96 36.88 13.26 La2O3
II (intracrystalline) 11.33 69.10 11.14 4.37 4.06 La (Fe, Si)13

Figure 5 shows the microstructure appearance image and high resolution image of
LaFe11.5Si1.5C0.2 with a rapid quenching speed of 35 m/s and 3 min of heat treatment.
Figure 5b is the Fourier transform of the lattice stripe of the circle region of Figure 5a,
calibrated as the uniform La (Fe, Si)13 phase. Figure 5c is the Fourier transform of the lattice
stripes of the Figure 5d white strips, labeled as a uniform La-Fe-Si phase. Figure 5e is the
Fourier transform of the lattice stripe of the Figure 5a dark area, labeled as a uniform α-(Fe,
Si) phase.
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Figure 6 shows the tissue appearance image and high resolution image of LaFe11.5Si1.5C0.2
with a fast quenching speed of 35 m/s and 2 h heat treatment. As can be seen from Figure 6a, the
area in the fast quenching strip consists of two different shapes. Figure 6b is an enlarged picture
of region 1. It can be found that the quadular bulge in the SEM diagram of the free surface is
composed of small and uniform particles, the matrix consists of gray and white particles, with a
particle size within 200–500nm, and the two shapes are distinguished by a straight boundary.
The formation of a quadratic crystal boundary in Figure 4c is also confirmed.
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Figure 6. (a,b) Microstructure morphology (c,f) HRTEM micro-graph; (d) Fourier transform; (e)
display of selected area in TEM of 35 m/s LaFe11.5Si1.5C0.2 ribbons near the free surface annealed at
1273 K for 2 h.

From the LaFe11.5Si1.5C0.2 fast quenched strip powder XRD pattern with a fast quench-
ing speed of 35 m/s in Figure 3, the main phase is the La (Fe, Si)13 phase, containing only
a small number of α-(Fe, Si) phases, so a large number of quadrilateral bumps in the free
surface should be a relatively uniform La (Fe, Si)13 phase and a small number of α-(Fe, Si)
phases in the white particles. A high-resolution morphology is taken at the junction of the
base and the quadrilateral projection, as shown in Figure 6c. The Fourier transform of the
lattice stripes of the high-resolution matrix A region is normalized to the uniform La (Fe,
Si)13 phase, the lattice stripe of the gray grain in the B, C region of a high resolution, and
the raised gray particles to the La-Fe-Si phase.

3.3. Effects on the Magnetic Properties

As can be seen from Figure 7, with the extension of the heat treatment time, the
Curie temperature of the LaFe11.5Si1.5C0.2 quenching strip increases at 224 K (0 min), 231 K



Materials 2022, 15, 343 9 of 12

(3 min), and 255 K (2 h). This is because, with the increase of heat treatment time, the lattice
expansion of the NaZn13 structure is caused by the effective entry of atomic energy into the
gap position of La (Fe, Si)13 phase C. The three strong peaks of the La (Fe, Si)13 phase in
Figure 3 can effectively prove this. With the C atoms entering the gap position in the La
(Fe, Si)13 lattice, the 3D band of the Fe becomes narrower, the ferromagnetic interaction is
enhanced, and the curie temperature tends to increase obviously.
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Figure 7. Thermomagnetic curves of 35 m/s LaFe11.5Si1.5C0.2 ribbons annealed at 1273 K for differ-
ent times.

Figure 8 shows the LaFe11.5Si1.5C0.2 fast quenching strip with a fast quenching speed
of 35 m/s at a temperature of 1273 K, the maximum isothermal temperature after different
times of heat treatment. We can see from Figure 8 that when the heat treatment time is 0 min,
3 min, and 2 h, the maximum isothermal magnetic entropy change of the LaFe11.5Si1.5C0.2
fast quenched strip is 2.32 J/(kg·K), 6.8 J/(kg·K), and 9.45 J/(kg·K), respectively. The
maximum isothermal magnetic entropy change mutated after 20 min of heat treatment,
and then showed an obvious trend of first increasing and then decreasing, and reached the
maximum value after 2 h of heat treatment. This change in the magneto-thermal effect as
the heat treatment time extends comes from the following reason. It is difficult to complete
the crystallization reaction of the La (Fe, Si)13 phase during solidification, and La-Fe-Si
as the primary α-(Fe, Si) phase is the main phase in the fast-quenched strip of the alloy,
and the relative content of the La (Fe, Si)13 phase with a giant magnetothermic effect is
relatively small, so it has a small maximum isothermal magnetic entropy change. After
thermal treatment, during the wafer coating reaction process, the not fully reactive α-(Fe,
Si) phase and the La-Fe-Si phase generates the La (Fe, Si)13 phase, causing the La (Fe, Si)13
phase in the alloy, thus having a large maximum isothermal magnetic entropy change, and
mutations for the slightly longer thermal treatment (20 min). This agrees with the XRD
result in Figure 3.

Figure 9 is the 3D curve of the temperature, magnetic field, and maximum isothermal
magnetic entropy change of (x = 0.2) after thermal treatment for 2 h at 1273 K. As the
magnetic fields increase, the ∆S−T curve changes from the symmetrical herringbone to the
asymmetric curve, indicating that the alloy phase transition type from the secondary phase
transition to the primary phase transition and ∆S shows an increasing trend (because the
primary phase transition is the change of material magnetic ordered state caused by lattice
distortion, the resulting magnetic entropy change is much greater than the secondary phase
transition and reaches values of 9.45 J/(kg·K) upon an applied field of 1.5 T).



Materials 2022, 15, 343 10 of 12

Materials 2022, 15, x FOR PEER REVIEW 10 of 12 
 

 

Figure 8 shows the LaFe11.5Si1.5C0.2 fast quenching strip with a fast quenching speed 
of 35 m/s at a temperature of 1273 K, the maximum isothermal temperature after different 
times of heat treatment. We can see from Figure 8 that when the heat treatment time is 0 
min, 3 min, and 2 h, the maximum isothermal magnetic entropy change of the 
LaFe11.5Si1.5C0.2 fast quenched strip is 2.32 J/(kg·K), 6.8 J/(kg·K), and 9.45 J/(kg·K), respec-
tively. The maximum isothermal magnetic entropy change mutated after 20 min of heat 
treatment, and then showed an obvious trend of first increasing and then decreasing, and 
reached the maximum value after 2 h of heat treatment. This change in the magneto-ther-
mal effect as the heat treatment time extends comes from the following reason. It is diffi-
cult to complete the crystallization reaction of the La (Fe, Si)13 phase during solidification, 
and La-Fe-Si as the primary α-(Fe, Si) phase is the main phase in the fast-quenched strip 
of the alloy, and the relative content of the La (Fe, Si)13 phase with a giant magnetothermic 
effect is relatively small, so it has a small maximum isothermal magnetic entropy change. 
After thermal treatment, during the wafer coating reaction process, the not fully reactive 
α-(Fe, Si) phase and the La-Fe-Si phase generates the La (Fe, Si)13 phase, causing the La 
(Fe, Si)13 phase in the alloy, thus having a large maximum isothermal magnetic entropy 
change, and mutations for the slightly longer thermal treatment (20 min). This agrees with 
the XRD result in Figure 3. 

 
Figure 8. (a) ΔS−T curves and (b) histogram of the maximum isothermal magnetic entropy of 
LaFe11.5Si1.5C0.2 ribbons at a wheel speed of 35 m/s annealed at 1273 K for different times. 

Figure 9 is the 3D curve of the temperature, magnetic field, and maximum isothermal 
magnetic entropy change of (x = 0.2) after thermal treatment for 2 h at 1273 K. As the 
magnetic fields increase, the ΔS−T curve changes from the symmetrical herringbone to the 
asymmetric curve, indicating that the alloy phase transition type from the secondary 
phase transition to the primary phase transition and ΔS shows an increasing trend (be-
cause the primary phase transition is the change of material magnetic ordered state caused 
by lattice distortion, the resulting magnetic entropy change is much greater than the sec-
ondary phase transition and reaches values of 9.45 J/(kg·K) upon an applied field of 1.5 
T). 

Figure 8. (a) ∆S−T curves and (b) histogram of the maximum isothermal magnetic entropy of
LaFe11.5Si1.5C0.2 ribbons at a wheel speed of 35 m/s annealed at 1273 K for different times.

Materials 2022, 15, x FOR PEER REVIEW 11 of 12 
 

 

 
Figure 9. 3D curve of the temperature, magnetic field, and maximum isothermal magnetic entropy 
variation of the LaFe11.5Si1.5C0.2 fast quenched band at 35 m/s (after 1273 K × 2 h heat treatment). 

4. Conclusions 
Considering the disadvantages of the low magneto-thermal effect and the long heat 

treatment time of room temperature magnetic refrigeration materials using the La-Fe-Si 
alloy, the magneto-thermal effect is improved, and the heat treatment time in the prepa-
ration process is greatly shortened by the melt fast quenching process. At the same time, 
the effects of different heat treatment times on the phase composition, magnetic proper-
ties, and micro-tissue of LaFe11.5Si1.5C0.2 are also studied. We present the following conclu-
sions: 

• The doping of C promotes the formation of La (Fe, Si)13 phases in the La-Fe-Si series 
alloy. Compared with La-Fe-Si alloy without C doping, the LaFe11.5Si1.5Cx (x = 0.1, 0.2, 
0.3) alloy obtained more of the La (Fe,Si)13 phase without heat treatment. 

• The process of heat treatment for 2 h at 1273 K facilitates a large isothermal variation 
of LaFe11.5Si1.5C0.2 entropy of alloy. With the extended thermal treatment time, the 
maximum isothermal magnetic entropy change of the LaFe11.5Si1.5C0.2 alloy fast strip 
tends to increase first before decreasing, reaching a maximum at 2 h of thermal treat-
ment of 9.45 J/(kg K). 

• The characteristic quadrangle morphology in the LaFe11.5Si1.5C0.2 alloy fast quenching 
strip with 2 h pf heat treatment is benefitted by obtaining a higher magneto-thermal 
effect. Through the transmission analysis, the quadrilateral convex appearance in the 
2 h heat treatment is the uniformly distributed La (Fe, Si)13 phase, and also the uni-
formly staggered distributed α-(Fe, Si) phase in the fast quenching band and the La-
Fe-Si phase, which facilitates the contact between the α-(Fe, Si) phase and the La-Fe-
Si phase, and promotes the packet analysis reaction. The uneven α-(Fe, Si) phase 
white large particles distributed in the alloy strip during 3 min heat treatment are 
difficult to contact using La-Fe-Si during heat treatment, which is not conducive to 
the packet analysis reaction, so the magneto-thermal effect is poor. 

Author Contributions: Conceptualization, H.S. and Y.H.; methodology, H.S.; software, J.Z.; valida-
tion, J.Z. and J.F.; formal analysis, X.H.; investigation, Y.H.; resources, H.S.; data curation, H.S.; writ-
ing—original draft preparation, H.S.; writing—review and editing, H.S. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

0.2

0.4

0.6

0.8

1.0

1.2

1.4

24
5

25
0

25
5

26
0

26
5

0

2

4

6

8

Temperature (K)

ΔS
 (J

/k
g·K

)
μ 0H 

(T)

Figure 9. 3D curve of the temperature, magnetic field, and maximum isothermal magnetic entropy
variation of the LaFe11.5Si1.5C0.2 fast quenched band at 35 m/s (after 1273 K × 2 h heat treatment).

4. Conclusions

Considering the disadvantages of the low magneto-thermal effect and the long heat
treatment time of room temperature magnetic refrigeration materials using the La-Fe-Si
alloy, the magneto-thermal effect is improved, and the heat treatment time in the prepara-
tion process is greatly shortened by the melt fast quenching process. At the same time, the
effects of different heat treatment times on the phase composition, magnetic properties, and
micro-tissue of LaFe11.5Si1.5C0.2 are also studied. We present the following conclusions:

• The doping of C promotes the formation of La (Fe, Si)13 phases in the La-Fe-Si series
alloy. Compared with La-Fe-Si alloy without C doping, the LaFe11.5Si1.5Cx (x = 0.1, 0.2,
0.3) alloy obtained more of the La (Fe, Si)13 phase without heat treatment.

• The process of heat treatment for 2 h at 1273 K facilitates a large isothermal variation
of LaFe11.5Si1.5C0.2 entropy of alloy. With the extended thermal treatment time, the
maximum isothermal magnetic entropy change of the LaFe11.5Si1.5C0.2 alloy fast strip
tends to increase first before decreasing, reaching a maximum at 2 h of thermal
treatment of 9.45 J/(kg·K).

• The characteristic quadrangle morphology in the LaFe11.5Si1.5C0.2 alloy fast quenching
strip with 2 h pf heat treatment is benefitted by obtaining a higher magneto-thermal
effect. Through the transmission analysis, the quadrilateral convex appearance in
the 2 h heat treatment is the uniformly distributed La (Fe, Si)13 phase, and also the
uniformly staggered distributed α-(Fe, Si) phase in the fast quenching band and the
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La-Fe-Si phase, which facilitates the contact between the α-(Fe, Si) phase and the
La-Fe-Si phase, and promotes the packet analysis reaction. The uneven α-(Fe, Si)
phase white large particles distributed in the alloy strip during 3 min heat treatment
are difficult to contact using La-Fe-Si during heat treatment, which is not conducive to
the packet analysis reaction, so the magneto-thermal effect is poor.
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and agreed to the published version of the manuscript.
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