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Abstract: The presented research was aimed at finding a suitable tool and procedure for monitoring
undercuts or other problems such as cutting without abrasive or inappropriate parameters of the
jet during the abrasive water jet (AWJ) cutting of hard-machined materials. Plates of structural
steel RSt 37-2 of different thickness were cut through by AWJ with such traverse speeds that cuts of
various qualities were obtained. Vibrations of the workpiece were monitored by three accelerometers
mounted on the workpiece by a special block that was designed for this purpose. After detecting
and recording vibration signals through the National Instruments (NI) program Signal Express, we
processed this data by means of the LabVIEW Sound and Vibration Toolkit. Statistical evaluation
of data was performed, and RMS was identified as the parameter most suitable for online vibration
monitoring. We focus on the analysis of the relationship between the RMS and traverse speed.

Keywords: abrasive water jet; vibration signals; AWJ machining; process control

1. Introduction

Abrasive water jet (AWJ) is one of the progressive technologies which has spread to
many industries during the last several decades. The antecedent of AWJ was groundbreak-
ing research by Franz in high pressure water jet cutting lumber in the 1950s, resulting in
pure waterjet invention [1]. In the end of the 1970s, Hashish started adding abrasiveness
to the jet and thus achieved high efficiency so that in the early 80s, it was possible to
start cutting steel, concrete, etc. [2]. The main advantages of AWJ are the insignificant
thermal influence of most materials [3], extremely low increase in the internal stress of the
material [4], and the versatility of the jet as a tool capable of cutting almost any material [5].
Today, AWJ machining technology is high tech due to intensive developments in many
companies. However, due to the expanding market and increasing demand for special
cutting by AWJ such as 3D machining and machining of hard-machine materials [6], it is
necessary to develop a reliable procedure for monitoring the cutting process.

Many authors were studying this topic, and different, more or less effective methods
were proposed. Jurisevic et al. [7] measured the emitted sound generated during the AWJ
straight cut operation on aluminum alloy plates of two different thickness and analysed
its characteristic attributes. Axinte and Kong [8] applied a very complex method based
on evaluation of signals detected by an array of energy-related sensors, namely acoustic
emissions (AE); three AE sensors were mounted along the jet trajectory (nozzle, workpiece
fixture and dummy plate below the workpiece), and their measurement was amended
by two dynamometers, mounted under the workpiece and dummy plate, measuring
the impingement of the direct and idle jet, respectively. The whole system was aimed
to detect various types of malfunction of the device, i.e., nozzle clogging, non-uniform
jet penetration during through cutting operations and nonconstant jet eroded footprint
during milling operations. Krenický and Rimár [9] measured vibrations on several parts
of the machine, trying to find relation to striations formed at the cut surface. Hreha
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et al. [10] measured vibrations on the workpiece and, applying polynomial multi-parametric
regression, prepared a formula for calculation of surface roughness from the traverse rate of
the cutting head and average of absolute values of acceleration amplitudes. Similar research
was realized by Sutowski et al. [11]. Mikler monitored undercut using acoustic emissions [12]
and questioned reliability of direct connection between AE and surface quality. Recently,
Pahuja and Ramulu [13] analysed the AE signals using wavelet packet transform (WPT)
and proposed an algorithm to identify and characterize these signals. Copertaro et al. [14]
aimed at demonstrating that vibroacoustic sensors are the right choice for monitoring the
AJW cutting capability; however, the investigation has been carried out with the cutting head
in a steady position, while its movement was found to negatively affect the performance of
the method. Therefore, it seems to serve rather as a calibration method.

Thus, in spite of great effort of many researchers, so far, commercially manufactured
monitoring equipment has not been launched on the market. For work in the industry as
well as in laboratories studying AWJ, it would be a great benefit to have technology capable
of online monitoring of the depth of cut of the work-piece. The abrasive water jet is able to
cut thick materials such as steel or rock, but for very thick or hard-machine materials, it
can be difficult to correctly determine the parameters of the jet. Then it is important to set
the parameters of AWJ for an economically tolerable cut. Separating cut (without the need
for cutting quality) is widely used, and it is necessary to cut the shortest time as possible.
Online monitoring of the cut should provide clear answers such as the instantaneous depth
of the jet during drilling or if, during cutting, undercut occurs, or whether the jet cuts
through the material unnecessarily long and uneconomically.

During the cutting of materials with an abrasive water jet, a water jet is used as the
medium which carries the abrasive. The abrasive is a component of the jet that erodes
the material. The abrasive particles fall on the surface of the material, where the material
is removed by erosion. The kinetic energy of these particles is partly used to break the
bonds of the material; the part is transferred to the surroundings in the form of acoustic
oscillations; part of the energy is converted into heat, plastic deformation of material, etc.
When the machine has incorrectly set parameters, the material is not cut properly, less
energy is consumed to breaking bonds, and more energy remains in material. The energy
should, therefore, spread through the material in the form of AE and can serve as a source
of information about type of mechanical wear mechanism passing in the material [15],
or could lead to increased vibration of the workpiece. These vibrations can be measured
using accelerometers and help to detect malfunction of the system such as undercuts, lack
of abrasive or pressure drop. Although acoustic signal characteristics exhibit stronger
relationship with the process characteristics, the implementation is limited by the location
of the respective sensor on the part [16]. Moreover, depending on the nature of the source
event, various percentages of the total energy are available as measurable acoustic waves
[17], so the evaluation of the measured data is too complex to be applied as a quick, simple
and economic diagnostic tool.

We categorise the measuring techniques for the monitoring of machining operations
into two approaches: direct and indirect. In the direct approach, the actual quantity
of the variable, most often the tool wear, is measured. However, due to the practical
limitations caused by access problems during machining, illumination and the use of
cutting fluid the direct methods can often be used only as laboratory techniques [18]. The
indirect measurements often use various types of sensors to determine auxiliary quantity
which enables us to deduce values of the actual quantity through empirically determined
correlation [19]. Accelerometers represent one of the most often used type of sensors
used for detection of vibration during machining operations. The main advantage of the
accelerometer is its linearity over a wide range of frequencies, which enables us to identify
either the condition of cutting operation [19,20] or monitor the cutting tool condition [21]
and prevent its sudden breakage [22] or malfunction [23,24]. Accelerometers are widely
used also in other technical applications [25]; therefore, one can utilise a wide spectrum of
knowledge concerning signal processing and interpretation.
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In this research paper, we deal with the measurement of vibration using piezoelectric
accelerometers fastened to the workpiece. These vibrations should help for monitoring
the cut of hard-machine material and thus save on abrasive and time when working in the
laboratory. We performed the experiments in the laboratory of AWJ of the Department of
Physics VŠB-TUO. A measuring system from National Instruments (NI) and piezoelectric
accelerometers from PCB Piezotronics were used while searching the relationship between
vibrations and cuts. Our goal was to find a simple, low-cost and time-saving method of
malfunction detection usable in practice, similar to that in the research work of Postel
et al. [26]. Based on the results, we plan to design a system for online monitoring of cuts,
during cutting thick or hard-machine materials. We believe that an important part of
optimizing the drilling and cutting of hard-machine materials is to be aware of the relation-
ship between the interaction of the jet with the material and the observed vibroacoustic
emissions and to identify their manifestations in the measured signals.

2. Materials and Methods

The technical equipment of the AWJ laboratory of the Department of Physics VŠB
Technical University of Ostrava consists of the abrasive water jet PTV WJ1020-1Z-EKO and
the high-pressure pump PTV 19/60; with pressure up to 415 MPa. An NI measuring system
was used to record the signals from the accelerometers. The measurement was realized on
an assembly consisting of a five-slot NI PXIe-1073, a NI PXIe-4492 data acquisition module,
and an NI PXI-Express Card 8360, which was used to connect a PC to an A/D converter.
We use NI Signal Express software for data recording, and LabView Sound and Vibration
Assistant for online signal analysis and recording.

We measured vibrations using three PCB 352C33 accelerometers. To connect the
accelerometers to the workpiece, we made a special block where the accelerometers are
arranged in three mutually perpendicular axes [X, Y, Z]. This block is fastened to the
workpiece with a single screw (Figure 1). The advantage of the block lies in the simplicity
and speed of mounting the three accelerometers on the workpiece and the possibility to
keep the mounting of the accelerometers in the desired position even if the body shape is
irregular. In an upgraded version, the block was equipped by a special magnet for attaching
accelerometers block. An additional upgrade was designed to simplify accelerometers
mounting to ferromagnetic materials, making measurement more flexible. Its benefit is a
nondestructive way of attachment.
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Figure 1. (a) fixation of the measuring block to the cut material; (b) detail of the measuring block.

We used abrasive Australian garnet mesh 80, water pressure was 380 MPa, nozzle
diameter 0.25 mm, focusing tube length and diameter 76 mm, and 0.76 mm, respectively.
The standoff distance was 2.5 mm (Table 1). The signal sampling frequency was 30 kHz.
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Table 1. Parameters and factors applied in the AWJ cutting.

Variable [Unit] Value

Pump pressure [MPa] 380
Nozzle orifice diameter [mm] 0.25
Mixing tube diameter [mm] 0.76

Mixing tube length [mm] 76
Abrasive mass flow rate [g/min] 250

Abrasive type Australian garnet #80
Standoff distance [mm] 2.5

Cutting speed [mm/min] 20–165

The material used for the research was structural steel W. Nr. 1.0038 (DIN RSt 37-2)
(Table 2) on plates with 5 different thicknesses. This material is classified as non-alloy low
carbon steel and it is widely used as a construction material thanks to its relatively low
price and easy availability [27].

Table 2. Chemical composition of examined steel in wt. %.

C % Si % Mn % P % S % N % Cu %

W. Nr. 1.0038 max. 0.19 - max. 1.50 max. 0.045 max. 0.045 max. 0.014 max. 0.60

The measurement was realized in the original version of accelerometers mounting,
i.e., using a measuring block fixed with a screw. The dimensions of the cut samples
were 109 mm × 168 mm, the block with accelerometers was attached in the corner of the
workpiece. The AWJ machine cut the material in the X direction, the Y direction was the
second lateral accelerometer, Z was the axial (vertical) accelerometer, i.e., parallel with the
jet axis. We always measured four sections, 25 mm long, the cuts were performed with four
different speeds (Table 3). The speeds were increasing, they were designed to produce kerfs
with degrading quality of the cut (Figure 2). The measurement cycle was repeated on the
same material for all measured thicknesses, the respective traverse rates were recalculated
for each thickness according to the Hlaváč’s model, recently updated in [28]. Based on this
model classification, the data were divided into four cutting qualities (Table 3).

Table 3. Traverse rates used for different thicknesses and quality of cutting.

Cutting Quality: Thickness in mm 10 15 20 25 30

Excellent Traverse speed vp 50 38 30 25 20
Good 100 75 60 50 40
Separating cut 150 113 90 75 60
Limit cut 165 124 95 83 66

The spectral power density method often appears in articles referring to monitoring
abrasive water jet. Using this method of signal analysis seems logical because it brings
us information about the performance of individual frequencies. However, the analysis
of such a spectrum brings a lot pitfalls. For online monitoring, it is necessary to create an
elementary tool so that the machine operator can simply know if the material is completely
cut. Results of signal analysis using spectral power densities are highly variable. Disturbing
elements of the surroundings, such as a lathe motor or a cooling fan motor, often appear
in the signals. This method is therefore suitable for signal analysis, where we are able to
guarantee the same conditions for all sections, and the resulting analysis is performed after
the measurement is completed. It proved not to be beneficial for online analysis in the
presented research.
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Figure 2. Example of cuts performed with increasing traverse rate and therefore deteriorating quality:
the first one from the left represents excellent cut; the second one good cut; the last two indicate poor
quality, containing undercuts or bridges.

At the beginning of the research, a program for signal analysis using spectral density
was prepared, and several signals were processed to verify its functionality. It came out
that the spectra did not change according to some features typical of the section. Figure 3
shows a typical power spectrum of the material.
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Figure 3. Typical power spectrum of material, it is difficult to identify individual sources of interfering
idle signals.

Therefore, RMS time signal was chosen for further processing, due to simpler and
clearer analysis, which is very convenient for online analysis. The vibrations measured by
the accelerometers were evaluated in the LabView software, and root mean square (RMS)
of the assigned section was calculated. The RMS is defined in Equation (1).

ye f =

√
1
T

∫ T

0
y2dt (1)
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The RMS value is a measure of the energy transmitted by a signal. It can only acquire
positive, nonzero and finite values. In our previous research [29] signals were analyzed by
FFT, but it came out that this form of analysis should be too complicated for industrial use.
On the other hand, the background of the measured signals in our laboratory appeared to
be constant and does not seem to affect the use of the time signal and RMS. Therefore, for
the best approximation to cutting in practice, the same conditions were used as in industry
and the measurement was performed without further adjusting conditions.

Four different cuts with traverse rates corresponding to four required cutting qualities
(excellent, good, separating and limit) were performed for each thickness of material, which
represents 20 measurements of time signals used for RMS evaluation. Preliminary tests did
not indicate any substantial change in the RMS value for the repeated cuts under the same
operating conditions; therefore, a single run-cut for each combination of traverse rate and
material thickness was used for evaluation.

3. Results and Discussion

The data were statistically processed using the Anderson–Darling normality test [30].
In the Figures 4–7, the graphical summary of the statistics for each category of cut quality
is presented, namely the normal distribution curve and histogram. A table of basic statis-
tical processing results is included in each picture, indicating that the data come from a
normal distribution.
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The variances are different and the normality was not rejected, so we proceeded to the
exact test of homoskedasticity—the Bartlett test [31]. At the significance level of 0.05, we
reject the assumption of agreement of sector deviations. There is a statistically significant
difference between the variances of the individual groups of sections. The conditions are
suitable for and the Kruskal–Wallis test [32] (Table 4). The results will be discussed in the
following section.
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Table 4. The results of the Kruskal–Wallis test.

Cut Quality N Median Ave Rank Z

Excellent 14 0.0673 9 −5.17
Good 14 0.14125 27.7 −0.21
Limit cut 14 0.19985 39.9 3.03
Separating cut 14 0.1948 37.4 2.35
Overall 56 28.5
H = 31.05; DF = 3; P « 0.001

The results of the above-mentioned statistical tests proved that the RMS changes
statistically significantly with the traverse speed; it can be related with the quality of the
cut. Figure 8 presents a graph of the RMS dependence on the traverse speed. Each material
thickness has its own curve. We can see that the general trend is that RMS increases with
the growing traverse speed. There are two results which deviate from this trend. Excellent
cutting quality results for 25 mm thickness seem to be inhomogeneous in RMS compared
with other cutting qualities. This phenomenon might arise from the step increase of the
RMS after over-running of the optimal cutting speed, while the growth trend can be slower
at higher speeds. In the 20 mm thickness curve, we can see that the RMS dropped down
for the fastest cut. However, this exception might appear due to inhomogeneities in the
material or another similar unexpected event that caused it. We should note that the
separating speed is only 10% lower than the limit one.
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Figure 8. RMS change with traverse speed for different thicknesses of steel.

Furthermore, we wanted to find out, following a thorough statistical analysis of indi-
vidual directions, whether the measurement of vibrations on the workpiece is dependent
on the axis [X, Y, Z], from which we measure vibrations. The RMS values were sorted
through the directions (Table 5). After excluding the only outlier (value 0.451108 in the Z
column), the analysis of variance (ANOVA) was performed, and statistically significant
difference between individual directions was proved. The results based on the Tukey’s
honestly significant test [33] are presented in Figure 9a.
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Table 5. RMS of individual cuts in Ostrava sorted through direction of measurement.

Thickness [mm] X Y Z vp [mm/min]

10 0.063765 0.090058 0.063130 50
10 0.123962 0.222298 0.169768 100
10 0.125512 0.23860 0.167805 150
10 0.140289 0.244911 0.184055 165
15 0.068251 0.081516 0.086712 38
15 0.144684 0.177507 0.204797 75
15 0.208192 0.257962 0.451108 113
15 0.195216 0.294343 0.237677 124
20 0.066276 0.112672 0.094817 30
20 0.125219 0.230684 0.177159 60
20 0.181439 0.375277 0.269824 90
20 0.165931 0.293618 0.204544 95
25 0.046918 0.107784 0.057235 25
25 0.060920 0.137836 0.091477 50
25 0.121212 0.258099 0.174038 75
25 0.121463 0.274494 0.158659 83
30 0.036423 0.079713 0.044846 20
30 0.045271 0.119909 0.071335 40
30 0.089390 0.209744 0.111748 60
30 0.088969 0.243477 0.132883 66Materials 2022, 14, x FOR PEER REVIEW 10 of 12 
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thick, with variable values of pressure and abrasive mass flow rate.

In terms of RMS level, it was proved that it depends on location of the accelerometers.
Surprisingly, in our laboratory in Ostrava, we found that it was statistically the best to
measure the RMS level with the accelerometer Y (normal to surface parallel to the cutting
surface) and the worst with the accelerometer X (cutting direction). This might correlate
with gradual deterioration of the cut quality and increase in lateral deviations of the jet
during close-to-limit cuts, but it should also signal a machine fault. The latter explanation
raised from the fact that we have found different results in another measurement scheme
realized with another material on cutting machine in Politecnico di Milano (Figure 9b).

Nevertheless, we suppose that for more complex cut shapes, it should definitely be
more advantageous to measure with more accelerometers to identify unwilling changes in
the cutting process (These changes should then be located directly from the detailed analysis
of the time signals.). However, for linear cuts, it is sufficient to have one accelerometer
mounted on the workpiece surface, i.e., in the jet axis.
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4. Conclusions

The statistical analysis of the experimental data confirmed that the relationship of
the RMS to the traverse speed is statistically significant. The general trend is that RMS
increases with the growing traverse speed; however, inhomogeneities in material might
lead to unexpected improvement in cutting and therefore sudden drop down of the RMS
signal for high traverse rate.

In the search of the most advantageous accelerometer for measuring vibrations on the
machined material, we found that in terms of the RMS level, it depends on the direction in
which the accelerometer measures vibrations; it was statistically significantly proved that
it was best to measure with the accelerometer Y and the worst with the accelerometer X
(which is against the direction of the cut). This finding, however, cannot be generalized; it
should be a specific feature of the machine applied in this research.

For industrial use, we recommend to measure with one Z accelerometer mounted on
the material surface so that the accelerometer detects vibrations parallel to the jet.

The planned application of the presented conclusions is as follows: in case of unknown
thick materials, it should be difficult to choose optimal traverse speed to realize through
cutting without undercuts. Additional cutting in the case of several noncut points should
be very time consuming and unnecessarily expensive. Continuous monitoring of the RMS
signal using a special block with three accelerometers together with evaluation of the time
records of the original signals enables us to identify problems and locate them. Additional
cutting should therefore be precisely targeted and much more economical.
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10. Hreha, P.; Radvanská, A.; Knapčiková, L.; Królczyk, G.; Legutko, S.; Królczyk, J.; Hloch, S.; Monka, P. Roughness parameters

calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015, 22,
315–326. [CrossRef]

https://flowwaterjetblog.com/2015/02/03/how-one-small-change-made-waterjet-what-it-is-today/
http://doi.org/10.1007/s00170-018-3094-3
http://doi.org/10.1115/1.2836824
http://doi.org/10.1007/s00170-003-1752-5
http://doi.org/10.1016/j.cirp.2009.03.022
http://doi.org/10.4028/www.scientific.net/KEM.496.229
http://doi.org/10.1515/mms-2015-0024


Materials 2022, 15, 345 11 of 11

11. Sutowski, P.; Sutowska, M.; Kapłonek, W. The use of high-frequency acoustic emission analysis for in-process assessment of the
surface quality of aluminium alloy 5251 in abrasive waterjet machining. Proc. IMechE Part B J. Eng. Manuf. 2018, 232, 2547–2565.
[CrossRef]

12. Mikler, J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng.
2014, 142, 104–115.

13. Pahuja, R.; Ramulu, M. Surface quality monitoring in abrasive water jet machining of Ti6Al4V–CFRP stacks through wavelet
packet analysis of acoustic emission signals. Int. J. Adv. Manuf. Technol. 2019, 104, 4091–4104. [CrossRef]

14. Copertaro, E.; Perotti, F.; Castellini, P.; Chiariotti, P.; Martarelli, M.; Annoni, M. Focusing tube operational vibration as a means for
monitoring the abrasive waterjet cutting capability. J. Manuf. Process. 2020, 59, 1–10. [CrossRef]

15. Hase, A.; Mishina, H.; Wada, M. Correlation between features of acoustic emission signals and mechanical wear mechanisms.
Wear 2012, 292–293, 144–150. [CrossRef]

16. Pahuja, M.; Ramulu, M. Abrasive waterjet process monitoring through acoustic and vibration signals. In Proceedings of the 24th
International Conference on Water Jetting 2018, Manchester, UK, 5–7 September 2018; BHR Group Limited: Bedford, UK, 2018;
pp. 75–87.

17. Ukpai, J.I.; Barker, R.; Hu, X.; Neville, A. Exploring the erosive wear of X65 carbon steel by acoustic emission method. Wear 2013,
301, 370–380. [CrossRef]

18. Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced monitoring of machining operations. CIRP Ann.-Manuf. Technol.
2010, 59, 717–739. [CrossRef]
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