Investigation of Deoxidation Process of MoO3 Using Environmental TEM
Abstract
:1. Introduction
2. Results
2.1. Deoxidation of MoO3
2.1.1. Characteristics Analysis of Molybdenum Oxide MoO3
2.1.2. MoO3Structural Changes in H2 Atmosphere
2.1.3. Morphology and Phase Evolution during Deoxidation
2.2. Compositional Evolution of MoO3
2.2.1. Non-Deoxidation Sublimation of MoO3
2.2.2. Composition Changes under Different Conditions
2.3. Evolution and Characterization of the Position
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 3, 2003414. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, Y.; Zhou, Y.; Liu, W.; Baaziz, W.; Ersen, O.; Pham-Huu, C.; Greiner, M.; Chu, W.; Wang, A.; et al. High-Density and Thermally Stable Palladium Single-Atom Catalysts for Chemoselective Hydrogenations. Angew. Chem. Int. Ed. Engl. 2020, 5, 21613–21619. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Atomic-layered Au clusters on a-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Zhou, W.; Gao, R.; Yao, I.; Zhang, I.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, G.; Hao, X.; Cao, J.; Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production—A review. Renew. Sustain. Energy Rev. 2017, 75, 1101–1129. [Google Scholar] [CrossRef]
- Deng, Y.; Gao, R.; Lin, L.; Liu, T.; Wen, X.D.; Wang, S.; Ma, D. Solvent tunes the selectivity of hydrogenation reaction over alpha-MoC catalyst. J. Am. Chem. Soc. 2018, 14, 14481–14489. [Google Scholar] [CrossRef]
- Baddour, F.G.; Roberts, E.J.; To, A.T.; Wang, L.; Habas, S.E.; Ruddy, D.A.; Bedford, N.M.; Wright, J.; Nash, C.P.; Schaidle, J.A.; et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation. J. Am. Chem. Soc. 2020, 14, 1010–1019. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Q.; Jiang, Z.; Mei, B.; Bao, X. Carbide-supported Au catalysts for water-gas shift reactions: A new territory for the Strong metal-support interaction effect. J. Am. Chem. Soc. 2018, 14, 13808–13816. [Google Scholar] [CrossRef]
- Cetinkaya, S.; Eroglu, S. Thermodynamic analysis and synthesis of porous Mo2C sponge by vapor-phase condensation and in situ carburization of MoO3. J. Alloys Compd. 2010, 48, 36–41. [Google Scholar] [CrossRef]
- Guzmán, H.J.; Xu, W.; Stacchiola, D.; Vitale, G.; Scott, C.E.; Rodríguez, J.A.; Pereira-Almao, P. Formation of β-Mo2C below 600 °C using MoO2 nanoparticles as precursor. J. Catal. 2015, 332, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wang, J.; Bing Tao, H.; Tian, H.; Zhang, Z.; Xu, H. Unraveling the oxide layer on Mo2C as the active center for hydrogen evolution reaction. J. Catal. 2020, 389, 461–467. [Google Scholar] [CrossRef]
- Xie, W.; Su, M.; Zheng, Z.; Wang, Y.; Gong, L.; Xie, F.; Zhang, W.; Luo, Z.; Luo, J.; Liu, P.; et al. Nanoscale insights into the hydrogenation process of layered alpha-MoO3. ACS Nano 2016, 1, 1662–1670. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, X.; Wang, D. Synthesis of high-performance Mo–La2O3 powder by hydrogen reduction of MoO2 originated from a self-reduction strategy. Mater. Res. Express. 2019, 6, 126586. [Google Scholar] [CrossRef]
- He, B.; Zhang, Y.; Liu, X.; Chen, L. In-situ Transmission Electron Microscope Techniques for Heterogeneous Catalysis. ChemCatChem 2020, 1, 1853–1872. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, B.; Li, X.-Y.; Hansen, T.W.; Ou, Y.; Fang, K.; Yang, H.; Zhang, Z.; Wagner, J.B.; Gao, Y.; et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020, 36, 428–430. [Google Scholar] [CrossRef]
- Hanson, E.D.; Lajaunie, L.; Hao, S.; Myers, B.D.; Shi, F.; Murthy, A.A.; Wolverton, C.; Arenal, R.; Dravid, V.P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 2, 1605380. [Google Scholar] [CrossRef] [Green Version]
- Ledentu, V.; Dong, W.; Sautet, P. Heterogeneous catalysis through subsurface sites. J. Am. Chem. Soc. 2020, 122, 1796–1801. [Google Scholar] [CrossRef]
- Song, Z.; Xie, Z.H. A literature review of in situ transmission electron microscopy technique in corrosion studies. Micron 2018, 112, 69–83. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, B.; Fang, K.; Li, X.-Y.; Hansen, T.W.; Ou, Y.; Yang, H.; Wagner, J.B.; Gao, Y.; Wang, Y.; et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science 2021, 37, 517–521. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Yuan, W.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2017, 1, 42–67. [Google Scholar] [CrossRef]
- Carpena-Núñez, J.; Rao, R.; Kim, D.; Bets, K.V.; Zakharov, D.N.; Boscoboinik, J.A.; Stach, E.A.; Yakobson, B.I.; Tsapatsis, M.; Stacchiola, D.; et al. Zeolite Nanosheets Stabilize Catalyst Particles to Promote the Growth of Thermodynamically Unfavorable, Small-Diameter Carbon Nanotubes. Small 2020, 16, 1. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, Y.; Zhao, Y.; Long, H.; Li, X.; Deng, Q.; Lu, H.; Yang, X.; Yang, G.; Li, W.; et al. Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: The interface junction initiated outwards oxidation. Acta Mater. 2021, 215, 116991. [Google Scholar] [CrossRef]
- Chenna, S.; Banerjee, R.; Crozier, P.A. Atomic-Scale Observation of the Ni Activation Process for Partial Oxidation of Methane Using In Situ Environmental TEM. ChemCatChem 2011, 3, 1051–1059. [Google Scholar] [CrossRef]
- Ding, J.; Wang, L.; Wu, P.; Li, A.; Li, W.; Stampfl, C.; Liao, X.; Haynes, B.S.; Han, X.; Huang, J. Confined Ru Nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem 2020, 1, 534–538. [Google Scholar] [CrossRef]
- Ma, Z.; Sheng, L.; Wang, X.; Yuan, W.; Chen, S.; Xue, W.; Han, G.; Zhang, Z.; Yang, H.; Lu, Y.; et al. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature. Adv. Mater. 2019, 3, 1903719. [Google Scholar] [CrossRef]
- Tao, F.F.; Crozier, P.A. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chem. Rev. 2016, 11, 3487–3539. [Google Scholar] [CrossRef]
- Qu, X.; He, Y.; Qu, M.; Ruan, T.; Chu, F.; Zheng, Z.; Ma, Y.; Chen, Y.; Ru, X.; Xu, X.; et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy 2021, 6, 194–202. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. A stable low-temperature H2-production catalyst by crowding Pt on alpha-MoC. Nature 2021, 58, 396–401. [Google Scholar] [CrossRef]
- Ku, J.-G.; Oh, J.-M.; Kwon, H.; Lim, J.-W. High-temperature hydrogen-reduction process for the preparation of low-oxygen Mo powder from MoO3. Int. J. Hydrogen Energy 2017, 4, 2139–2143. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Gavrilova, T.A.; Grigorieva, T.I.; Kuratieva, N.V.; Okotrub, K.A.; Pervukhina, N.V.; Surovtsev, N.V. Sublimation growth and vibrational microspectrometry of α-MoO3 single crystals. J. Cryst. Growth 2011, 31, 987–990. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.-H.; Sun, Y.-J.; Zhou, X.-W.; Chou, K.-C. Preparation of ultrafine β-MoO3 from industrial grade MoO3 powder by the method of sublimation. J. Phys. Chem. C 2016, 12, 19821–19829. [Google Scholar] [CrossRef]
- Hanif, A.; Xiao, T.; York, A.P.E.; Sloan, J.; Green, M.L.H. Study on the structure and formation mechanism of molybdenum carbides. Chem. Mater. 2002, 14, 1009–1015. [Google Scholar] [CrossRef]
- Xiao, T.; York, A.P.E.; Coleman, K.S.; Claridge, J.B.; Sloan, J.; Charnock, J.; Green, M.L.H. Effect of carburising agent on the structure of molybdenum carbides. J. Mater. Chem. 2001, 1, 3094–3098. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Li, A.; Wang, L.; Zheng, K. Investigation of Deoxidation Process of MoO3 Using Environmental TEM. Materials 2022, 15, 56. https://doi.org/10.3390/ma15010056
Ma P, Li A, Wang L, Zheng K. Investigation of Deoxidation Process of MoO3 Using Environmental TEM. Materials. 2022; 15(1):56. https://doi.org/10.3390/ma15010056
Chicago/Turabian StyleMa, Peijie, Ang Li, Lihua Wang, and Kun Zheng. 2022. "Investigation of Deoxidation Process of MoO3 Using Environmental TEM" Materials 15, no. 1: 56. https://doi.org/10.3390/ma15010056
APA StyleMa, P., Li, A., Wang, L., & Zheng, K. (2022). Investigation of Deoxidation Process of MoO3 Using Environmental TEM. Materials, 15(1), 56. https://doi.org/10.3390/ma15010056