Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates
Abstract
:1. Introduction
2. Materials and Methods
2.1. LVL
2.2. Aluminium Alloy
2.3. Shear Connectors
2.4. Toothed Plates
2.5. Push-Out Tests
3. Results and Discussion
3.1. The Results of the Tensile Tests of the Steel Used in the Screws
3.2. The Results of the Push-Out Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergman, R.; Puettmann, M.; Taylor, A.; Skog, K.E. The carbon impacts of wood products. For. Prod. J. 2014, 64, 47. [Google Scholar] [CrossRef]
- Porteous, J.; Kermani, A. Structural Timber Design to Eurocode 5, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The usefulness of pine timber (Pinus sylvestris L.) for the production of structural elements. Part I: Evaluation of the quality of the pine timber in the bending test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef]
- Witomski, P.; Krajewski, A.; Kozakiewicz, P. Selected mechanical properties of Scots pine wood from antique churches of Central Poland. Eur. J. Wood Wood Prod. 2014, 72, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Brandner, R.; Ringhofer, A.; Grabner, M. Probabilistic models for the withdrawal behavior of single self-tapping screws in the narrow face of cross laminated timber (CLT). Eur. J. Wood Wood Prod. 2018, 76, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Brandner, R.; Ringhofer, A.; Reichinger, T. Performance of axially-loaded self-tapping screws in hardwood: Properties and design. Eng. Struct. 2019, 188, 677–699. [Google Scholar] [CrossRef]
- Bakalarz, M.; Kossakowski, P.; Tworzewski, P. Strengthening of bent LVL beams with near-surface mounted (NSM) FRP reinforcement. Materials 2020, 13, 2350. [Google Scholar] [CrossRef]
- Wdowiak-Postulak, A.; Świt, G. Behavior of glulam beams strengthened in bending with BFRP fabrics. Civ. Environ. Eng. Rep. 2021, 2, 16. [Google Scholar] [CrossRef]
- Kula, K.; Socha, T. Renovation and strengthening of wooden beams with CFRP bands including the rheological effects. Civ. Environ. Eng. Rep. 2016, 22, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Wróblewski, T.; Berczyński, S.; Abramowicz, M. Estimation of the parameters of the discrete model of a steel-concrete composite beam. Arch. Civ. Mech. Eng. 2013, 13, 209–219. [Google Scholar] [CrossRef]
- Kyvelou, P.; Gardner, L.; Nethercot, D.A. Design of composite cold-formed steel flooring systems. Structures 2017, 12, 242–252. [Google Scholar] [CrossRef]
- Chybiński, M.; Polus, Ł.; Szwabiński, W.; Niewiem, P. FE analysis of steel-timber composite beams. In Proceedings of the Computational Technologies in Engineering (TKI’2018): 15th Conference on Computational Technologies in Engineering, Jora Wielka, Poland, 16–19 October 2018; Baranowski, P., Kędzierski, P., Szurgott, A., Eds.; AIP Publishing: Melville, NY, USA, 2019; pp. 020061-1–020061-6. [Google Scholar] [CrossRef]
- Łukaszewska, E.; Fragiacomo, M.; Johnsson, H. Laboratory tests and numerical analyses of prefabricated timber-concrete composite floors. J. Struct. Eng. 2010, 136, 46–55. [Google Scholar] [CrossRef]
- Szumigała, M.; Szumigała, E.; Polus, Ł. Laboratory tests of new connectors for timber-concrete composite structures. Eng. Trans. 2018, 66, 161–173. [Google Scholar]
- Szumigała, M.; Chybiński, M.; Polus, Ł. Preliminary analysis of the aluminium-timber composite beams. Civ. Environ. Eng. Rep. 2017, 27, 131–141. [Google Scholar]
- Szumigała, M.; Chybiński, M.; Polus, Ł. Stiffness of composite beams with full shear connection. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 052083. [Google Scholar] [CrossRef]
- Furtak, K.; Rodacki, K. Experimental investigations of load-bearing capacity of composite timber-glass I-beams. Arch. Civ. Mech. Eng. 2018, 18, 956–964. [Google Scholar] [CrossRef]
- Kozłowski, M.; Kadela, M.; Hulimka, J. Numerical investigation of structural behavior of timber-glass composite beams. Procedia Eng. 2016, 161, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Bedon, C.; Sciomenta, M.; Fragiacomo, M. Correlation approach for the Push-Out and full-size bending short-term performances of timber-to-timber slabs with Self-Tapping Screws. Eng. Struct. 2021, 238, 112232. [Google Scholar] [CrossRef]
- Łukaszewska, E.; Johnsson, H.; Fragiacomo, M. Performance of connections for prefabricated timber-concrete composite floors. Mater. Struct. 2008, 41, 1533–1550. [Google Scholar] [CrossRef]
- Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and numerical study of steel-timber composite (STC) beams. J. Constr. Steel Res. 2016, 122, 367–378. [Google Scholar] [CrossRef]
- Vella, N.; Gardner, L.; Buhagiar, S. Analytical modelling of cold-formed steel-to-timber connections with inclined screws. Eng. Struct. 2021, 249, 113187. [Google Scholar] [CrossRef]
- Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under static loads. Int. J. Eng. Res. Technol. 2014, 3, 1166–1173. [Google Scholar]
- Saleh, S.M.; Jasim, N.A. Structural behavior of timber aluminum composite beams under impact loads. Int. J. Sci. Eng. Res. 2014, 5, 865–873. [Google Scholar]
- Chybiński, M.; Polus, Ł. Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections. Constr. Build. Mater. 2019, 226, 317–330. [Google Scholar] [CrossRef]
- Szumigała, M.; Chybiński, M.; Polus, Ł. Composite beams with aluminium girders—A review. In Proceedings of the Modern Trends in Research on Steel, Aluminium and Composite STRUCTURES: XIV International Conference on Metal Structures (ICMS2021), Poznan, Poland, 16–18 June 2021; Giżejowski, M.A., Ed.; Routledge: Leiden, The Netherlands, 2021; pp. 249–255. [Google Scholar] [CrossRef]
- Chybiński, M.; Polus, Ł. Experimental and numerical investigations of aluminium-timber composite beams with bolted connections. Structures 2021, 34, 1942–1960. [Google Scholar] [CrossRef]
- Yeoh, D.; Fragiacomo, M.; Deam, B. Experimental behaviour of LVL-concrete composite floor beams at strength limit state. Eng. Struct. 2011, 33, 2697–2707. [Google Scholar] [CrossRef]
- Nie, Y.; Valipour, H.R. Experimental and numerical study of long-term behaviour of timber-timber composite (TTC) connections. Constr. Build. Mater. 2021, 304, 124672. [Google Scholar] [CrossRef]
- Chiniforush, A.A.; Valipour, H.R.; Ataei, A. Timber-timber composite (TTC) connections and beams: An experimental and numerical study. Constr. Build. Mater. 2021, 303, 124493. [Google Scholar] [CrossRef]
- Ringhofer, A. Axially Loaded Self-Tapping Screws in Solid Timber and Laminated Timber Products; TU Graz: Graz, Austria, 2017. [Google Scholar]
- Ringhofer, A.; Brandner, R.; Schickhofer, G. Withdrawal resistance of self-tapping screws in unidirectional and orthogonal layered timber products. Mater. Struct. 2015, 48, 1435–1447. [Google Scholar] [CrossRef]
- Loss, C.; Piazza, M.; Zandonini, R. Connections for steel-timber hybrid prefabricated buildings. Part I: Experimental tests. Constr. Build. Mater. 2016, 122, 781–795. [Google Scholar] [CrossRef]
- Chybiński, M.; Polus, Ł. Experimental and numerical investigations of laminated veneer lumber panels. Arch. Civ. Eng. 2021, 67, 351–372. [Google Scholar] [CrossRef]
- Komorowski, M. Manual of Design and Build in the STEICO System, Basic Information, Building Physics, Guidelines; Forestor Communication: Warsaw, Poland, 2017. (In Polish) [Google Scholar]
- European Committee for Standardization. EN ISO 6892-1, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Chybiński, M.; Polus, Ł.; Ratajczak, M.; Sielicki, P.W. The evaluation of the fracture surface in the AW-6060 T6 aluminium alloy under a wide range of loads. Metals 2019, 9, 324. [Google Scholar] [CrossRef] [Green Version]
- German Institute for Standardization. DIN 571:2016-12, Hexagon Head Wood Screws; German Institute for Standardization: Berlin, Germany, 2016. [Google Scholar]
- European Committee for Standardization. EN 10268, Cold Rolled Steel Flat Products with High Yield Strength for Cold Forming, Technical Delivery Conditions; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization. EN 1562 Founding—Malleable Cast Irons; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 912, Timber Fasteners, Specifications for Connectors for Timbers; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- European Committee for Standardization. EN 10131, Cold Rolled Uncoated and Zinc or Zinc-Nickel Electrolytically Coated Low Carbon and High Yield Strength Steel Flat Products for Cold Forming—Tolerances on Dimensions and Shape; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization. EN 10140, Cold Rolled Narrow Steel Strip—Tolerances on Dimensions and Shape; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- European Committee for Standardization. EN 26891, Timber Structures—Joints Made with Mechanical Fasteners—General Principles for the Determination of Strength and Deformation Characteristics; European Committee for Standardization: Brussels, Belgium, 1991. [Google Scholar]
- European Committee for Standardization. EN 1995-1-1, Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Research Report: 100/21/BB.903.0287.05; The Łukasiewicz Research Network; Metal Forming Institute: Poznań, Poland, 2021.
- Johnson, R.P. Designers’ Guide to Eurocode 4: Design of Composite Steel and Concrete Structures, EN 1994-1-1; ICE Publishing: London, UK, 2012. [Google Scholar]
- European Committee for Standardization. EN 1993-1-8, Eurocode 3: Design of Steel Structures—Part 1-8: Design of Joints; European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and analytical behaviour of steel-timber composite connections. Constr. Build. Mater. 2016, 118, 63–75. [Google Scholar] [CrossRef]
- Wróblewski, T.; Pełka-Sawenko, A.; Abramowicz, M.; Berczyński, S. Parameter identification of steel-concrete composite beams by finite element method. Diagnostyka 2013, 14, 43–46. [Google Scholar]
- Polus, Ł.; Szumigała, M. Finite element modelling of the connection for timber-concrete composite beams. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 052081. [Google Scholar] [CrossRef]
Composite Beam | Shear Connection | Example |
---|---|---|
steel-timber | self-drilling screw [11] | |
steel-timber | coach screw [21] | |
steel-timber | coach screw [21] | |
aluminium-LVL | hexagon head wood screw [25] | |
aluminium-LVL | bolt [27] | |
LVL-concrete | rectangular notch reinforced with a coach screw [28] | |
timber-timber | coach screw [29] | |
timber-timber | fully threaded inclined screw [30] |
Material Parameters | Value |
---|---|
Mean value of modulus of elasticity (parallel to grain) E0,mean [MPa] | 14,000 |
Bending strength (flatwise, parallel to grain) fm,0,flat,k [MPa] | 50.0 |
Tension strength (parallel to grain) ft,0,k [MPa] | 36.0 |
Compression strength (parallel to grain) fc,0,k [MPa] | 40.0 |
Mean value of density ρmean [kg/m3] | 550.0 |
Parameter | Mean Value |
---|---|
Young’s modulus [GPa] | 66.4 ± 0.51 |
0.2% proof strength [MPa] | 181.5 ± 1.92 |
Tensile strength [MPa] | 209.8 ± 1.05 |
Parameter | Mean Value | 5%-Quantile | CV [%] |
---|---|---|---|
Shank diameter d0 [mm] | 9.43 | 9.39 | 0.38 |
Length L [mm] | 85.34 | 85.07 | 0.29 |
Outer thread diameter d1 [mm] | 9.47 | 9.23 | 2.41 |
Inner thread diameter d2 [mm] | 6.95 | 6.88 | 0.88 |
Pitch p [mm] | 4.51 | 4.49 | 0.48 |
Thread length Lt [mm] | 59.64 | 59.04 | 0.96 |
Shank length Ls [mm] | 16.39 | 16.24 | 0.86 |
Head width across flats F [mm] | 16.78 | 16.67 | 0.61 |
Head width across corners C [mm] | 19.07 | 18.97 | 0.51 |
Head height H [mm] | 6.88 | 6.86 | 0.24 |
Parameter | Mean Value | 5%-Quantile | CV [%] |
---|---|---|---|
Shank diameter d0 [mm] | 11.31 | 11.29 | 0.17 |
Length L [mm] | 88.82 | 88.52 | 0.33 |
Outer thread diameter d1 [mm] | 11.62 | 11.57 | 0.47 |
Inner thread diameter d2 [mm] | 8.90 | 8.89 | 0.09 |
Pitch p [mm] | 4.81 | 4.78 | 0.45 |
Thread length Lt [mm] | 62.13 | 61.94 | 0.29 |
Shank length Ls [mm] | 15.63 | 15.27 | 2.18 |
Head width across flats F [mm] | 18.66 | 18.62 | 0.19 |
Head width across corners C [mm] | 21.22 | 21.18 | 0.19 |
Head height H [mm] | 7.89 | 7.84 | 0.57 |
Connector Type | Diameter dc [mm] | Height hc [mm] | Thickness Without Zinc-Coating t [mm] | Hole Diameter d1 [mm] | Flange Height h3 [mm] | Number of Teeth |
---|---|---|---|---|---|---|
C2-50/M10G | 50 | 6.6 | 1.00 | 10.4 | 4.0 | 12 |
C2-50/M12G | 50 | 6.6 | 1.00 | 12.4 | 4.0 | 12 |
Diameter dc [mm] | Height hc [mm] | Thickness t [mm] | Diameter of Centre Hole d1 [mm] | Diameter of Inner Circle d2 [mm] |
50 | 15 | 3 | 12.5 | 40 |
Diameter of Spikes at Base d4 [mm] | Diameter of Flange d5 [mm] | Radius r [mm] | Height of Flange from Face h1 [mm] | Number of Spikes |
6 | 17.0 | 4 | 3 | 8 |
Parameter | Specimen | Mean (R10.1–R10.4) | |||
---|---|---|---|---|---|
R10.1 | R10.2 | R10.3 | R10.4 | ||
Pult [kN] | 17.1 | 16.2 | 17.3 | 16.2 | 16.7 ± 0.9 (5.6%) |
sult [mm] | 14.4 | 23.0 | 12.4 | 16.9 | 16.7 ± 7.3 (43.9%) |
k0.4 [kN/mm] | 4.4 | 8.6 | 9.1 | 4.3 | 6.6 ± 4.1 (62.8%) |
k0.6 [kN/mm] | 4.2 | 7.9 | 7.8 | 4.7 | 6.2 ± 3.1 (51.1%) |
Parameter | Specimen | Mean (10.1–10.4) | |||
---|---|---|---|---|---|
10.1 | 10.2 | 10.3 | 10.4 | ||
Pult [kN] | 20.7 | 20.5 | 22.6 | 22.3 | 21.5 ± 1.7 (8.0%) |
sult [mm] | 11.7 | 12.3 | 14.0 | 13.0 | 12.8 ± 1.6 (12.3%) |
k0.4 [kN/mm] | 4.8 | 6.1 | 8.3 | 6.5 | 6.4 ± 2.3 (35.8%) |
k0.6 [kN/mm] | 5.0 | 6.0 | 6.9 | 5.6 | 5.9 ± 1.3 (21.6%) |
Parameter | Specimen | Mean (R12.1–R12.4) | |||
---|---|---|---|---|---|
R12.1 | R12.2 | R12.3 | R12.4 | ||
Pult [kN] | 21.4 | 21.9 | 22.9 | 22.9 | 22.3 ± 1.2 (5.4%) |
sult [mm] | 13.5 | 27.6 | 26.3 | 28.5 | 24.0 ± 11.2 (46.7%) |
k0.4 [kN/mm] | 6.8 | 8.9 | 12.4 | 5.9 | 8.5 ± 4.6 (54.1%) |
k0.6 [kN/mm] | 6.0 | 7.6 | 9.0 | 5.8 | 7.1 ± 2.4 (33.6%) |
Parameter | Specimen | Mean (12.1–12.4) | |||
---|---|---|---|---|---|
12.1 | 12.2 | 12.3 | 12.4 | ||
Pult [kN] | 27.1 | 26.4 | 28.4 | 28.3 | 27.6 ± 1.5 (5.6%) |
sult [mm] | 12.9 | 12.5 | 13.1 | 12.5 | 12.8 ± 0.5 (3.7%) |
k0.4 [kN/mm] | 6.2 | 7.7 | 9.2 | 7.0 | 7.5 ± 2.0 (26.9%) |
k0.6 [kN/mm] | 6.2 | 7.4 | 8.5 | 7.0 | 7.3 ± 1.5 (20.9%) |
Parameter | Specimen | Mean (12.5–12.8) | |||
---|---|---|---|---|---|
12.5 | 12.6 | 12.7 | 12.8 | ||
Pult [kN] | 30.8 | 29.7 | 29.7 | 30.0 | 30.1 ± 0.8 (2.8%) |
sult [mm] | 8.0 | 7.5 | 8.2 | 7.6 | 7.8 ± 0.5 (6.7%) |
k0.4 [kN/mm] | 7.0 | 5.2 | 6.5 | 8.1 | 6.7 ± 1.9 (28.6%) |
k0.6 [kN/mm] | 7.2 | 5.8 | 7.0 | 8.0 | 7.0 ± 1.4 (20.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chybiński, M.; Polus, Ł. Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates. Materials 2022, 15, 68. https://doi.org/10.3390/ma15010068
Chybiński M, Polus Ł. Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates. Materials. 2022; 15(1):68. https://doi.org/10.3390/ma15010068
Chicago/Turabian StyleChybiński, Marcin, and Łukasz Polus. 2022. "Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates" Materials 15, no. 1: 68. https://doi.org/10.3390/ma15010068
APA StyleChybiński, M., & Polus, Ł. (2022). Mechanical Behaviour of Aluminium-Timber Composite Connections with Screws and Toothed Plates. Materials, 15(1), 68. https://doi.org/10.3390/ma15010068