Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping
Abstract
:1. Introduction
2. Problem Statement and Approach
- First, the loading is applied to the aluminum free surface by the laser–plasma and a shock wave initiates inside the material;
- The shock wave is separated into an elastic precursor that takes the material from state 0 to state 1 and to a plastic shock that takes the material to state 2;
- When the loading is removed from the surface of the aluminum a decompression elastic-plastic shock initiates;
- The elastic part of the compressive shock interacts with the aluminum/epoxy interface and a left propagating compressive shock moves inside the aluminum taking to it to state 3;
- This left propagating shock interacts with the plastic shock and takes the material from state 3 to state 4;
- Part of the shock wave starts propagating inside the epoxy material taking it to state 3′;
- When the shock wave that is propagating inside epoxy meets the free surface it reflects a left propagating decompression shock taking epoxy to state 4′;
- The plastic shock then reflects from the interface and takes the aluminum from state 4 to state 5, while part of it propagates inside the epoxy, taking it to state 5′ and reflects from the free surface to a decompression shock that takes the epoxy to state 6′.
3. Experimental Setup
4. Numerical Model
5. Analytical Modeling of Stress Field
6. Analytical Modeling of Spall Fracture
7. Computational Tools and Results
7.1. Calibration of the CZM
7.2. Analytical Stress Analysis
7.2.1. Analytical vs. Numerical Stress Analysis
7.2.2. Enhancement of Interfacial Stress
7.3. Spall Fracture Prediction
7.3.1. Numerical Simulation of Stripping Using the Spall Strength
7.3.2. Analytical Prediction of Stripping Using the Spall Strength
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Bras, C.; Rondepierre, A.; Seddik, R.; Scius-Bertrand, M.; Rouchausse, Y.; Videau, L.; Fayolle, B.; Gervais, M.; Morin, L.; Valadon, S.; et al. Laser Shock Peening: Toward the Use of Pliable Solid Polymers for Confinement. Metals 2019, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Ivetic, G. Three-Dimensional FEM Analysis of Laser Shock Peening of Aluminium Alloy 2024-T351 Thin Sheets. Surf. Eng. 2011, 27, 445–453. [Google Scholar] [CrossRef]
- Peyre, P.; Fabbro, R.; Merrien, P.; Lieurade, H.P. Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour. Mater. Sci. Eng. A 1996, 210, 102–113. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Porro, J.A.; Morales, M.; Iordachescu, D.; Díaz, M.; de Lara, L.R.; Correa, C.; Santos, A.G. Laser Shock Processing: An Emerging Technique for the Enhancement of Surface Properties and Fatigue Life of High-Strength Metal Alloys. Int. J. Microstruct. Mater. Prop. 2013, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L.; Dominguez, N. Numerical Modeling of Laser-Induced Shock Experiments for the Development of the Adhesion Test for Bonded Composite Materials. Compos. Struct. 2016, 152, 382–394. [Google Scholar] [CrossRef] [Green Version]
- Ecault, R.; Touchard, F.; Berthe, L.; Boustie, M. Laser Shock Adhesion Test Numerical Optimization for Composite Bonding Assessment. Compos. Struct. 2020, 247, 112441. [Google Scholar] [CrossRef]
- Ghrib, M.; Berthe, L.; Mechbal, N.; Rébillat, M.; Guskov, M.; Ecault, R.; Bedreddine, N. Generation of Controlled Delaminations in Composites Using Symmetrical Laser Shock Configuration. Compos. Struct. 2017, 171, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Sagnard, M.; Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L. Development of the Symmetrical Laser Shock Test for Weak Bond Inspection. Opt. Laser Technol. 2019, 111, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Courapied, D.; Berthe, L.; Peyre, P.; Coste, F.; Zou, J.-P.; Sautivet, A.-M. Laser-Delayed Double Shock-Wave Generation in Water-Confinement Regime. J. Laser Appl. 2015, 27, S29101. [Google Scholar] [CrossRef]
- Kormpos, P.; Tserpes, K.; Floros, G. Towards Simulation of Disassembly of Bonded Composite Parts Using the Laser Shock Technique. Mater. Sci. Eng. 2022, 1226, 012081. [Google Scholar] [CrossRef]
- Ünaldi, S.; Papadopoulos, K.; Rondepierre, A.; Rouchausse, Y.; Karanika, A.; Deliane, F.; Tserpes, K.; Floros, G.; Richaud, E.; Berthe, L. Towards Selective Laser Paint Stripping Using Shock Waves Produced by Laser-Plasma Interaction for Aeronautical Applications on AA 2024 Based Substrates. Opt. Laser Technol. 2021, 141, 107095. [Google Scholar] [CrossRef]
- Tserpes, K.; Papadopoulos, K.; Unaldi, S.; Berthe, L. Development of a Numerical Model to Simulate Laser-Shock Paint Stripping on Aluminum Substrates. Aerospace 2021, 8, 233. [Google Scholar] [CrossRef]
- Brygo, F.; Dutouquet, C.; Le Guern, F.; Oltra, R.; Semerok, A.; Weulersse, J.M. Laser Fluence, Repetition Rate and Pulse Duration Effects on Paint Ablation. Appl. Surf. Sci. 2006, 252, 2131–2138. [Google Scholar] [CrossRef]
- Jasim, H.A.; Demir, A.G.; Previtali, B.; Taha, Z.A. Process Development and Monitoring in Stripping of a Highly Transparent Polymeric Paint with Ns-Pulsed Fiber Laser. Opt. Laser Technol. 2017, 93, 60–66. [Google Scholar] [CrossRef]
- Agrawal, V.; Bhattacharya, K. Shock Wave Propagation through a Model One Dimensional Heterogeneous Medium. Int. J. Solids Struct. 2014, 51, 3604–3618. [Google Scholar] [CrossRef] [Green Version]
- Chen, S. Mathematical Analysis of Shock Wave Reflection; Series in Contemporary Mathematics; Springer: Singapore, 2020; ISBN 978-981-15-7751-2. [Google Scholar]
- Clayton, J. Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids; Springer Science & Business Media: New York, NY, USA, 2019; ISBN 978-3-030-15329-8. [Google Scholar]
- Davison, L. Fundamentals of Shock Wave Propagation in Solids; Shock Wave and High Pressure Phenomena; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-74568-6. [Google Scholar]
- Forbes, J.W. Shock Wave Compression of Condensed Matter: A Primer; Shock Wave and High Pressure Phenomena; Springer: Berlin/Heidleberg, Germany, 2012; ISBN 978-3-642-32534-2. [Google Scholar]
- Grady, D.E. Physics of Shock and Impact, Volume 1, Fundamentals and Dynamic Failure; IOP Publishing: Bristol, UK, 2017; ISBN 978-0-7503-1255-4. [Google Scholar]
- Grady, D.E. Physics of Shock and Impact, Volume 2, Materials and Shock Response; IOP Publishing: Bristol, UK, 2017; ISBN 978-0-7503-1257-8. [Google Scholar]
- Lapostolle, L.; Derrien, K.; Morin, L.; Berthe, L.; Castelnau, O. Modeling and Simulation of Laser Shock Waves in Elasto-Plastic 1D Layered Specimens. Int. J. Solids Struct. 2022, 239–240, 111422. [Google Scholar] [CrossRef]
- Peyre, P.; Berthe, L.; Vignal, V.; Popa, I.; Baudin, T. Analysis of Laser Shock Waves and Resulting Surface Deformations in an Al–Cu–Li Aluminum Alloy. J. Phys. D Appl. Phys. 2012, 45, 335304. [Google Scholar] [CrossRef] [Green Version]
- Grady, D.E. The Spall Strength of Condensed Matter. J. Mech. Phys. Solids 1988, 36, 353–384. [Google Scholar] [CrossRef]
- Kanel, G.I.; Fortov, V.E.; Razorenov, S.V. Shock-Wave Phenomena and the Properties of Condensed Matter; Springer Science & Business Media: Berlin, Germany, 2004; ISBN 978-1-4757-4282-4. [Google Scholar]
- Tarabay, A.; Curran, D.; Razorenov, S.; Seaman, L.; Kanel, G.; Utkin, A. Spall Fracture (High-Pressure Shock Compression of Condensed Matter); Springer: New York, NY, USA, 2003; ISBN 978-0-387-95500-1. [Google Scholar]
- Morales, M.; Porro, J.A.; Blasco, M.; Molpeceres, C.; Ocaña, J.L. Numerical Simulation of Plasma Dynamics in Laser Shock Processing Experiments. Appl. Surf. Sci. 2009, 255, 5181–5185. [Google Scholar] [CrossRef]
- Bardy, S.; Aubert, B.; Bergara, T.; Berthe, L.; Combis, P.; Hébert, D.; Lescoute, E.; Rouchausse, Y.; Videau, L. Development of a Numerical Code for Laser-Induced Shock Waves Applications. Opt. Laser Technol. 2020, 124, 105983. [Google Scholar] [CrossRef]
- Scius-Bertrand, M.; Videau, L.; Rondepierre, A.; Lescoute, E.; Rouchausse, Y.; Kaufman, J.; Rostohar, D.; Brajer, J.; Berthe, L. Laser Induced Plasma Characterization in Direct and Water Confined Regimes: New Advances in Experimental Studies and Numerical Modelling. J. Phys. D Appl. Phys. 2021, 54, 055204. [Google Scholar] [CrossRef]
- Belytschko, T.; Liu, W.K.; Moran, B.; Elkhodary, K.I. Nonlinear Finite Elements for Continua and Structures; Wiley: Chichester, UK, 2014; ISBN 978-1-118-63270-3. [Google Scholar]
- Zukas, J.A. Introduction to Hydrocodes; Studies in Applied Mechanics; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-044348-5. [Google Scholar]
- Cavezza, F.; Boehm, M.; Terryn, H.; Hauffman, T. A Review on Adhesively Bonded Aluminium Joints in the Automotive Industry. Metals 2020, 10, 730. [Google Scholar] [CrossRef]
- Floros, I.S.; Tserpes, K.I.; Löbel, T. Mode-I, Mode-II and Mixed-Mode I+II Fracture Behavior of Composite Bonded Joints: Experimental Characterization and Numerical Simulation. Compos. Part B Eng. 2015, 78, 459–468. [Google Scholar] [CrossRef]
- Floros, I.; Tserpes, K. Numerical Simulation of Quasi-Static and Fatigue Debonding Growth in Adhesively Bonded Composite Joints Containing Bolts as Crack Stoppers. J. Adhes. 2021, 97, 611–633. [Google Scholar] [CrossRef]
- Stamopoulos, A.G.; Psaropoulos, A.P.; Tserpes, K. Experimental and Numerical Investigation of the Effects of Porosity on the In-Plane Shear Properties of CFRPs Using the V-Notched Rail Shear Test Method. Int. J. Mater. Form. 2021, 14, 67–82. [Google Scholar] [CrossRef]
- Bui, T.Q.; Hu, X. A Review of Phase-Field Models, Fundamentals and Their Applications to Composite Laminates. Eng. Fract. Mech. 2021, 248, 107705. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Bui, T.Q.; Yao, W. Phase Field Modeling of Fracture in Fiber Reinforced Composite Laminate. Int. J. Mech. Sci. 2019, 161–162, 105008. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Yang, S.; Yao, W. Modelling Progressive Failure in Multi-Phase Materials Using a Phase Field Method. Eng. Fract. Mech. 2019, 209, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Feng, Y.; Bui, T.Q.; Hu, X.; Yao, W. Modelling Distinct Failure Mechanisms in Composite Materials by a Combined Phase Field Method. Compos. Struct. 2020, 232, 111551. [Google Scholar] [CrossRef]
- Chaudhary, K.; Rizvi, S.Z.H.; Ali, J. Laser-Induced Plasma and Its Applications. In Plasma Science and Technology—Progress in Physical States and Chemical Reactions; Mieno, T., Ed.; InTech: London, UK, 2016; ISBN 978-953-51-2280-7. [Google Scholar]
- Rondepierre, A.; Ünaldi, S.; Rouchausse, Y.; Videau, L.; Fabbro, R.; Casagrande, O.; Simon-Boisson, C.; Besaucéle, H.; Castelnau, O.; Berthe, L. Beam Size Dependency of a Laser-Induced Plasma in Confined Regime: Shortening of the Plasma Release. Influence on Pressure and Thermal Loading. Opt. Laser Technol. 2021, 135, 106689. [Google Scholar] [CrossRef]
- Fox, J.A. Effect of Water and Paint Coatings on Laser-irradiated Targets. Appl. Phys. Lett. 1974, 24, 461–464. [Google Scholar] [CrossRef]
- Anderholm, N.C. Laser-generated stress waves. Appl. Phys. Lett. 1970, 16, 113–115. [Google Scholar] [CrossRef]
- Fabbro, R.; Fournier, J.; Ballard, P.; Devaux, D.; Virmont, J. Physical Study of Laser-produced Plasma in Confined Geometry. J. Appl. Phys. 1990, 68, 775–784. [Google Scholar] [CrossRef]
- Berthe, L.; Fabbro, R.; Peyre, P.; Tollier, L.; Bartnicki, E. Shock Waves from a Water-Confined Laser-Generated Plasma. J. Appl. Phys. 1997, 82, 2826–2832. [Google Scholar] [CrossRef]
- Fabbro, R.; Peyre, P.; Berthe, L.; Scherpereel, X. Physics and Applications of Laser-Shock Processing. J. Laser Appl. 1998, 10, 265–279. [Google Scholar] [CrossRef]
- Syn, C.J.; Chen, W.W. Surface Morphology Effects on High-Rate Fracture of an Aluminum/Epoxy Interface. J. Compos. Mater. 2008, 42, 1639–1658. [Google Scholar] [CrossRef]
- Hurricane, O.A.; Miller, P.L. Shock Transmission and Reflection from a Material Interface and Subsequent Reflection from a Hard Boundary; UCRL-ID-132586; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1998; p. 6132. [Google Scholar]
- Ben-Dor, G. Shock Wave Reflection Phenomena, 2nd ed.; Shock Wave and High Pressure Phenomena; Springer: Berlin, Germany; New York, NY, USA, 2007; ISBN 978-3-540-71381-4. [Google Scholar]
- Kontis, K. (Ed.) Shock Wave Interactions; Springer: New York, NY, USA, 2018; ISBN 978-3-319-73179-7. [Google Scholar]
- Takayama, K. Visualization of Shock Wave Phenomena; Springer: Cham, Switzerland, 2019; ISBN 978-3-030-19450-5. [Google Scholar]
- Zhang, L.; Huang, Y.; Shu, H.; Chen, B.; Chen, X.; Ma, Y.; Liu, W. Spallation Damage of 90W–Ni–Fe Alloy under Laser-Induced Plasma Shock Wave. J. Mater. Res. Technol. 2022, 17, 1731–1739. [Google Scholar] [CrossRef]
- Alam, M.E.; Wang, J.; Henager, C.H.; Setyawan, W.; Odette, G.R. The Effect of Hot Rolling on the Strength and Fracture Toughness of 90W–7Ni3Fe Tungsten Heavy Metal Alloys. Mater. Sci. Eng. A 2021, 824, 141738. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; Öchsner, A.; Adams, R.D. (Eds.) Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-01168-9. [Google Scholar]
- Owen, D.M.; Zhuang, S.; Rosakis, A.J.; Ravichandran, G. Experimental Determination of Dynamic Crack Initiation and Propagation Fracture Toughness in Thin Aluminum Sheets. Int. J. Fract. 1998, 90, 153–174. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Aluminum | |
Density | 2700 kg/m3 |
Young’s Modulus | 73 GPa |
Poisson’s ratio | 0.33 |
Yield strength | 352 MPa |
Strain hardening modulus | 440 MPa |
Strain hardening exponent | 0.42 |
Strain rate coefficient | 0.0083 |
Speed of the wave | 5328 m/s |
Linear Hugoniot slope coefficient | 1.338 |
Gruneisen gamma | 2 |
Epoxy | |
Density | 1700 kg/m3 |
Young’s Modulus | 4.16 GPa |
Poisson’s ratio | 0.30–0.35 |
Yield strength | 40–80 MPa |
Speed of the wave | 2000 m/s |
Linear Hugoniot slope coefficient | 1.493 |
Gruneisen gamma | 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, K.; Tserpes, K. Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping. Materials 2022, 15, 3423. https://doi.org/10.3390/ma15103423
Papadopoulos K, Tserpes K. Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping. Materials. 2022; 15(10):3423. https://doi.org/10.3390/ma15103423
Chicago/Turabian StylePapadopoulos, Kosmas, and Konstantinos Tserpes. 2022. "Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping" Materials 15, no. 10: 3423. https://doi.org/10.3390/ma15103423
APA StylePapadopoulos, K., & Tserpes, K. (2022). Analytical and Numerical Modeling of Stress Field and Fracture in Aluminum/Epoxy Interface Subjected to Laser Shock Wave: Application to Paint Stripping. Materials, 15(10), 3423. https://doi.org/10.3390/ma15103423