Strength Tests of Alloys for Fixed Structures in Dental Prosthetics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Tensile Test
3.2. Compressive Strength Tests
3.3. Statistical Analysis
- Descriptive statistics (mean, median, min, max, standard deviation);
- Normality of the distribution of variables (Shapiro–Wilk test, Kołmogorow–Smirnow test);
- Tests of the analysis of variance (ANOVA);
- Post-hoc multiple comparison test (Tukey, Bonferroni);
4. Overview and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mierzejewska, Ż.A.; Hudák, R.; Sidun, J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Materials 2019, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryniewicz, W.; Ryniewicz, A.M.; Bojko, Ł. The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement 2016, 91, 620–627. [Google Scholar] [CrossRef]
- Chua, K.; Khan, I.; Malhotra, R.; Zhu, D. Additive Manufacturing and 3D Printing of Metallic Biomaterials. Eng. Regen. 2022, 2, 288–299. [Google Scholar] [CrossRef]
- Ryniewicz, A.M.; Bojko, Ł.; Ryniewicz, W.I. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta Bioeng. Biomech. 2016, 18, 121–127. [Google Scholar]
- Padrós, R.; Giner-Tarrida, L.; Herrero-Climent, M.; Punset, M.; Gil, F.J. Corrosion resistance and ion release of dental prosthesis of CoCr obtained by CAD-CAM milling, casting and laser sintering. Metals 2020, 10, 827. [Google Scholar] [CrossRef]
- Ryniewicz, A.M.; Machniewicz, T.; Ryniewicz, W.; Bojko, Ł. Strength tests of the polymers used in dental prosthetics. Arch. Mech. Eng. 2018, 65, 515–525. [Google Scholar]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef]
- Bojko, Ł.; Ryniewicz, A.M.; Bogucki, R.; Pałka, P. Microstructural and strength studies Co−Cr−MoCo−Cr−Mo alloy on prosthetic reconstruction in casting technology and laser sintering. Przegląd Elektrotechniczny 2015, 91, 29–32. [Google Scholar]
- Ziębowicz, A.; Woźniak, A.; Ziębowicz, B.; Adamiak, M.; Boryło, P. Microstructure and properties of CoCr alloys used in prosthetics procedure. Arch. Mater. Sci. Eng. 2018, 89, 20–26. [Google Scholar] [CrossRef]
- Soyama, H.; Takeo, F. Effect of various peening methods on the fatigue properties of titanium alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting. Materials 2020, 13, 2216. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Mirhakimi, A.S.; Zhianmanesh, M.; Ibhadode, O.; Shahabad, S.I.; Esmaeilizadeh, R.; Sarikhani, E.; Toorandaz, S.; Sarabi, S.A.; et al. Additively manufactured metallic biomaterials. Bioact. Mater. 2022, 15, 214–249. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.L.; Das, S.; Ting, Y.P.; Wong, R.C.W.; Chanchareonsook, N. Benefits and Biosafety of Use of 3D-Printing Technology for Titanium Biomedical Implants: A Pilot Study in the Rabbit Model. Int. J. Mol. Sci. 2021, 22, 8480. [Google Scholar] [CrossRef] [PubMed]
- Ryniewicz, W. Modeling and Construction Optimization of Prosthetic Bridges in the Lateral Part of the Mandible. Ph.D. Thesis, Jagiellonian University Medical College, Krakow, Poland, 2008. [Google Scholar]
- Tobar, C.; Rodriguez, V.; Lopez-Suarez, C.; Pelaez, J.; Suarez, M.J. Influence of Digital Technologies and Framework Design on the Load to Fracture of Co-Cr Posterior Fixed Partial Denture Frameworks. J. Prosthodont. 2021, online ahead of print. [Google Scholar] [CrossRef]
- Bojko, Ł. Tests of Strength Parameters and Accuracy of Mapping the Shape of Metal Prosthetic Crowns Obtained in the CAD/CAM System. Ph.D. Thesis, AGH University of Science and Technology, Krakow, Poland, 2021. [Google Scholar]
- Mengucci, P.; Gatto, A.; Bassoli, E.; Denti, L.; Fiori, F.; Girardin, E.; Bastianoni, P.; Rutkowski, B.; Czyrska-Filemonowicz, A.; Barucca, G. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering. J. Mech. Behav. Biomed. Mater. 2017, 71, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchini, L.; Magalini, E.; Robotti, P.; Molinari, A.; Höges, S.; Wissenbach, K. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp. J. 2010, 16, 450–459. [Google Scholar] [CrossRef]
- Girardin, E.; Barucca, G.; Mengucci, P.; Fiori, F.; Bassoli, E.; Gatto, A.; Iuliano, L.; Rutkowski, B. Biomedical Co-Cr-Mo components produced by Direct Metal Laser Sintering. Mater. Today: Proc. 2016, 3, 889–897. [Google Scholar]
- Santecchia, E.; Mengucci, P.; Gatto, A.; Bassoli, E.; Denti, L.; Rutkowski, B.; Czyrska-Filemonowicz, A.; Barucca, G. Powder Bed Fusion of Biomedical Co-Cr-Mo and Ti-6Al-4V Alloys: Microstructure and Mechanical Properties. Adv. Mater. Res. 2019, 1151, 3–7. [Google Scholar] [CrossRef]
- Kong, C.J.; Tuck, C.J.; Ashcroft, I.A.; Wildman, R.D.; Hague, R. High density Ti6Al4V via SLM processing: Microstructure and mechanical properties. In International Solid Freeform Fabrication Symposium; University of Texas at Austin: Austin, TX, USA, 2011; Volume 36, pp. 475–483. [Google Scholar]
- Béreš, M.; Silva, C.C.; Sarvezuk, P.W.C.; Wu, L.; Antunes, L.H.M.; Jardini, A.L.; Feitosa, A.L.M.; Žilková, J.; de Abreu, H.F.G.; Filho, R.M. Mechanical and phase transformation behaviour of biomedical Co-Cr-Mo alloy fabricated by direct metal laser sintering. Mater. Sci. Eng. A 2018, 714, 36–42. [Google Scholar] [CrossRef]
- Mori, M.; Yamanaka, K.; Sato, S.; Wagatsuma, K.; Chiba, A. Microstructures and mechanical properties of biomedical Co-29Cr-6Mo-0.14 N alloys processed by hot rolling. Metall. Mater. Trans. A 2012, 43, 3108–3119. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Chiba, A. Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Mater. Sci. Eng. A 2011, 528, 5961–5966. [Google Scholar] [CrossRef]
- Vieira Muterlle, P. Microstructural and Mechanical Properties of Co and Ti Alloys for Biomedical Applications Produced by Metal Injection Molding (MIM). Ph.D. Thesis, University of Trento, Trento, Italy, 2010. [Google Scholar]
- Weißmann, V.; Bader, R.; Hansmann, H.; Laufer, N. Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mater. Des. 2016, 95, 188–197. [Google Scholar] [CrossRef]
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. ISO: Geneva, Switzerland, 2019.
- Yamanaka, K.; Mori, M.; Sato, S.; Chiba, A. Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Sci. Rep. 2017, 7, 10808. [Google Scholar] [CrossRef] [PubMed]
- Kierzkowska, A. Influence of Bending on the In Vitro Characteristics of the Anodic Surface Layer of the Ti6Al4V ELI Implant Titanium Alloy. Ph.D. Thesis, University of Zielona Góra, Zielona Góra, Poland, 2007. [Google Scholar]
- Dobrzański, L.A. Introductory Chapter: Multi-Aspect Bibliographic Analysis of the Synergy of Technical, Biological and Medical Sciences Concerning Materials and Technologies Used for Medical and Dental Implantable Devices. Biomater. Regen. Med. 2018, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Nganbe, M.; Khan, U.; Louati, H.; Speirs, A.; Beaulé, P. In vitro assessment of strength, fatigue durability, and disassembly of Ti6Al4V and CoCrMo necks in modular total hip replacements. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 97, 132–138. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Selvam, B.; Marimuthu, P.; Natarajan, E. Influence of yttrium oxide nano-particles in Ti6Al4V matrix on compressive and hardness behaviour. Int. J. Mech. Eng. Technol. 2018, 9, 1140–1146. [Google Scholar]
- Pang, Z.; Liu, Y.; Li, M.; Zhu, C.; Li, S.; Wang, Y.; Song, C. Influence of process parameter and strain rate on the dynamic compressive properties of selective laser-melted Ti-6Al-4V alloy. Appl. Phys. A 2019, 125, 90. [Google Scholar] [CrossRef]
- Bojko, Ł.; Ryniewicz, W.; Ryniewicz, A.; Kot, M. Study of the impact of incremental technology on mechanical and tribological properties of biomaterials. Tribologia 2017, 3, 29–38. [Google Scholar] [CrossRef]
- Singh, H.; Singh, S.; Prakash, C. Current trends in biomaterials and bio-manufacturing. In Biomanufacturing; Springer: Cham, Switzerland, 2019; pp. 1–34. [Google Scholar]
- Ryniewicz, W.; Ryniewicz, A.M. Model analysis of the stomatognathic system restorations using prosthetic bridges. Przegląd Elektrotechniczny 2015, 91, 17–20. [Google Scholar]
Material | Technology | Metrological Parameter | Offset Elastic Limit R0.05 [MPa] | Offset Yield Strength Rp0.2 [MPa] | Ultimate Tensile Strength Rm [MPa] | Breaking Stress Ru [MPa] |
---|---|---|---|---|---|---|
Ti6Al4V | DMLS | Average value | 984 | 1046 | 1112 | 989 |
Standard deviation | 24.71 | 21.91 | 16.53 | 22.84 | ||
Milling | Average value | 731 | 736 | 796 | 779 | |
Standard deviation | 13.39 | 9.81 | 11.54 | 25.44 | ||
The difference of average values of milling parameters in relation to DMLS, [%] | 25.71 | 29.64 | 28.42 | 21.23 | ||
CoCrMo | DMLS | Average value | 1180 | 1225 | 1346 | 1332 |
Standard deviation | 19 | 21.38 | 23.17 | 29.52 | ||
Milling | Average value | 565 | 552 | 759 | 726 | |
Standard deviation | 21.47 | 24.66 | 15.66 | 18.67 | ||
The difference of average values of milling parameters in relation to DMLS, [%] | 52.11 | 54.94 | 43.61 | 47.08 | ||
Casting | Average value | 646 | 651 | 794 | 717 | |
Standard deviation | 16.83 | 19.90 | 28.93 | 37.89 | ||
The difference of average values of casting parameters in relation to DMLS, [%] | 45.25 | 46.86 | 43.61 | 47.74 |
Material | Technology | Metrological Parameter | Offset Elastic Limit R0.01 [MPa] | Offset Yield Strength Rp0.2 [MPa] | Compressive Stress at 15% Strain σ [MPa] |
---|---|---|---|---|---|
Ti6Al4V | DMLS | Average value | 958 | 1168 | 1641 |
Standard deviation | 23.97 | 18.55 | 37.78 | ||
Milling | Average value | 779 | 841 | 1151 | |
Standard deviation | 27.49 | 22.58 | 41.36 | ||
The difference of average values of milling parameters in relation to DMLS, [%] | 18.68 | 28.00 | 29.86 | ||
CoCrMo | DMLS | Average value | 1124 | 1246 | 1619 |
Standard deviation | 26.55 | 22.09 | 51.93 | ||
Milling | Average value | 532 | 562 | 897 | |
Standard deviation | 20.03 | 16.81 | 49.12 | ||
The difference of average values of milling parameters in relation to DMLS, [%] | 52.67 | 54.90 | 44.60 | ||
Casting | Average value | 580 | 673 | 1176 | |
Standard deviation | 21.51 | 18.98 | 35.62 | ||
The difference of average values of casting parameters in relation to DMLS, [%] | 48.40 | 45.99 | 27.36 |
Material | Technology | Metrological Parameter | Young’s Modulus E [GPa] | Microhardness HiT [MPa] |
---|---|---|---|---|
Ti6Al4V | DMLS | Average value | 112.5 | 4356.9 |
Standard deviation | 3.5 | 184.1 | ||
Milling | Average value | 115.22 | 3627.1 | |
Standard deviation | 11.0 | 382.2 | ||
CoCrMo | DMLS | Average value | 201.0 | 6582.3 |
Standard deviation | 11.2 | 452.4 | ||
Milling | Average value | 203.8 | 4951 | |
Standard deviation | 17.7 | 218.8 | ||
Casting | Average value | 193.2 | 5720.7 | |
Standard deviation | 8.4 | 362.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojko, Ł.; Ryniewicz, A.M.; Ryniewicz, W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials 2022, 15, 3497. https://doi.org/10.3390/ma15103497
Bojko Ł, Ryniewicz AM, Ryniewicz W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials. 2022; 15(10):3497. https://doi.org/10.3390/ma15103497
Chicago/Turabian StyleBojko, Łukasz, Anna M. Ryniewicz, and Wojciech Ryniewicz. 2022. "Strength Tests of Alloys for Fixed Structures in Dental Prosthetics" Materials 15, no. 10: 3497. https://doi.org/10.3390/ma15103497
APA StyleBojko, Ł., Ryniewicz, A. M., & Ryniewicz, W. (2022). Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials, 15(10), 3497. https://doi.org/10.3390/ma15103497