Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method
Abstract
:1. Introduction
2. Methodology
2.1. Dataset Collection
2.2. RF and FA Hybrid Machine Learning Method
2.2.1. Random Forest (RF) Model
- (i)
- Random sampling of dataThe random selection of data first involves sampling from the original dataset and constructing a sub-dataset with the same amount of data as the original data. Elements of different subsets and elements of the same subset can both be repeated. Then, the sub-decision tree is constructed by using the sub-dataset, and the input data are put into each sub-decision tree, and each sub-decision tree output a result. Finally, the data to be tested are put into each decision tree, and the output result of the random forest is obtained by voting the judgment result of the sub-decision tree.
- (ii)
- Random selection of features to be selectedEach split process of the random forest subtree only uses part of the features to be selected, which are randomly selected from all the features to be selected, and then the optimal feature is selected from the randomly selected features. Random selection of features to be selected can improve the diversity of the system and thus improve classification skills.
2.2.2. Firefly Algorithm (FA)
- (i)
- Suppose all fireflies are attracted to each other and of the same sex;
- (ii)
- The attraction between fireflies is only related to luminous intensity and location. The strong fireflies move randomly and attract the weak fireflies around, and the attraction is inversely proportional to the distance between fireflies;
- (iii)
- Luminescence intensity is determined by the objective function and is proportional to the specified function in the specified region. The search process is related to the luminance and mutual attraction of fireflies, and these two parameters are inversely proportional to the distance. The brighter the firefly is, the better its position is, and the brightest firefly represents the optimal solution for the function. The brighter the firefly is, the more attracted it is to the surrounding fireflies, and if the fireflies glow at the same intensity, they move randomly.
3. Results and Discussion
3.1. Correlation Analysis
3.2. Correlation Coefficients Matrix Diagram
3.3. Model Evaluation
3.4. Variable Importance Evaluation
4. Conclusions
- Through correlation analysis, it is found that the correlation coefficient of cement grade, the proportion of water binder, the ratio of binder sand, the proportion of metakaolin binder, and the efficient, reducing agent are all less than 0.6, and these five parameters are independent of each other. Therefore, using these five parameters as input parameters to predict the compressive strength of metakaolin cement-based materials will not appear multicollinearity;
- The results of 50 iterations show that RMSE decreases sharply with the increase in iterations and then tends to be basically stable. Therefore, using the FA model to adjust the hyperparameters of the RF model can achieve desired results. RF and FA hybrid machine learning algorithms were used to predict the compressive strength of metakaolin cement-based materials, and the training set and test set between predicted values and measured values had a high consistency (RMSE of the training and testing datasets are 11.143 and 11.6643, respectively; R of the training and testing datasets are 0.8392 and 0.8347, respectively), indicating the hybrid model can accurately predict the compressive strength of metakaolin cement-based materials;
- Among the five input variables (cement grade, water-binder ratio, cement-sand ratio, metakaolin ratio, and high-efficiency water-reducing agent), cement grade has the greatest influence on the compressive strength of metakaolin cement-based materials, followed by the water-binder ratio. High-efficiency water reducing agent has the least effect. Therefore, cement gradation and water-binder ratio should be mainly considered in the mix design of metakaolin cement-based materials.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cement Grade | Metakaolin to Binder Ratio | Water to Binder Ratio | Superplasticizer | Binder to Sand Ratio | Compression Strength |
---|---|---|---|---|---|
53 | 0 | 0.5 | 0 | 0.33 | 17.6 |
53 | 0 | 0.5 | 0 | 0.33 | 15.8 |
53 | 0 | 0.5 | 0 | 0.33 | 14.2 |
53 | 0 | 0.5 | 0 | 0.33 | 12.8 |
53 | 0 | 0.5 | 0 | 0.33 | 11.8 |
53 | 0 | 0.5 | 0 | 0.33 | 10.4 |
53 | 0 | 0.5 | 0 | 0.33 | 24.8 |
53 | 0 | 0.5 | 0 | 0.33 | 25 |
53 | 0 | 0.5 | 0 | 0.33 | 25.2 |
53 | 0 | 0.5 | 0 | 0.33 | 24.8 |
53 | 0 | 0.5 | 0 | 0.33 | 22.2 |
53 | 0 | 0.5 | 0 | 0.33 | 19.6 |
53 | 0 | 0.5 | 0 | 0.33 | 29.2 |
53 | 0 | 0.5 | 0 | 0.33 | 29.6 |
53 | 0 | 0.5 | 0 | 0.33 | 30.2 |
53 | 0 | 0.5 | 0 | 0.33 | 29.4 |
53 | 0 | 0.5 | 0 | 0.33 | 26.4 |
53 | 0 | 0.5 | 0 | 0.33 | 23.4 |
53 | 0 | 0.5 | 0 | 0.33 | 30.6 |
53 | 0 | 0.5 | 0 | 0.33 | 31.8 |
53 | 0 | 0.5 | 0 | 0.33 | 33 |
53 | 0 | 0.5 | 0 | 0.33 | 31 |
53 | 0 | 0.5 | 0 | 0.33 | 28.4 |
53 | 0 | 0.5 | 0 | 0.33 | 25.4 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 33.4 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 19.1 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 16.8 |
42.5 | 0 | 0.5 | 5 | 0.44 | 16.3 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 18.9 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 17.8 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 17.4 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 18.1 |
42.5 | 0 | 0.5 | 2 | 0.44 | 22 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 20.5 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 19.7 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 19.4 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 46.3 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 31.1 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 27 |
42.5 | 0 | 0.5 | 5 | 0.44 | 34.5 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 30.6 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 36.9 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 29.3 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 31.8 |
42.5 | 0 | 0.5 | 2 | 0.44 | 36.1 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 31.2 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 32.7 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 33.1 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 59.4 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 50.5 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 33.7 |
42.5 | 0 | 0.5 | 5 | 0.44 | 70.3 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 47.7 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 55.6 |
42.5 | 0 | 0.5 | 0.8 | 0.44 | 43.4 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 51.3 |
42.5 | 0 | 0.5 | 2 | 0.44 | 57.2 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 46.8 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 51 |
42.5 | 0 | 0.5 | 1.6 | 0.44 | 49.4 |
52.5 | 0 | 0.6 | 0 | 0.33 | 17.6 |
52.5 | 0 | 0.6 | 0 | 0.33 | 29.4 |
52.5 | 0 | 0.6 | 0 | 0.33 | 44.5 |
52.5 | 0 | 0.6 | 0 | 0.33 | 57.5 |
52.5 | 20 | 0.6 | 0 | 0.33 | 18.8 |
52.5 | 20 | 0.6 | 0 | 0.33 | 29.1 |
52.5 | 20 | 0.6 | 0 | 0.33 | 50.4 |
52.5 | 20 | 0.6 | 0 | 0.33 | 69.7 |
52.5 | 10 | 0.6 | 0 | 0.33 | 20 |
52.5 | 10 | 0.6 | 0 | 0.33 | 32 |
52.5 | 10 | 0.6 | 0 | 0.33 | 50.7 |
52.5 | 10 | 0.6 | 0 | 0.33 | 68.1 |
52.5 | 20 | 0.6 | 0 | 0.33 | 18 |
52.5 | 20 | 0.6 | 0 | 0.33 | 28.5 |
52.5 | 20 | 0.6 | 0 | 0.33 | 50 |
52.5 | 20 | 0.6 | 0 | 0.33 | 65.3 |
52.5 | 0 | 0.36 | 1.4 | 0.5 | 40 |
52.5 | 0 | 0.36 | 1.4 | 0.5 | 70.42 |
52.5 | 0 | 0.36 | 1.4 | 0.5 | 80.42 |
52.5 | 0 | 0.36 | 1.4 | 0.5 | 84.17 |
52.5 | 10 | 0.36 | 2.35 | 0.5 | 35.21 |
52.5 | 10 | 0.36 | 2.35 | 0.5 | 74.58 |
52.5 | 10 | 0.36 | 2.35 | 0.5 | 95 |
52.5 | 10 | 0.36 | 2.35 | 0.5 | 96.25 |
52.5 | 10 | 0.36 | 2.04 | 0.5 | 35.63 |
52.5 | 10 | 0.36 | 2.04 | 0.5 | 82.71 |
52.5 | 10 | 0.36 | 2.04 | 0.5 | 97.29 |
52.5 | 10 | 0.36 | 2.04 | 0.5 | 99.17 |
32 | 0 | 0.48 | 0 | 0.36 | 16.56 |
32 | 10 | 0.48 | 0 | 0.36 | 18.99 |
32 | 15 | 0.5 | 0 | 0.36 | 18.17 |
32 | 20 | 0.51 | 0 | 0.36 | 18.13 |
32 | 25 | 0.52 | 0 | 0.36 | 16.3 |
32 | 30 | 0.53 | 0 | 0.36 | 15.45 |
32 | 0 | 0.53 | 0 | 0.5 | 25.5 |
32 | 10 | 0.53 | 0 | 0.5 | 25.9 |
32 | 15 | 0.53 | 0 | 0.5 | 28.4 |
32 | 20 | 0.53 | 0 | 0.5 | 28.2 |
32 | 25 | 0.53 | 0 | 0.5 | 27.5 |
32 | 30 | 0.53 | 0 | 0.5 | 26.8 |
32 | 0 | 0.5 | 0 | 0.5 | 29.3 |
32 | 10 | 0.5 | 0 | 0.5 | 30.4 |
32 | 15 | 0.5 | 0 | 0.5 | 31.3 |
32 | 20 | 0.5 | 0 | 0.5 | 29.4 |
32 | 25 | 0.5 | 0 | 0.5 | 29.1 |
32 | 30 | 0.5 | 0 | 0.5 | 26.8 |
32 | 0 | 0.47 | 0 | 0.5 | 31.5 |
32 | 10 | 0.47 | 0 | 0.5 | 31.9 |
32 | 15 | 0.47 | 0 | 0.5 | 32.6 |
32 | 20 | 0.47 | 0 | 0.5 | 30.4 |
32 | 25 | 0.47 | 0 | 0.5 | 30.2 |
32 | 30 | 0.47 | 0 | 0.5 | 29 |
32 | 0 | 0.44 | 0.5 | 0.5 | 35.4 |
32 | 10 | 0.44 | 0.5 | 0.5 | 38 |
32 | 15 | 0.44 | 0.5 | 0.5 | 36.6 |
32 | 20 | 0.44 | 0.5 | 0.5 | 35.7 |
32 | 25 | 0.44 | 0.5 | 0.5 | 33.8 |
32 | 30 | 0.44 | 0.5 | 0.5 | 31.7 |
32 | 0 | 0.4 | 1.3 | 0.5 | 40 |
32 | 10 | 0.4 | 1.3 | 0.5 | 42.4 |
32 | 15 | 0.4 | 1.3 | 0.5 | 41.9 |
32 | 20 | 0.4 | 1.3 | 0.5 | 41.4 |
32 | 25 | 0.4 | 1.3 | 0.5 | 39.6 |
32 | 30 | 0.4 | 1.3 | 0.5 | 35.5 |
32 | 0 | 0.48 | 0 | 0.36 | 23.68 |
32 | 10 | 0.48 | 0 | 0.36 | 25.19 |
32 | 15 | 0.5 | 0 | 0.36 | 26.24 |
32 | 20 | 0.51 | 0 | 0.36 | 25.42 |
32 | 25 | 0.52 | 0 | 0.36 | 23.25 |
32 | 30 | 0.53 | 0 | 0.36 | 22.48 |
32 | 0 | 0.53 | 0 | 0.5 | 36.2 |
32 | 10 | 0.53 | 0 | 0.5 | 38.5 |
32 | 15 | 0.53 | 0 | 0.5 | 40 |
32 | 20 | 0.53 | 0 | 0.5 | 40.2 |
32 | 25 | 0.53 | 0 | 0.5 | 38.1 |
32 | 30 | 0.53 | 0 | 0.5 | 35.7 |
32 | 0 | 0.5 | 0 | 0.5 | 38.3 |
32 | 10 | 0.5 | 0 | 0.5 | 41.3 |
32 | 15 | 0.5 | 0 | 0.5 | 42.1 |
32 | 20 | 0.5 | 0 | 0.5 | 42.7 |
32 | 25 | 0.5 | 0 | 0.5 | 39.9 |
32 | 30 | 0.5 | 0 | 0.5 | 38.1 |
32 | 0 | 0.47 | 0 | 0.5 | 39.5 |
32 | 10 | 0.47 | 0 | 0.5 | 43.6 |
32 | 15 | 0.47 | 0 | 0.5 | 44.1 |
32 | 20 | 0.47 | 0 | 0.5 | 44 |
32 | 25 | 0.47 | 0 | 0.5 | 42.8 |
32 | 30 | 0.47 | 0 | 0.5 | 38.7 |
32 | 0 | 0.44 | 0.5 | 0.5 | 41.8 |
32 | 10 | 0.44 | 0.5 | 0.5 | 45.9 |
32 | 15 | 0.44 | 0.5 | 0.5 | 46.3 |
32 | 20 | 0.44 | 0.5 | 0.5 | 45.4 |
32 | 25 | 0.44 | 0.5 | 0.5 | 44.7 |
32 | 30 | 0.44 | 0.5 | 0.5 | 40.6 |
32 | 0 | 0.4 | 1.3 | 0.5 | 44 |
32 | 10 | 0.4 | 1.3 | 0.5 | 47.2 |
32 | 15 | 0.4 | 1.3 | 0.5 | 48.1 |
32 | 20 | 0.4 | 1.3 | 0.5 | 49 |
32 | 25 | 0.4 | 1.3 | 0.5 | 47.7 |
32 | 30 | 0.4 | 1.3 | 0.5 | 42.1 |
32 | 0 | 0.48 | 0 | 0.36 | 28.16 |
32 | 10 | 0.48 | 0 | 0.36 | 29.2 |
32 | 15 | 0.5 | 0 | 0.36 | 30.94 |
32 | 20 | 0.51 | 0 | 0.36 | 29.98 |
32 | 25 | 0.52 | 0 | 0.36 | 28.45 |
32 | 30 | 0.53 | 0 | 0.36 | 27.97 |
32 | 0 | 0.53 | 0 | 0.5 | 41.3 |
32 | 10 | 0.53 | 0 | 0.5 | 43.8 |
32 | 15 | 0.53 | 0 | 0.5 | 43.4 |
32 | 20 | 0.53 | 0 | 0.5 | 44.3 |
32 | 25 | 0.53 | 0 | 0.5 | 42.5 |
32 | 30 | 0.53 | 0 | 0.5 | 39.6 |
32 | 0 | 0.5 | 0 | 0.5 | 44.5 |
32 | 10 | 0.5 | 0 | 0.5 | 46 |
32 | 15 | 0.5 | 0 | 0.5 | 44.7 |
32 | 20 | 0.5 | 0 | 0.5 | 45.1 |
32 | 25 | 0.5 | 0 | 0.5 | 43.6 |
32 | 30 | 0.5 | 0 | 0.5 | 42.1 |
32 | 0 | 0.47 | 0 | 0.5 | 46.3 |
32 | 10 | 0.47 | 0 | 0.5 | 46.9 |
32 | 15 | 0.47 | 0 | 0.5 | 45.2 |
32 | 20 | 0.47 | 0 | 0.5 | 47 |
32 | 25 | 0.47 | 0 | 0.5 | 43.9 |
32 | 30 | 0.47 | 0 | 0.5 | 43.6 |
32 | 0 | 0.44 | 0.5 | 0.5 | 46.6 |
32 | 10 | 0.44 | 0.5 | 0.5 | 48.5 |
32 | 15 | 0.44 | 0.5 | 0.5 | 47.8 |
32 | 20 | 0.44 | 0.5 | 0.5 | 48.7 |
32 | 25 | 0.44 | 0.5 | 0.5 | 47.3 |
32 | 30 | 0.44 | 0.5 | 0.5 | 43.9 |
32 | 0 | 0.4 | 1.3 | 0.5 | 48.7 |
32 | 10 | 0.4 | 1.3 | 0.5 | 50.9 |
32 | 15 | 0.4 | 1.3 | 0.5 | 51.1 |
32 | 20 | 0.4 | 1.3 | 0.5 | 52 |
32 | 25 | 0.4 | 1.3 | 0.5 | 51.3 |
32 | 30 | 0.4 | 1.3 | 0.5 | 47.5 |
32 | 0 | 0.48 | 0 | 0.36 | 29.74 |
32 | 10 | 0.48 | 0 | 0.36 | 31.23 |
32 | 15 | 0.5 | 0 | 0.36 | 32.1 |
32 | 20 | 0.51 | 0 | 0.36 | 32.16 |
32 | 25 | 0.52 | 0 | 0.36 | 32.28 |
32 | 30 | 0.53 | 0 | 0.36 | 30.4 |
32 | 0 | 0.53 | 0 | 0.5 | 43.7 |
32 | 10 | 0.53 | 0 | 0.5 | 44.5 |
32 | 15 | 0.53 | 0 | 0.5 | 45 |
32 | 20 | 0.53 | 0 | 0.5 | 44.2 |
32 | 25 | 0.53 | 0 | 0.5 | 43.4 |
32 | 30 | 0.53 | 0 | 0.5 | 43 |
32 | 0 | 0.5 | 0 | 0.5 | 47 |
32 | 10 | 0.5 | 0 | 0.5 | 46.7 |
32 | 15 | 0.5 | 0 | 0.5 | 46.9 |
32 | 20 | 0.5 | 0 | 0.5 | 45.3 |
32 | 25 | 0.5 | 0 | 0.5 | 45.3 |
32 | 30 | 0.5 | 0 | 0.5 | 44.9 |
32 | 0 | 0.47 | 0 | 0.5 | 48 |
32 | 10 | 0.47 | 0 | 0.5 | 47.4 |
32 | 15 | 0.47 | 0 | 0.5 | 47.4 |
32 | 20 | 0.47 | 0 | 0.5 | 46.8 |
32 | 25 | 0.47 | 0 | 0.5 | 45.6 |
32 | 30 | 0.47 | 0 | 0.5 | 45.1 |
32 | 0 | 0.44 | 0.5 | 0.5 | 50.5 |
32 | 10 | 0.44 | 0.5 | 0.5 | 51.2 |
32 | 15 | 0.44 | 0.5 | 0.5 | 51.4 |
32 | 20 | 0.44 | 0.5 | 0.5 | 50.6 |
32 | 25 | 0.44 | 0.5 | 0.5 | 50.5 |
32 | 30 | 0.44 | 0.5 | 0.5 | 47.1 |
32 | 0 | 0.4 | 1.3 | 0.5 | 51.4 |
32 | 10 | 0.4 | 1.3 | 0.5 | 54.2 |
32 | 15 | 0.4 | 1.3 | 0.5 | 54.9 |
32 | 20 | 0.4 | 1.3 | 0.5 | 53.8 |
32 | 25 | 0.4 | 1.3 | 0.5 | 53.5 |
32 | 30 | 0.4 | 1.3 | 0.5 | 50.8 |
42.5 | 0 | 0.5 | 0 | 0.33 | 34.5 |
42.5 | 5 | 0.5 | 0 | 0.33 | 34.4 |
42.5 | 10 | 0.5 | 0 | 0.33 | 32.4 |
42.5 | 15 | 0.5 | 0 | 0.33 | 31.7 |
42.5 | 20 | 0.5 | 0 | 0.33 | 27.4 |
42.5 | 0 | 0.5 | 0 | 0.33 | 47.1 |
42.5 | 5 | 0.5 | 0 | 0.33 | 46.3 |
42.5 | 10 | 0.5 | 0 | 0.33 | 48.6 |
42.5 | 15 | 0.5 | 0 | 0.33 | 47.9 |
42.5 | 20 | 0.5 | 0 | 0.33 | 49.4 |
42.5 | 0 | 0.5 | 0 | 0.33 | 49.7 |
42.5 | 5 | 0.5 | 0 | 0.33 | 57.5 |
42.5 | 10 | 0.5 | 0 | 0.33 | 58.8 |
42.5 | 15 | 0.5 | 0 | 0.33 | 63.8 |
42.5 | 20 | 0.5 | 0 | 0.33 | 61.5 |
42.5 | 0 | 0.5 | 0 | 0.33 | 57 |
42.5 | 5 | 0.5 | 0 | 0.33 | 65.1 |
42.5 | 10 | 0.5 | 0 | 0.33 | 70.2 |
42.5 | 15 | 0.5 | 0 | 0.33 | 71.2 |
42.5 | 20 | 0.5 | 0 | 0.33 | 68.4 |
52.5 | 0 | 0.45 | 0 | 0.33 | 47.94 |
52.5 | 0 | 0.45 | 0 | 0.33 | 57.2 |
52.5 | 0 | 0.45 | 0 | 0.33 | 66.23 |
52.5 | 0 | 0.45 | 0 | 0.33 | 64.6 |
52.5 | 0 | 0.45 | 0 | 0.33 | 66.01 |
42.5 | 0 | 0.55 | 0 | 0.4 | 40.08 |
42.5 | 5 | 0.55 | 0 | 0.4 | 44.79 |
42.5 | 10 | 0.55 | 0 | 0.4 | 56.76 |
42.5 | 15 | 0.55 | 0 | 0.4 | 56.58 |
42.5 | 0 | 0.49 | 0 | 0.36 | 37.27 |
42.5 | 0 | 0.49 | 0 | 0.36 | 28.53 |
42.5 | 10 | 0.49 | 0 | 0.36 | 38.22 |
42.5 | 0 | 0.49 | 0 | 0.36 | 41.75 |
42.5 | 0 | 0.49 | 0 | 0.36 | 50.05 |
42.5 | 0 | 0.49 | 0 | 0.36 | 39.05 |
42.5 | 10 | 0.49 | 0 | 0.36 | 48.9 |
42.5 | 0 | 0.49 | 0 | 0.36 | 52.83 |
42.5 | 0 | 0.49 | 0 | 0.36 | 56.76 |
42.5 | 0 | 0.49 | 0 | 0.36 | 52.56 |
42.5 | 10 | 0.49 | 0 | 0.36 | 54.76 |
42.5 | 0 | 0.49 | 0 | 0.36 | 58.87 |
32 | 0 | 0.48 | 0 | 0.36 | 6.06 |
32 | 0 | 0.48 | 0 | 0.36 | 10.49 |
32 | 0 | 0.48 | 0 | 0.36 | 10.73 |
52.5 | 0 | 0.33 | 0.03 | 0.51 | 85.99 |
52.5 | 0 | 0.33 | 0.03 | 0.51 | 94.3 |
52.5 | 0 | 0.33 | 0.03 | 0.51 | 106.28 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 100.15 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 111.29 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 112.99 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 101.66 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 109.7 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 112.87 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 97.38 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 111.17 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 115.25 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 88.61 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 103.27 |
52.5 | 15.15 | 0.33 | 0.03 | 0.51 | 111.72 |
52.5 | 0 | 0.5 | 0 | 0.33 | 24.8 |
52.5 | 0 | 0.5 | 0 | 0.33 | 49.5 |
52.5 | 0 | 0.5 | 0 | 0.33 | 59.8 |
52.5 | 0 | 0.5 | 0 | 0.33 | 62.8 |
43 | 0 | 0.4 | 0 | 0.33 | 26.37 |
43 | 0 | 0.4 | 0 | 0.33 | 43.13 |
43 | 0 | 0.4 | 0 | 0.33 | 46.7 |
43 | 0 | 0.4 | 0 | 0.33 | 48.08 |
42.5 | 0 | 0.6 | 0 | 0.33 | 10.43 |
42.5 | 10 | 0.6 | 0 | 0.33 | 11.22 |
42.5 | 15 | 0.6 | 0 | 0.33 | 11.44 |
42.5 | 20 | 0.6 | 0 | 0.33 | 11.66 |
42.5 | 25 | 0.6 | 0 | 0.33 | 11.78 |
42.5 | 30 | 0.6 | 0 | 0.33 | 9.75 |
42.5 | 0 | 0.4 | 0 | 0.33 | 22 |
42.5 | 5 | 0.4 | 0 | 0.33 | 31.5 |
42.5 | 10 | 0.4 | 0 | 0.33 | 30 |
42.5 | 15 | 0.4 | 0 | 0.33 | 29 |
42.5 | 20 | 0.4 | 0 | 0.33 | 27 |
42.5 | 0 | 0.4 | 0 | 0.33 | 32.5 |
42.5 | 5 | 0.4 | 0 | 0.33 | 40 |
42.5 | 10 | 0.4 | 0 | 0.33 | 43.5 |
42.5 | 15 | 0.4 | 0 | 0.33 | 42.1 |
42.5 | 20 | 0.4 | 0 | 0.33 | 44 |
42.5 | 0 | 0.4 | 0 | 0.33 | 40 |
42.5 | 5 | 0.4 | 0 | 0.33 | 52 |
42.5 | 10 | 0.4 | 0 | 0.33 | 56 |
42.5 | 15 | 0.4 | 0 | 0.33 | 60 |
42.5 | 20 | 0.4 | 0 | 0.33 | 58 |
42.5 | 0 | 0.4 | 0 | 0.33 | 48 |
42.5 | 5 | 0.4 | 0 | 0.33 | 52 |
42.5 | 10 | 0.4 | 0 | 0.33 | 64 |
42.5 | 15 | 0.4 | 0 | 0.33 | 67 |
42.5 | 20 | 0.4 | 0 | 0.33 | 65 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 31.1 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 77.24 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 82.45 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 92.5 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 79.92 |
52.5 | 0 | 0.3 | 0.01 | 0.33 | 83.06 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 22.99 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 66.37 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 75.9 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 85.25 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 71.98 |
52.5 | 10 | 0.3 | 0.01 | 0.33 | 78.75 |
42.5 | 0 | 0.45 | 0.5 | 0.5 | 37 |
42.5 | 0 | 0.45 | 0.5 | 0.5 | 48.6 |
42.5 | 0 | 0.45 | 0.5 | 0.5 | 56.8 |
42.5 | 5 | 0.45 | 0.5 | 0.5 | 33.8 |
42.5 | 5 | 0.45 | 0.5 | 0.5 | 46.3 |
42.5 | 5 | 0.45 | 0.5 | 0.5 | 55.5 |
42.5 | 10 | 0.45 | 0.4 | 0.5 | 43.2 |
42.5 | 10 | 0.45 | 0.4 | 0.5 | 50.4 |
42.5 | 10 | 0.45 | 0.4 | 0.5 | 56.9 |
42.5 | 15 | 0.45 | 0.4 | 0.5 | 41.8 |
42.5 | 15 | 0.45 | 0.4 | 0.5 | 51.2 |
42.5 | 15 | 0.45 | 0.4 | 0.5 | 63 |
42.5 | 0 | 0.3 | 0 | 0.62 | 34.5 |
42.5 | 0 | 0.3 | 0 | 0.62 | 47.1 |
42.5 | 0 | 0.3 | 0 | 0.62 | 49.7 |
42.5 | 0 | 0.3 | 0 | 0.62 | 57 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 36.07 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 26.83 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 44.91 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 32.14 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 65.02 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 45 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 71.94 |
42.5 | 0 | 0.3 | 0.7 | 0.76 | 48.33 |
References
- Environment, U.; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar]
- Khayat, K.H. Viscosity-enhancing admixtures for cement-based materials—An overview. Cem. Concr. Compos. 1998, 20, 171–188. [Google Scholar] [CrossRef]
- Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Testing novel portland cement formulations with carbon nanotubes and intrinsic properties revelation: Nanoindentation analysis with machine learning on microstructure identification. Nanomaterials 2020, 10, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komurlu, E.; Kesimal, A.; Demir, S. Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus. Geomech. Eng. 2016, 10, 775–791. [Google Scholar] [CrossRef]
- Liang, X.; Yu, X.; Chen, C.; Ding, G.; Huang, J. Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Stud. Constr. Mater. 2022, 16, e00914. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Ren, J.; Chen, H. Anti-rutting performance of the damping asphalt mixtures (dams) made with a high content of asphalt rubber (ar). Constr. Build. Mater. 2021, 271, 121878. [Google Scholar] [CrossRef]
- Huang, J.; Alyousef, R.; Suhatril, M.; Baharom, S.; Alabduljabbar, H.; Alaskar, A.; Assilzadeh, H. Influence of porosity and cement grade on concrete mechanical properties. Adv. Concr. Constr. 2020, 10, 393–402. [Google Scholar]
- Huang, J.; Duan, T.; Sun, Y.; Wang, L.; Lei, Y. Finite element (fe) modeling of indirect tension to cylindrical (it-cy) specimen test for damping asphalt mixtures (dams). Adv. Civ. Eng. 2020, 2020, 6694180. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Zhang, J.; Sun, Y.; Ren, J. Determining the rayleigh damping parameters of flexible pavements for finite element modeling. J. Vib. Control 2021, 10775463211026763. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Huang, J.; Wang, Y.; Jia, Z. Gradation optimization and strength mechanism of aggregate structure considering macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture. Constr. Build. Mater. 2021, 300, 124262. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Zhao, Z.; Chen, J.; Cheng, Y.; Huang, J.; Yang, C.; Wang, J. Fatigue prediction of semi-flexible composite mixture based on damage evolution. Constr. Build. Mater. 2022, 318, 126004. [Google Scholar] [CrossRef]
- Helmuth, R. Fly Ash in Cement and Concrete; Portland Cement Association: Skokie, IL, USA, 1987. [Google Scholar]
- Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.-H.; Daimon, M. Hydration of fly ash cement. Cem. Concr. Res. 2005, 35, 1135–1140. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement: A descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, J.; Li, M.; Dai, Z.; Jiang, R.; Zhang, J. Chemical modification of combusted coal gangue for u(vi) adsorption: Towards a waste control by waste strategy. Sustainability 2021, 13, 8421. [Google Scholar] [CrossRef]
- Ren, J.; Li, D.; Xu, Y.; Huang, J.; Liu, W. Fatigue behaviour of rock asphalt concrete considering moisture, high-temperature, and stress level. Int. J. Pavement Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Y.; Huang, J.; Shah, S.P. Effect of nano-metakaolinite clay on hydration behavior of cement-based materials at early curing age. Constr. Build. Mater. 2021, 291, 123107. [Google Scholar] [CrossRef]
- Menon, A.; Childs, C.M.; Poczós, B.; Washburn, N.R.; Kurtis, K.E. Molecular engineering of superplasticizers for metakaolin-portland cement blends with hierarchical machine learning. Adv. Theory Simul. 2019, 2, 1800164. [Google Scholar] [CrossRef]
- Kolovos, K.G.; Asteris, P.G.; Tsivilis, S. Properties of sandcrete mixtures modified with metakaolin. Eur. J. Environ. Civ. Eng. 2016, 20, s18–s37. [Google Scholar] [CrossRef]
- He, K.; Yan, S.-J.; Zhao, M.; Dou, Y.; Zhai, G.-L. Effects of water-cement ratio and metakaolin blending ratio on the performance of sulphoaluminate cement-based material. J. Yangtze River Sci. Res. Inst. 2016, 33, 143. [Google Scholar]
- Yu, H.; Tan, Y.; Feng, T. Study of temporal change in chloride diffusion coefficient of concrete. ACI Mater. J. 2019, 116, 103–112. [Google Scholar] [CrossRef]
- Mo, Z.; Wang, R.; Gao, X. Hydration and mechanical properties of uhpc matrix containing limestone and different levels of metakaolin. Constr. Build. Mater. 2020, 256, 119454. [Google Scholar] [CrossRef]
- Qian, X.; Li, Z. The relationships between stress and strain for high-performance concrete with metakaolin. Cem. Concr. Res. 2001, 31, 1607–1611. [Google Scholar] [CrossRef]
- Astutiningsih, S.; Banjarnahor, I.M.; Zakiyuddin, A. Characterization and fabrication of metakaolin using pulau bangka kaolin. In Proceedings of the E3S Web of Conferences, Sarawak, Malaysia, 9–11 July 2018; EDP Sciences: Les Ulis, France. [Google Scholar]
- Badogiannis, E.; Kakali, G.; Tsivilis, S. Metakaolin as supplementary cementitious material: Optimization of kaolin to metakaolin conversion. J. Therm. Anal. Calorim. 2005, 81, 457–462. [Google Scholar] [CrossRef]
- Shi, Z.; Geiker, M.R.; De Weerdt, K.; Østnor, T.A.; Lothenbach, B.; Winnefeld, F.; Skibsted, J. Role of calcium on chloride binding in hydrated portland cement–metakaolin–limestone blends. Cem. Concr. Res. 2017, 95, 205–216. [Google Scholar] [CrossRef]
- Shi, Z.; Lothenbach, B.; Geiker, M.R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; Skibsted, J. Experimental studies and thermodynamic modeling of the carbonation of portland cement, metakaolin and limestone mortars. Cem. Concr. Res. 2016, 88, 60–72. [Google Scholar] [CrossRef]
- Lagier, F.; Kurtis, K.E. Influence of portland cement composition on early age reactions with metakaolin. Cem. Concr. Res. 2007, 37, 1411–1417. [Google Scholar] [CrossRef]
- Huang, J.; Cuciniello, G.; Leandri, P.; Losa, M. Design of rubberized asphalt mixtures for noise and vibration damping layers, Advances in Materials and Pavement Performance Prediction II: Contributions. In Proceedings of the 2nd International Conference on Advances in Materials and Pavement Performance Prediction (AM3P 2020), San Antonio, TX, USA, 27–29 May 2020; CRC Press: Boca Raton, FL, USA, 2020; p. 269. [Google Scholar]
- Huang, J.; Asteris, P.G.; Pasha, S.M.K.; Mohammed, A.S.; Hasanipanah, M. A new auto-tuning model for predicting the rock fragmentation: A cat swarm optimization algorithm. Eng. Comput. 2020, 1–12. [Google Scholar] [CrossRef]
- Huang, J.; Leandri, P.; Cuciniello, G.; Losa, M. Mix design and laboratory characterisation of rubberised mixture used as damping layer in pavements. Int. J. Pavement Eng. 2021, 1–15. [Google Scholar] [CrossRef]
- Huang, J.; Kumar, G.S.; Sun, Y. Evaluation of workability and mechanical properties of asphalt binder and mixture modified with waste toner. Constr. Build. Mater. 2021, 276, 122230. [Google Scholar] [CrossRef]
- Huang, J.; Koopialipoor, M.; Armaghani, D.J. A combination of fuzzy delphi method and hybrid ann-based systems to forecast ground vibration resulting from blasting. Sci. Rep. 2020, 10, 19397. [Google Scholar] [CrossRef]
- Huang, J.; Duan, T.; Zhang, Y.; Liu, J.; Zhang, J.; Lei, Y. Predicting the permeability of pervious concrete based on the beetle antennae search algorithm and random forest model. Adv. Civ. Eng. 2020, 2020, 8863181. [Google Scholar] [CrossRef]
- Sun, S.L.; Cao, Z.H.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern. 2020, 50, 3668–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, W.C. Machine learning systems and intelligent applications. IEEE Softw. 2020, 37, 43–49. [Google Scholar] [CrossRef]
- Villarroya, S.; Baumann, P. On the integration of machine learning and array databases. In Proceedings of the IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1794–1797. [Google Scholar]
- Zelinka, J.; Romportl, J.; Muller, L. A priori and a posteriori machine learning and nonlinear artificial neural networks. In Proceedings of the 13th International Conference on Text, Speech and Dialogue, Brno, Czech Republic, 6–10 September 2010; pp. 472–479. [Google Scholar]
- Li, G.C.; Sun, Y.T.; Qi, C.C. Machine learning-based constitutive models for cement-grouted coal specimens under shearing. Int. J. Min. Sci. Technol. 2021, 31, 813–823. [Google Scholar] [CrossRef]
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenco, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Xue, Q.; Ji, M.H.; Tong, J.H.; Yang, J.J.; Zhou, C.M. Predicting chronic pain in postoperative breast cancer patients with multiple machine learning and deep learning models. J. Clin. Anesth. 2021, 74, 110423. [Google Scholar] [CrossRef]
- Huang, J.; Shiva Kumar, G.; Ren, J.; Zhang, J.; Sun, Y. Accurately predicting dynamic modulus of asphalt mixtures in low-temperature regions using hybrid artificial intelligence model. Constr. Build. Mater. 2021, 297, 123655. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Machine learning study of the mechanical properties of concretes containing waste foundry sand. Constr. Build. Mater. 2020, 243, 118152. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the dynamic modulus of asphalt mixture using machine learning techniques: An application of multi biogeography-based programming. Constr. Build. Mater. 2021, 266, 120983. [Google Scholar] [CrossRef]
- Behnood, A.; Daneshvar, D. A machine learning study of the dynamic modulus of asphalt concretes: An application of m5p model tree algorithm. Constr. Build. Mater. 2020, 262, 120544. [Google Scholar] [CrossRef]
- Mallick, R.B.; Madankara Kottayi, N.; Veeraragavan, R.K.; Dave, E.; DeCarlo, C.; Sias, J.E. Suitable tests and machine learning approach to predict moisture susceptibility of hot-mix asphalt. J. Transp. Eng. Part B Pavements 2019, 145, 04019030. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Wibowo, D.K.; Prayogo, D.; Roy, A.F. Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. J. Civ. Eng. Manag. 2015, 21, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, M.; Wang, L.; Yang, B.; Zhang, L.; Chen, Z.; Han, S.; Garcia-Hernandez, L.; Abraham, A. Estimating cement compressive strength using three-dimensional microstructure images and deep belief network. Eng. Appl. Artif. Intell. 2020, 88, 103378. [Google Scholar] [CrossRef]
- Yunani, J. Concrete compressive strength analysis using tree-based methods. In Proceedings of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1–4 October 2019; pp. 1–4. [Google Scholar]
- Özcan, F.; Atiş, C.D.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Yeh, I.-C.; Lien, L.-C. Knowledge discovery of concrete material using genetic operation trees. Expert Syst. Appl. 2009, 36, 5807–5812. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Tootoonchi, H.; Armaghani, D.J.; Mohamad, E.T.; Hedayat, A. Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bull. Eng. Geol. Environ. 2019, 78, 6347–6360. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Armaghani, D.J.; Amnieh, H.B.; Abd Majid, M.Z.; Tahir, M.M. Application of pso to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput. Appl. 2017, 28, 1043–1050. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating tbm advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Sun, L.; Koopialipoor, M.; Armaghani, D.J.; Tarinejad, R.; Tahir, M. Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples. Eng. Comput. 2019, 37, 1133–1145. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Armaghani, D.J.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Hasanipanah, M.; Mohamad, E.T. A combination of the ica-ann model to predict air-overpressure resulting from blasting. Eng. Comput. 2016, 32, 155–171. [Google Scholar] [CrossRef]
- Ahmad, M.; Tang, X.W.; Ahmad, F.; Pirhadi, N.; Wan, X.; Cheng, K. Probabilistic evaluation of cpt-based seismic soil liquefaction potential: Towards the integration of interpretive structural modeling and bayesian belief network. Math. Biosci. Eng. 2021, 18, 9233–9252. [Google Scholar]
- Huang, J.; Duan, T.; Lei, Y.; Hasanipanah, M. Finite element modeling for the antivibration pavement used to improve the slope stability of the open-pit mine. Shock. Vib. 2020, 2020, 6650780. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Asteris, P.G. A comparative study of ann and anfis models for the prediction of cement-based mortar materials compressive strength. Neural Comput. Appl. 2021, 33, 4501–4532. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A. Developing a hybrid pso–ann model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 2017, 28, 391–405. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Ghaleini, E.N.; Tootoonchi, H.; Armaghani, D.J.; Haghighi, M.; Hedayat, A. Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ann. Environ. Earth Sci. 2019, 78, 165. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Fahimifar, A.; Ghaleini, E.N.; Momenzadeh, M.; Armaghani, D.J. Development of a new hybrid ann for solving a geotechnical problem related to tunnel boring machine performance. Eng. Comput. 2020, 36, 345–357. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting tbm penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Cai, M.; Koopialipoor, M.; Armaghani, D.J.; Thai Pham, B. Evaluating slope deformation of earth dams due to earthquake shaking using mars and gmdh techniques. Appl. Sci. 2020, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Armaghani, D.J.; Farazmand, A. Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement 2015, 75, 289–297. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Noorian-Bidgoli, M.; Armaghani, D.J.; Khamesi, H. Feasibility of pso-ann model for predicting surface settlement caused by tunneling. Eng. Comput. 2016, 32, 705–715. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Gao, Y. Intelligently predict the rock joint shear strength using the support vector regression and firefly algorithm. Lithosphere 2021, 2021, 2467126. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Zhang, C.; Ma, Z.-G.; Huang, J.; Ni, Y.-Q.; Zhang, C. Shm deformation monitoring for high-speed rail track slabs and bayesian change point detection for the measurements. Constr. Build. Mater. 2021, 300, 124337. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Zhang, J.; Huang, J. Simulation of the compressive strength of cemented tailing backfill through the use of firefly algorithm and random forest model. Shock. Vib. 2021, 2021, 5536998. [Google Scholar] [CrossRef]
- Xu, W.; Huang, X.; Huang, J.; Yang, Z. Structural analysis of backfill highway subgrade on the lower bearing capacity foundation using the finite element method. Adv. Civ. Eng. 2021, 2021, 1690168. [Google Scholar] [CrossRef]
- Xu, W.; Huang, X.; Yang, Z.; Zhou, M.; Huang, J. Developing hybrid machine learning models to determine the dynamic modulus (e*) of asphalt mixtures using parameters in witczak 1-40d model: A comparative study. Materials 2022, 15, 1791. [Google Scholar] [CrossRef]
- Hajihassani, M.; Armaghani, D.J.; Marto, A.; Mohamad, E.T. Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull. Eng. Geol. Environ. 2015, 74, 873–886. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ann-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 2020, 20, 191–205. [Google Scholar]
- Khandelwal, M.; Marto, A.; Fatemi, S.A.; Ghoroqi, M.; Armaghani, D.J.; Singh, T.; Tabrizi, O. Implementing an ann model optimized by genetic algorithm for estimating cohesion of limestone samples. Eng. Comput. 2018, 34, 307–317. [Google Scholar] [CrossRef]
- Xu, C.; Gordan, B.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.; Zhang, X. Improving performance of retaining walls under dynamic conditions developing an optimized ann based on ant colony optimization technique. IEEE Access 2019, 7, 94692–94700. [Google Scholar] [CrossRef]
- Yang, H.; Koopialipoor, M.; Armaghani, D.J.; Gordan, B.; Khorami, M.; Tahir, M. Intelligent design of retaining wall structures under dynamic conditions. Steel Compos. Struct. 2019, 31, 629–640. [Google Scholar]
- Huang, L.; Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M. Invasive weed optimization technique-based ann to the prediction of rock tensile strength. Appl. Sci. 2019, 9, 5372. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Guo, H.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M. Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 2020, 37, 1679–1694. [Google Scholar] [CrossRef]
- Ma, H.; Liu, J.; Zhang, J.; Huang, J. Estimating the compressive strength of cement-based materials with mining waste using support vector machine, decision tree, and random forest models. Adv. Civ. Eng. 2021, 2021, 6629466. [Google Scholar] [CrossRef]
- Gamal, H.; Alsaihati, A.; Elkatatny, S.; Haidary, S.; Abdulraheem, A. Rock strength prediction in real-time while drilling employing random forest and functional network techniques. J. Energy Resour. Technol. 2021, 143, 093004. [Google Scholar] [CrossRef]
- Daneshvar, D.; Behnood, A. Estimation of the dynamic modulus of asphalt concretes using random forests algorithm. Int. J. Pavement Eng. 2020, 23, 250–260. [Google Scholar] [CrossRef]
- Chahnasir, E.S.; Zandi, Y.; Shariati, M.; Dehghani, E.; Toghroli, A.; Mohamad, E.T.; Shariati, A.; Safa, M.; Wakil, K.; Khorami, M. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct. Syst. 2018, 22, 413–424. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.S.; Li, X. Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method. Materials 2022, 15, 3500. https://doi.org/10.3390/ma15103500
Huang J, Zhou M, Yuan H, Sabri MMS, Li X. Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method. Materials. 2022; 15(10):3500. https://doi.org/10.3390/ma15103500
Chicago/Turabian StyleHuang, Jiandong, Mengmeng Zhou, Hongwei Yuan, Mohanad Muayad Sabri Sabri, and Xiang Li. 2022. "Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method" Materials 15, no. 10: 3500. https://doi.org/10.3390/ma15103500
APA StyleHuang, J., Zhou, M., Yuan, H., Sabri, M. M. S., & Li, X. (2022). Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method. Materials, 15(10), 3500. https://doi.org/10.3390/ma15103500