Bonding Acetylated Veneer for Engineered Wood Products—A Review
Abstract
:1. Introduction
2. Bonding Wood
3. Fabrication of Engineered Veneer Products
3.1. Veneer Processing
3.2. Primary Bonding
3.3. Secondary Bonding
4. Wood Veneer Acetylation
5. Bonding Acetylated Wood
5.1. The Influence of Acetylation on Bonding
5.1.1. Acetic Acid as a By-Product
5.1.2. Bulking
5.1.3. Changed Chemistry
5.1.4. Dimensional Stability
5.1.5. Moisture Content
- Large amounts of water are discharged (polycondensation) when hot bonding veneer-based products with PF. Low-MC veneers have a benefit when bonding at high temperatures since they have less vapor pressure and cracks are less likely through the boards. Thereby, the surface-to-edge-ratio of the boards is critical. However, acetylated veneers have a very low MC but can also absorb less water. Consequently, the water movements during hot-bonding acetylated veneer products are not fully understood yet.
- Heat transfer from the top layer to the core during high-temperature pressing is expected to be lower for acetylated veneer products than for references. Bavaneghi and Ghorbani [79] discovered that acetylated particle boards showed reduced heat transfer compared to references, when pressed at 175 °C. Additionally, because of the restricted heat transfer, it may take longer for hot-bonding processes to reach a particular temperature inside a board’s core.
- The penetration of water-soluble adhesive is altered because acetylated wood absorbs less water. Swelling produced by cold curing adhesives absorbing water can cause cracks [25,80], which would be decreased on acetylated wood. On the other hand, the reduced penetration may have a negative impact on mechanical adhesion.
- The compressibility of acetylated wood is affected by the decreasing material moisture [81]. After acetylation, 20 mm-thick (radial) pine (Pinus radiata D. Don) samples were densified by only 6.9%, compared to 10% for untreated samples. The reduced compressibility can cause issues, particularly during lap jointing (bumps), as discussed in the primary bonding section.
- Water is required for the chemical reaction of some adhesives, particularly cold-curing 1-C PUR adhesives [82]. Such adhesives absorb water largely from the moisture in the wood, as well as from the humidity in the air. The bonding may fail because of the lower MC. To solve this problem, water can be sprayed on the applied adhesive or on the unwetted side of the workpiece. Longer open waiting times can enable the adhesive to moisten. High humidity may also aid in the resolution of this issue.
5.1.6. Mechanical Performance
5.1.7. Surface Properties
5.2. Overview of Bonded Acetylated Material and Products
6. Acetylated Wood for Structural Purposes and Acetylated Veneer Products on the Market
7. Conclusions and Outlook
- How bulking affects lathe checks, cracks, and adhesive penetration;
- If high temperatures during bonding alter the stability of bonded acetyl groups (deacetylation) under the presence of water-soluble adhesives;
- If densification is still possible or only hampered;
- Performance of primary and secondary bonding, besides finger- and lap-jointing.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Akpan, E.I.; Wetzel, B.; Friedrich, K. Eco-friendly and sustainable processing of wood-based materials. Green Chem. 2021, 23, 2198–2232. [Google Scholar] [CrossRef]
- Abrahamsen, R. Mjøstårnet—18 Storey Timber Building Completed. In Proceedings of the 24th Internationales HolzbauForum IHF 2018, Garmisch-Partenkirchen, Germany, 5–7 December 2018. [Google Scholar]
- DIN EN 350:2016-12; Dauerhaftigkeit von Holz und Holzprodukten-Prüfung und Klassifizierung der Dauerhaftigkeit von Holz und Holzprodukten gegen biologischen Angriff; Deutsche Fassung EN_350:2016. Beuth Verlag GmbH: Berlin, Germany, 2016. [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Treatment of wood with aminofunctional silanes for protection against wood destroying fungi. Holzforschung 2006, 60, 210–216. [Google Scholar] [CrossRef]
- Hingston, J.A.; Collins, C.D.; Murphy, R.J.; Lester, J.N. Leaching of chromated copper arsenate wood preservatives: A review. Environ. Pollut. 2001, 111, 53–66. [Google Scholar] [CrossRef]
- Schiopu, N.; Tiruta-Barna, L. Wood preservatives. In Toxicity of Building Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 138–165. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; Wiley Series in Renewable Resources; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2006. [Google Scholar]
- Emmerich, L.; Bollmus, S.; Militz, H. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea)—State of the art, recent research activities and future perspectives. Wood Mater. Sci. Eng. 2019, 14, 3–18. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood Modification: An Update. BioResources 2011, 6, 918–919. [Google Scholar]
- Jones, D.; Sandberg, D. A Review of Wood Modification Globally—Updated Findings from COST FP1407. IPBE 2020, 1. [Google Scholar] [CrossRef]
- Rowell, R.M. Acetylation of wood—A review. Int. J. Lignocellul. Prod. 2014, 1, 1–27. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation, 1st ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2021. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iForest 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Alfredsen, G.; Flæte, P.O.; Militz, H. Decay resistance of acetic anhydride modified wood: A review. Int. Wood Prod. J. 2013, 4, 137–143. [Google Scholar] [CrossRef]
- Beckers, M.; Militz, H. Acetylation of solid wood. Initial trials on lab and semi industrial scale. In Proceedings of the Second Pacific Rim Bio-Based Composites Symposium, Vancouver, BC, Canada, 6–9 November 1994; pp. 125–135. [Google Scholar]
- Militz, H. Die Verbesserung des Schwind- und Quellverhaltens und der Dauerhaftigkeit von Holz mittels Behandlung mit unkatalysiertem Essigsäureanhydrid. Holz. Als. Roh. Werkstoff 1991, 49, 147–152. [Google Scholar] [CrossRef]
- Rowell, R.M. Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 2006, 1, 29–33. [Google Scholar] [CrossRef]
- Habenicht, G. Kleben: Grundlagen, Technologien, Anwendungen: Mit 37 Tabellen, 5.; erw. und Aktualisierte Aufl. ed, VDI; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Marra, A.A. Bond formation fundamentals. In Technology of Wood Bonding: Principles in Practice; Van Nostrand Reinhold: New York, NY, USA, 1992; pp. 35–60. [Google Scholar]
- Frihart, C.R. Wood adhesion and adhesives. In Handbook of Wood Chemistry and Wood Composites; Routledge: Oxfordshire, UK, 2005. [Google Scholar]
- Lütkemeier, B. Kleben von Modifiziertem Vollholz: Gestaltung des Grenzbereichs zur Steuerung von Verklebungsmechanismen, 1st ed.; Sierke Verlag: Göttingen, Germany, 2018. [Google Scholar]
- Dunky, M.; Niemz, P. Holzwerkstoffe und Leime; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Hänsel, A.; Sandak, J.; Sandak, A.; Mai, J.; Niemz, P. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Mater. Sci. Eng. 2021, 1–12. [Google Scholar] [CrossRef]
- Zeppenfeld, G.; Grunwald, D. Klebstoffe in der Holz- und Möbelindustrie, 2nd ed.; DRW-Verl: Leinfelden-Echterdingen, Germany, 2005. [Google Scholar]
- Altgen, M.; Militz, H. Photodegradation of thermally-modified Scots pine and Norway spruce investigated on thin micro-veneers. Eur. J. Wood Prod. 2016, 74, 185–190. [Google Scholar] [CrossRef]
- Derbyshire, H.; Miller, E.R.; Turkulin, H. Investigations into the photodegradation of wood using microtensile testing: Part 2: An investigation of the changes in tensile strength of different softwood species during natural weathering. Holz. Als. Roh. Werkst. 1996, 54, 1–6. [Google Scholar] [CrossRef]
- Evans, P.D.; Michell, A.J.; Schmalzl, K.J. Studies of the degradation and protection of wood surfaces. Wood Sci. Technol. 1992, 26, 151–163. [Google Scholar] [CrossRef]
- Klüppel, A.; Mai, C. Effect of lignin and hemicelluloses on the tensile strength of micro-veneers determined at finite span and zero span. Holzforschung 2012, 66, 493–496. [Google Scholar] [CrossRef]
- Raczkowski, J. Seasonal effects on the atmospheric corrosion of spruce micro-sections. Holz. Als. Roh. Werkstoff 1980, 38, 231–234. [Google Scholar] [CrossRef]
- Xiao, Z.; Xie, Y.; Adamopoulos, S.; Mai, C. Effects of chemical modification with glutaraldehyde on the weathering performance of Scots pine sapwood. Wood Sci. Technol. 2012, 46, 749–767. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xiao, Z.; Goodell, B.; Jellison, J.; Militz, H.; Mai, C. Degradation of wood veneers by Fenton’s reagents: Effects of wood constituents and low molecular weight phenolic compounds on hydrogen peroxide decomposition and wood tensile strength loss. Holzforschung 2010, 64, 375–383. [Google Scholar] [CrossRef]
- Kollmann, F. (Ed.) Furniere, Lagenhölzer und Tischlerplatten; Springer: Berlin/Heidelberg, Germany, 1962. [Google Scholar] [CrossRef]
- ISO 18775:2020-11; Veneers—Terms and Definitions, Determination of Physical Characteristics and Tolerances. ISO: Geneva, Switzerland, 2020.
- DIN EN 313-2:1999-11; Sperrholz- Klassifizierung und Terminologie-Teil_2: Terminologie; Deutsche Fassung EN_313-2:1999. Beuth Verlag GmbH: Berlin, Germany, 1999. [CrossRef]
- Peschel, P.; Hornhardt, E.; Nennewitz, I.; Nutsch, W.; Schulzig, S.; Seifert, G. Tabellenbuch Holztechnik: Tabellen—Formeln—Regeln—Bestimmungen, 11th ed.; Europa Lehrmittel, Europa-Fachbuchreihe für Holztechnik Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG: Haan-Gruiten, Germany, 2019. [Google Scholar]
- Pałubicki, B.; Marchal, R.; Butaud, J.-C.; Denaud, L.-E.; Bléron, L.; Collet, R.; Kowaluk, G. A Method of Lathe Checks Measurement; SMOF device and its software. Eur. J. Wood Prod. 2010, 68, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, Z.; He, S.; Zhou, G.; Mei, C. The effect of lathe checks on the mechanical performance of LVL. Eur. J. Wood Prod. 2020, 78, 545–554. [Google Scholar] [CrossRef]
- Rohumaa, A.; Hunt, C.G.; Hughes, M.; Frihart, C.R.; Logren, J. The influence of lathe check depth and orientation on the bond quality of phenol-formaldehyde—Bonded birch plywood. Holzforschung 2013, 67, 779–786. [Google Scholar] [CrossRef]
- Grönquist, P.; Weibel, G.; Leyder, C.; Frangi, A. Calibration of Electrical Resistance to Moisture Content for Beech Laminated Veneer Lumber “BauBuche S” and “BauBuche Q”. Forests 2021, 12, 635. [Google Scholar] [CrossRef]
- Engehausen, N.; Benthien, J.T.; Nopens, M.; Ressel, J.B. Density Profile Analysis of Laminated Beech Veneer Lumber (BauBuche). Fibers 2021, 9, 31. [Google Scholar] [CrossRef]
- Benthien, T.J.; Riegler, M.; Engehausen, N.; Nopens, M. Specific Dimensional Change Behavior of Laminated Beech Veneer Lumber (BauBuche) in Terms of Moisture Absorption and Desorption. Fibers 2020, 8, 47. [Google Scholar] [CrossRef]
- Bollmus, S.; Bongers, F.; Gellerich, A.; Lankveld, C.; Alexander, J.; Militz, H. Acetylation of German Hardwoods. In Proceedings of the ECWM 8 Conference, Helsinki, Finland, 26–27 October 2015. [Google Scholar]
- Chao, Y.-Y.; Hung, K.-C.; Xu, J.-W.; Wu, T.-L.; Wu, J.-H. Effects of Acetylated Veneer on the Natural Weathering Properties of Adhesive-Free Veneer Overlaid Wood–Plastic Composites. Polymers 2020, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.J.A.; Humphrey, P.E. The effect of acetylation on the shear strength development kinetics of phenolic resin-to-wood bonds. Wood Fiber Sci. 1999, 31, 293–299. [Google Scholar]
- Dunningham, E.A.; Plackett, D.V.; Singh, A.P. Weathering of chemically modified wood. Holz. Als. Roh. Werkstoff 1992, 50, 429–432. [Google Scholar] [CrossRef]
- Graf, J.; Klopfer, R.; Röver, D. Neue Potentiale im Konstruktiven Holzbau Durch Acetylierte Buche, Forschungsinitiative Zukunft Bau; Fraunhofer IRB Verlag: Stuttgart, Germany, 2019. [Google Scholar]
- Hemmilä, V.; Karlsson, O.; Sandberg, D. Modified Wood-Protein Adhesive Bondline Strength Development during Curing. In Proceedings of the Seventh European Conference on Wood Modification, Lisbon, Portugal, 10–12 March 2014. [Google Scholar]
- Hosseinpourpia, R.; Mai, C. Mode of action of brown rot decay resistance of acetylated wood: Resistance to Fenton’s reagent. Wood Sci. Technol. 2016, 50, 413–426. [Google Scholar] [CrossRef]
- Imamura, Y.; Nishimoto, K. Some Aspects on Resistance of Acetylated Wood against Biodeterioration. Wood Res. 1987, 74, 33–44. [Google Scholar]
- Imamura, Y.; Nishimoto, K. Resistance of Acetylated Wood to Attack by Subterranean Termites, in 72. In Proceedings of the Wood Research, Kyoto, Japan, 28 February 1986; pp. 37–44. [Google Scholar]
- Kalnins, M.A. Photochemical degradation of acetylated, methylated, phenylhydrazine-modified, and ACC-treated wood. J. Appl. Polym. Sci. 1984, 29, 105–115. [Google Scholar] [CrossRef]
- Kiguchi, M. Photo-Deterioration of Chemically Modified Wood Surfaces: Acetylated wood and alkylated wood. JARQ Jpn. Agric. Res. Q. 1997, 31, 147–154. [Google Scholar]
- Mohebby, B.; Talaii, A.; Najafi, S.K. Influence of acetylation on fire resistance of beech plywood. Mater. Lett. 2007, 61, 359–362. [Google Scholar] [CrossRef]
- Rowell, R.M.; Imamura, Y.; Kawai, S.; Norimoto, M. Dimensional stability, decay resistance, and mechanical properties of veneer-faced low-density particleboards made from acetylated wood. Wood Fiber Sci. 1989, 21, 67–79. [Google Scholar]
- Rowell, R.M.; Banks, W.B. Tensile strength and toughness of acetylated pine and lime flakes. Brit. Polym. J. 1987, 19, 479–482. [Google Scholar] [CrossRef]
- Schwanninger, M.; Stefke, B.; Hinterstoisser, B. Qualitative Assessment of Acetylated Wood with Infrared Spectroscopic Methods. J. Near Infrared Spectrosc. 2011, 19, 349–357. [Google Scholar] [CrossRef]
- Slabohm, M.; Militz, H. Improving durability and dimensional stability of beech (Fagus sylvatica L.) LVL by acetylation with acetic anhydride. In Proceedings of the European Conference on Wood Modification, Nancy, France, 25–26 April 2022. [Google Scholar]
- Stamm, A.J.; Tarkow, H. Dimensional Stabilization of Wood. J. Phys. Chem. 1947, 51, 493–505. [Google Scholar] [CrossRef]
- Stefke, B.; Windeisen, E.; Schwanninger, M.; Hinterstoisser, B. Determination of the Weight Percentage Gain and of the Acetyl Group Content of Acetylated Wood by Means of Different Infrared Spectroscopic Methods. Anal. Chem. 2008, 80, 1272–1279. [Google Scholar] [CrossRef]
- Tarkow, H.; Stamm, A.J.; Erickson, E.C.O. Acetylated Wood, Report (Forest Products Laboratory (U.S.)); United States Department of Agriculture, Forest Service, Forest Products Laboratory: Washington, DC, USA, 1953. [Google Scholar]
- Wålinder, M.; Brelid, P.L.; Segerholm, K.; Long, C.J., II; Dickerson, J.P. Wettability of acetylated Southern yellow pine. Int. Wood Prod. J. 2013, 4, 197–203. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Crocetti, R.; Wålinder, M. Mechanical properties of acetylated birch plywood loaded parallel to the face grain. In Proceedings of the 16th World Conference on Timber Engineering, Santiago, Chile, 9–12 August 2021. [Google Scholar]
- Yang, C.-N.; Hung, K.-C.; Wu, T.-L.; Yang, T.-C.; Chen, Y.-L.; Wu, J.-H. Comparisons and Characteristics of Slicewood Acetylation with Acetic Anhydride by Liquid Phase, Microwave, and Vapor Phase Reactions. BioResources 2014, 9, 6467–6475. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.; Norimoto, M.; Rowell, R.M. Stabilization of acoustical properties of wooden musical instruments by acetylation. Wood Frhcr Sci. 1993, 25, 395–403. [Google Scholar]
- Zhao, Y.; Tan, X.; Wan, X.; Yuan, Y.; Yu, Z.; Tang, J. Dyeing of acetylated wood with disperse dyes. Wood Fiber Sci. J. Soc. Wood Sci. Technol. 2014, 46, 401–411. [Google Scholar]
- Evans, P.D.; Wallis, A.F.A.; Owen, N.L. Weathering of chemically modified wood surfaces. Wood Sci. Technol. 2000, 34, 151–165. [Google Scholar] [CrossRef]
- Bongers, F.; Uphill, S.J. The potential of wood acetylation. In Proceedings of the ISCHP 7th International Scientific Conference on Hardwood Processing, Delft, The Netherlands, 7–9 August 2019; van de Kuilen, J.-W., Gard, W., Eds.; Delft University of Technology: Delft, The Netherlands, 2019; pp. 49–57. [Google Scholar]
- Vick, C.B.; Rowell, R.M. Adhesive bonding of acetylated wood. Int. J. Adhes. Adhes. 1990, 10, 263–272. [Google Scholar] [CrossRef]
- Himmel, S.; Mai, C. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung 2015, 69, 633–643. [Google Scholar] [CrossRef]
- Thybring, E.E. The decay resistance of modified wood influenced by moisture exclusion and swelling reduction. Int. Biodeterior. Biodegrad. 2013, 82, 87–95. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Ormondroyd, G.A. Dimensional changes in Corsican pine (Pinus nigra Arnold) modified with acetic anhydride measured using a helium pycnometer. Holzforschung 2004, 58, 544–547. [Google Scholar] [CrossRef]
- Bongers, F.; Meijerink, T.; Lütkemeier, B.; Lankveld, C.; Alexander, J.; Militz, H.; Lehringer, C. Bonding of acetylated wood. Int. Wood Prod. J. 2016, 7, 102–106. [Google Scholar] [CrossRef]
- Čermák, P.; Baar, J.; Dömény, J.; Výbohová, E.; Rousek, R.; Pařil, P.; Oberle, A.; Čabalová, I.; Hess, D.; Vodák, M.; et al. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde resin impregnated beech wood. Holzforschung 2022, 76, 437–450. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Jones, D. The Dimensional Stabilisation of Corsican Pine Sapwood by Reaction with Carboxylic Acid Anhydrides. The Effect of Chain Length. Holzforschung 1996, 50, 457–462. [Google Scholar] [CrossRef]
- Ohmae, K.; Minato, K.; Norimoto, M. The Analysis of Dimensional Changes Due to Chemical Treatments and Water Soaking for Hinoki (Chamaecyparis obtusa) Wood. Holzforschung 2002, 56, 98–102. [Google Scholar] [CrossRef]
- Hofferber, B.M.; Kolodka, E.; Brandon, R.; Moon, R.J.; Frihart, C.R. Effects of swelling forces on the durability of wood adhesive bonds. In Proceedings of the 29th Annual Meeting of The Adhesion Society, Jacksonville, FL, USA, 19–22 February 2006; pp. 187–189. [Google Scholar]
- Bavaneghi, F.; Ghorbani, M. Mechanical behavior and springback of acetylated particleboard made in different press times. Wood Mater. Sci. Eng. 2016, 11, 57–61. [Google Scholar] [CrossRef]
- Hass, P.F.S. Penetration Behavior of Adhesives into Solid Wood and Micromechanics of the Bondline; ETH: Zurich, Switzerland, 2012. [Google Scholar] [CrossRef]
- Laine, K.; Segerholm, K.; Wålinder, M.; Rautkari, L.; Hughes, M.; Lankveld, C. Surface densification of acetylated wood. Eur. J. Wood Prod. 2012, 74, 829–835. [Google Scholar] [CrossRef]
- Lehringer, C.; Gabriel, J. Review of Recent Research Activities on One-Component PUR-Adhesives for Engineered Wood Products. In Materials and Joints in Timber Structures; Aicher, S., Reinhardt, H.-W., Garrecht, H., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 405–420. [Google Scholar] [CrossRef]
- Beckers, E.; Bongers, F. Mechanical properties of acetylated solid wood treated on pilot plant scale. In Proceedings of the First European Conference on Wood Modification, Ghent, Belgium, 3–4 April 2003. [Google Scholar]
- Bryne, L.E.; Wålinder, M.E.P. Ageing of modified wood. Part 1: Wetting properties of acetylated, furfurylated, and thermally modified wood. Holzforschung 2010, 64, 295–304. [Google Scholar] [CrossRef]
- Moghaddam, M.S.; Wålinder, M.E.P.; Claesson, P.M.; Swerin, A. Wettability and swelling of acetylated and furfurylated wood analyzed by multicycle Wilhelmy plate method. Holzforschung 2016, 70, 69–77. [Google Scholar] [CrossRef]
- Lütkemeier, B.; Konnerth, J.; Militz, H. Distinctive Impact of Processing Techniques on Bonding Surfaces of Acetylated and Heat-Treated Beech Wood and Its Relation to Bonding Strength. For. Prod. J. 2018, 68, 372–382. [Google Scholar]
- Treu, A.; Bredesen, R.; Bongers, F. Enhanced bonding of acetylated wood with an MUF-based adhesive and a resorcinol-formaldehyde-based primer. Holzforschung 2020, 74, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Vick, C.B.; Larsson, P.C.; Mahlberg, R.L.; Simonson, R.; Rowell, R.M. Structural bonding of acetylated Scandinavian softwoods for exterior lumber laminates. Int. J. Adhes. Adhes. 1993, 13, 139–149. [Google Scholar] [CrossRef]
- Olaniran, S.O.; Clerc, G.; Cabane, E.; Brunner, A.J.; Rüggeberg, M. Quasi-static and fatigue performance of bonded acetylated rubberwood (Hevea brasiliensis, Müll. Arg.). Eur. J. Wood Prod. 2021, 79, 49–58. [Google Scholar] [CrossRef]
- Frihart, C.; Brandon, R.; Beecher, J.; Ibach, R. Adhesives for Achieving Durable Bonds with Acetylated Wood. Polymers 2017, 9, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandon, R.; Ibach, R.; Frihart, C. Effects of Chemically Modified Wood on Bond Durability. In Proceedings of the Wood Adhesives 2005, San Diego, CA, USA, 2–4 November 2005. [Google Scholar]
- Papadopoulos, A.N. The effect of acetylation on bending strength of finger jointed beech wood (Fagus sylvatica L.). Holz. Roh. Werkst. 2008, 66, 309–310. [Google Scholar] [CrossRef]
- Tjeerdsma, B.; Bongers, F. The making of: A traffic timber bridge of acetylated Radiata pine. In Proceedings of the Fourth European Conference on Wood Modification, Stockholm, Sweden, 27–29 April 2009; pp. 15–22. [Google Scholar]
- Jorissen, A.; Lüning, E. Wood modification in relation to bridge design in the Netherlands. In Proceedings of the 11th World Conference on Timber Engineering, Trento, Italy, 20–24 June 2010. [Google Scholar]
- Blaß, H.J.; Frese, M.; Kunkel, H.; Schädle, P. (Eds.) Brettschichtholz aus Acetylierter Radiata Kiefer, Karlsruher Berichte zum Ingenieurholzbau; KIT Scientific Publishing: Karlsruhe, Germany, 2013. [Google Scholar]
- Militz, H.; Lande, S. Challenges in wood modification technology on the way to practical applications. Wood Mater. Sci. Eng. 2009, 4, 23–29. [Google Scholar] [CrossRef]
- Mai, C. Review: Prozess der chemischen Holzmodifizierung—Stand der industriellen Entwicklung [Review: Processes of chemical wood modification—State of the industrial development]. Holztechnologie 2010, 51, 21–26. [Google Scholar]
WPG [%] | Wood Species | Thickness [mm] | Manufacturing Process | Reference | |
---|---|---|---|---|---|
Max. | Min. | ||||
14.5 | 8.2 | Maple (Acer mucrophyllum Pursh) | 0.8 | sliced | [46] |
16 | 6 | Radiata pine (P. radiata D. Don) | 2 | rotary cut | [45] |
17 | 15 | Douglas fir (Pseudotsuga menziesii) | 3 | n.a. | [56] |
18.1 | 4.1 | Scots pine (Pinus sylvestris L.) sapwood | 0.1 | micro veneer | [50] |
18.3 | 1.5 | Spruce (Picea jezoencis Carr.) | 3.5 | rotary cut | [51] |
20.0 | 13.5 | Oriental beech (Fagus orientalis Lipsky) | 2 | rotary cut | [55] |
20 | 7 | Spruce (Picea jezoencis Carr.) Larch (Larix leptolepsis Gord.) Douglas fir (Pseudotsuga menziesii Franco) | 3 | rotary cut | [52] |
20.5 | 16.6 | Sugi (Cryptomeria japonica D. Don: Japanese cedar) | 0.2 | heart-sliced (quartersawn) | [54] |
22 | 3 | Scots pine (Pinus sylvestris) European lime (Tilia vulgaris) | 0.1 | micro veneer | [57] |
22 | 20 | Birch (Betula pendula; Betula pubescens) | 1.5 | rotary cut | [64] |
22.9 | 20.9 | Radiata pine sapwood (n.a.) | 1.3 | rotary cut | [47] |
23.2 | 5.8 | Scandinavian Scots Pine (Pinus sylvestris L.) sapwood | 0.1 | micro veneer | [68] |
23.4 | 12.4 | Sugi (Cryptomeria japonica D. Don) | 3 | sliced | [65] |
24.1 | 6.5 | Spruce (Picea abies (L.) Karst) | 2 | n.a. | [58] |
24.5 | 6.9 | Sugi (Cryptomeria japonica D. Don) | 3 | sliced | [65] |
24.9 | 23.9 | Beech (Fagus sylvatica L.) | 2.3 | rotary cut | [59] |
25.1 | 9.1 | Sugi (Cryptomeria japonica D. Don) | 3 | sliced | [65] |
26.7 | 0.4 | Spruce (Picea abies (L.) Karst) | 1, 2 | n.a. | [61] |
Veneer Based Product | Adhesive | Reference |
---|---|---|
8-layered LVL | PF and PRF | [59] |
6-layered LVL | RF | [52] |
plywood | PRF (acetylated) and PF (reference) | [64] |
plywood | UF resin | [55] |
2-layered specimen | soy-protein based resin | [49] |
2-layered specimen | PF | [46] |
top layers on solid wood | PRF | [47] |
top layers on low-density particleboards | isocyanate resin | [56] |
top layers on wood plastic composites (WPC) | adhesive free approach | [45] |
pin-block for acoustic tests | RF | [66] |
Wood Species | Method | Adhesive | Shear Strength | Wood Failure | Delamination | Reference | ||
---|---|---|---|---|---|---|---|---|
Dry | Wet | Dry | Wet | |||||
Rubberwood (Hevea brasiliensis Müll. Arg.) | EN 302-1:2013 | PUR | = | ↑ | = | ↑ | × | [89] |
MUF | ↑ | ↑ | ↓ | ↓ | × | |||
PRF | = | ↑ | ↑ | = | × | |||
Radiata pine (Pinus radiata) | EN-302-2:2013 | MUF | × | × | × | × | ↓ | [87] 1 |
MUF + RF primer | × | × | × | × | ↓ | |||
Beech (Fagus sylvatica) | EN-302-2:2013 | MUF + RF primer | × | × | × | × | ↓ | |
Yellow-poplar (Liriodendron tulipifera) | ASTM Method D905, ASTM D5266-99 | RF | = | ↑ | = | = | × | [90] 2 |
EPI | = | ↓ | ↓ | ↓ | × | |||
epoxy | = | ↑ | = | ↑ | × | |||
Radiata pine and Scots pine (Pinus sylvestris) | IFT Richtlinie HO-10/1, BRL 2902, CEN/TS 13307-2 | PUR 1 | = | ↑ | = | ↑ | = | [74] 3 |
PUR 2 | = | ↑ | = | = | = | |||
PUR 3 | = | ↑ | = | ↑ | = | |||
Yellow-poplar sapwood (Liriodendron tulipifera) | ASTM D 905-03, ASTM D 5266-99 | RF | ↑ | ↑ | ↑ | = | × | [91] |
MF | = | ↑ | ↓ | ↓ | × | |||
epoxy | ↑ | ↑ | = | ↑ | × | |||
EPI | = | ↓ | ↓ | ↓ | × | |||
Yellow poplar sapwood | ASTM D 905-86 | EPI (A) | = | = | = | ↓ | × | [70] 4 |
EPI (C) | ↑ | ↓ | = | ↓ | × | |||
PUR | = | ↓ | = | ↓ | × | |||
PUR hot-melt | = | = | = | = | × | |||
PVA | ↓ | ↓ | = | = | × | |||
PVA cross-link | = | = | = | ↓ | × | |||
neoprene contact-bond | = | = | = | = | × | |||
waterborne contact-bond | = | = | = | = | × | |||
casein | ↓ | ↓ | = | = | × | |||
epoxy | = | ↓ | = | = | × | |||
MF | ↓ | ↓ | = | ↓ | × | |||
urea-formaldehyde hot set | = | ↓ | = | ↓ | × | |||
urea-formaldehyde cold set | ↓ | ↓ | ↓ | ↓ | × | |||
RF cold set | = | ↓ | ↑ | = | × | |||
PRF cold set | = | = | ↑ | ↓ | × | |||
PRF hot set | = | ↓ | = | ↓ | × | |||
PF | = | ↓ | = | ↓ | × | |||
PF acid-catalysed | = | = | = | = | × |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slabohm, M.; Mai, C.; Militz, H. Bonding Acetylated Veneer for Engineered Wood Products—A Review. Materials 2022, 15, 3665. https://doi.org/10.3390/ma15103665
Slabohm M, Mai C, Militz H. Bonding Acetylated Veneer for Engineered Wood Products—A Review. Materials. 2022; 15(10):3665. https://doi.org/10.3390/ma15103665
Chicago/Turabian StyleSlabohm, Maik, Carsten Mai, and Holger Militz. 2022. "Bonding Acetylated Veneer for Engineered Wood Products—A Review" Materials 15, no. 10: 3665. https://doi.org/10.3390/ma15103665
APA StyleSlabohm, M., Mai, C., & Militz, H. (2022). Bonding Acetylated Veneer for Engineered Wood Products—A Review. Materials, 15(10), 3665. https://doi.org/10.3390/ma15103665