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Abstract: The electrolysis of water to produce hydrogen is an effective method for solving the rapid
consumption of fossil fuel resources and the problem of global warming. The key to its success is
to design an oxygen evolution reaction (OER) electrocatalyst with efficient conversion and reliable
stability. Interface engineering is one of the most effective approaches for adjusting local electronic
configurations. Adding other metal elements is also an effective way to enrich active sites and improve
catalytic activity. Herein, high-valence iron in a heterogeneous interface of NiFe2O4/NiMoO4

composite was obtained through oxygen plasma to achieve excellent electrocatalytic activity and
stability. In particular, 270 mV of overpotential is required to reach a current density of 50 mA cm−2,
and the overpotential required to reach 500 mA cm−2 is only 309 mV. The electron transfer effect
for high-valence iron was determined by X-ray photoelectron spectroscopy (XPS). The fast and
irreversible reconstruction and the true active species in the catalytic process were identified by in
situ Raman, ex situ XPS, and ex situ transmission electron microscopy (TEM) measurements. This
work provides a feasible design guideline to modify electronic structures, promote a metal to an
active oxidation state, and thus develop an electrocatalyst with enhanced OER performance.

Keywords: hetero-interface; oxygen plasma; oxygen evolution reaction; electrocatalysis; electronic
modulation

1. Introduction

Nowadays, the dramatically increased demand for fossil energy has resulted in the
depletion of traditional energy materials and has generated concerns regarding energy
security and the environmental pollution caused by the extensive use of fossil energy [1].
Overall, water electrolysis has developed as an ideal and effective approach for producing
hydrogen, an alternative clean energy source to traditional fossil fuels [2,3]. The oxygen
evolution reaction (OER) involves multiple steps of proton coupling and a complex four-
electron transfer process [4–6]. The sluggish reaction kinetics eventually cause a high
enough overpotential to trigger the OER, which is a key factor limiting the efficiency of
water electrolysis [3,7]. To date, the most effective catalysts for the OER have been found to
be rare metal oxides, such as IrO2 and RuO2, as they significantly reduce the overpotential
required for the OER. However, the high expenditure and scarcity of precious metals restrict
their wide application for practical industrialization as efficient electrocatalysts.

Due to the abundant transition metal resources of the Earth itself, the construction of
non-noble metal OER electrocatalysts has received much attention recently [6,8–10]. This
includes transition metal compounds based on nickel, iron, or cobalt (Ni, Fe, and Co nonox-
ides [11–14]; oxides [15–18]; hydroxides [19–21]; and oxyhydroxides [22–25]), which have
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shown high conversion efficiencies towards the OER as substitutes for a precious metal
electrocatalyst. Meanwhile, growing nanostructured catalysts directly on conductive sub-
strates, such as Ni foam, has been established to decrease contact resistance and effectively
improve energy efficiency [26–28]. Among these transition metal compounds, NiMoO4 on
Ni foam has been researched as a promising electrocatalyst for its facile synthesis in large
quantities. However, its intrinsic activity still remains defective, especially for its deficient
active site (only Ni site) [29–32].

Generally, it is crucial to consider the modification of structure and electronic config-
uration in order to achieve outstanding OER performance, especially in order to attain
a higher current at a lower overpotential with long-term stability [5]. An atomic-scale
approach for constructing a reliable interface, especially a hetero-interface between differ-
ent nanomaterials, has been intensively adopted to modify the local electronic structure
of materials [33]. This approach can accelerate the reaction kinetics by combining the
structural advantages of each component, thus improving the catalytic performance of
nanocomposites [34–38]. For example, Lv et al. synthesized a core–shell structure of
NiFe-60/Co3O4 on Ni Foam with an obvious and clear hetero-interface between the Co3O4
nanowire and the NiFe-layered double hydroxide nanosheet [39]. A hetero-interface con-
tributes to the interaction between two different nanomaterials, facilitates electron transfer,
and further leads to enhanced catalytic activity for the OER. Zhang et al. demonstrated
a CoN4-based metal−organic framework (MOF) with embedded CoFeOx nanoparticles;
Co sites anchoring on the CoFeOx/MOF interface brought about an altered 3D electronic
configuration for the interfacial Co and a higher valence [40]. In addition, composites
consisting of multivariate transition metals can promote the exceptional modification of
active sites within the matrix, and thus improve reaction efficiency and durability [41].
Based on this, the addition of Fe elements has been confirmed as a proper approach to
enrich the active sites and boost highly efficient OER performance [42–44].

Herein, we report a hetero-interface made of NiFe2O4 nanoparticles (NPs) and a
NiMoO4 nanowire (denoted as NiFe2O4/NiMoO4). Briefly, NiMoO4 nanowires were pre-
pared on nickel foam through a facile hydrothermal synthesis. NiFe Prussian blue analogs
(NiFe PBA) were firstly fixed on the NiMoO4 nanowires by iron exchange. Then, oxygen
(O2) plasma converted the NiFe PBA to NiFe2O4 to form a NiFe2O4/NiMoO4 hetero-
interface. As-synthesized, the NiFe2O4/NiMoO4 exhibits excellent performance for the
OER with a low overpotential of 309 mV required to reach 500 mA cm−2 and a satisfactory
stability (a 4% increase in the overpotential at 50 mA cm−2 over 150 h). The shift in the
binding energy of metal sites increased the electronic interaction of the modulated hetero-
interface. To understand its excellent OER performance, in situ Raman measurements, ex
situ transmission electron microscopy (TEM), and ex situ X-ray photoelectron spectroscopy
(XPS) were used to confirm the fast and irreversible reconstruction and identify the true
active species in the catalytic process.

2. Results and Discussion

The schematics shown in Figure 1a illustrate the preparation of NiFe2O4 nanoparticles
integrated with NiMoO4 nanowires on nickel foam. Briefly, through a simple hydrother-
mal method [45], hydrated NiMoO4 nanowires were vertically germinated on Ni foam.
In accordance with a previous report [46], the NiFe PBA was grown on NiMoO4 nanowires
and the MoO4

2− on the surface of the nanowires was replaced with K+ and [Fe(CN)6]3+ by
ion exchange. The NiFe PBA on the NiMoO4 surface was converted to NiFe2O4 NPs under
O2 plasma treatment, and NiFe2O4/NiMoO4 was obtained. For comparison, NiMoO4
nanowires were also placed under the same O2 plasma treatment and denoted as NiMoO4
O2-Pl.
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Figure 1. (a) Schematic illustration of the synthesis of NiFe2O4/NiMoO4; (b) XRD patterns
of NiFe PBA/NiMoO4 and NiFe2O4/NiMoO4; (c) Raman spectra of NiFe PBA/NiMoO4 and
NiFe2O4/NiMoO4; and (d) Raman spectra of NiFe PBA/NiMoO4 and NiFe2O4/NiMoO4 in a region
from 250 cm−1 to 750 cm−1, respectively.

Characterization of NiMoO4. Figure S1a,b indicate that the NiMoO4 possessed an
even and well-defined nanowire morphology. Its average diameter was about 100 nm.
As the XRD patterns show in Figure S2a, the diffraction peaks of the NiMoO4 were in perfect
agreement with the NiMoO4·xH2O (JCPDF: 00-013-0128), which means the NiMoO4·xH2O
was highly crystalline. In the FT-IR spectra shown in Figure S3, the two peaks at 1628 and
3446 cm−1 correspond to the stretching vibration of hydroxyl (-OH), which can be ascribed
to the bending mode of crystal water in the NiMoO4·xH2O and the surface-adsorbed water
molecules [47].

Characterization of NiFe PBA/NiMoO4. As shown in Figure 1b, a weak diffraction
peak appears at 17.3◦, which can be attributed to the KNi[Fe(CN)6] (JCPDF: 01-089-8978).
At the same time, the diffraction peaks of the NiMoO4·xH2O still remain in the NiFe
PBA/NiMoO4. In Figure S1c,d, the surface of the NiMoO4 nanowires is covered with small-
sized NiFe PBA NPs, indicating the expected process of the iron exchange. Figure 1c reveals
peaks at 357, 828, 872, and 950 cm−1 for the NiFe PBA/NiMoO4, which can be assigned
to the Mo-O vibration, and this result is consistent with previous reports [32]. In addition,
the NiFe PBA/NiMoO4 exhibits three peaks around 2100 cm−1, which can be attributed
to -CN [48,49]. In Figure S3, for the NiFe PBA/NiMoO4, a new characteristic peak can
be observed at 2099 cm−1 in the FT-IR spectrum, which is attributed to the stretching
vibrations of -CN in the NiFe PBA NPs [50]. In Figure S5a, for the NiFe PBA/NiMoO4, the
Ni 2p spectra can be deconvoluted into four peaks and two wide satellite peaks. In the
Ni 2p3/2, the peaks at 856.2 eV and 857 eV can be ascribed to the Ni2+ and Ni3+ species,
respectively. Meanwhile, in the Ni 2p1/2, the peaks of the Ni2+ and Ni3+ species can be
fitted at 874.0 eV and 875.2 eV, respectively. In addition, two satellite peaks for Ni can be
observed at 862.8 and 880.7 eV [51]. As shown in Figure S5b, the further fitted peaks at
708.5 and 709.1 eV in the Fe 2p3/2 are ascribed to Fe2+ and Fe3+, respectively, while the
peaks observed at 721.6 and 722.2 eV in the Fe 2p1/2 are owed to the existence of Fe2+ and
Fe3+, respectively. The ratio of the Fe3+ to Fe2+ peak areas in the Fe 2p3/2 was calculated as
0.948. Furthermore, one satellite peak for Fe appears at 715.7 eV [51].

Characterization of NiFe2O4/NiMoO4. In Figure 1b, compared to the NiFe PBA/NiMoO4,
the diffraction peak initially attributed to KNi[Fe(CN)6] disappears, and a new weak diffraction



Materials 2022, 15, 3688 4 of 12

peak can be observed at 43.3◦, which is attributed to the (400) planes of the NiFe2O4 (JCPDS:
44-1485). As shown in Figure 1c, the characteristic Raman peaks attributed to the Mo-O bond
still remain, while the peak owed to -CN disappears. A broad peak at 520 cm−1 in Figure S2b
indicates the formation of NiFe-O. The same phenomenon is shown in Figure S3, as the
characteristic peak of -C≡N- disappears and an apparent peak at 1384 cm−1 can be assigned to
the C=O in CO2 and the stretching vibration of the interlayer NO3

= groups [47]. This is related
to the decomposition of PBA under O2 plasma treatment. As shown in Figure 2a, the NiMoO4
remains in the structure of the nanowire with a diameter of 100 nm, similarly to the NiMoO4 and
NiFe PBA/NiMoO4, while the NiFe2O4 nanoparticles slightly agglomerate. The TEM image of
the NiFe2O4/NiMoO4 (Figure 2b) clearly shows the NiFe2O4 NPs anchoring on the surface of
the NiMoO4 nanowire. The high-resolution transmission electron microscope (HRTEM) image
in Figure 2c indicates the high-crystalline characteristic of the NiMoO4. The HRTEM image in
Figure 2d shows the apparent hetero-interface of the NiFe2O4/NiMoO4. The lattice spacing
of 2.08 Å can be attributed to the (400) plane of the NiFe2O4 and the lattice spacing of 3.26 Å
assigned to the NiMoO4·xH2O. The elemental mapping images (Figure 2e) indicate that the Fe
element is evenly distributed on the NiMoO4 nanowires in the form of nanoparticles. Table S1
shows the chemical composition of the NiFe2O4/NiMoO4. The molecular ratio of NiFe2O4 and
NiMoO4 in the NiFe2O4/NiMoO4 is 1:17.27.
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Figure 2. (a) SEM image, (b) TEM image, and (c) HRTEM images of NiFe2O4/NiMoO4; (d) the
corresponding HRTEM images of selected areas; and (e) EDS mapping images for Fe, Ni, Mo, and
O elements of NiFe2O4/NiMoO4.

XPS was used to analyze and further explore the surface electronic interaction of the
NiFe2O4/NiMoO4. The Ni 2p spectra of NiFe2O4/NiMoO4 contain four fitted peaks with
wide satellites (Figure 3a). The fitted peaks at 856.1 and 873.7 eV in the Ni 2p3/2 and the Ni
2p1/2, respectively, can be attributed to Ni2+, while another two peaks (858.3 and 875.9 eV)
correspond to the Ni3+ species. The wide peaks observed at 862.3 and 879.9 eV are owed
to the satellites of Ni [52]. As Figure 3b shows, the fitted peaks at 710.7 and 713.3 eV can
be related to Fe2+ and Fe3+ in the Fe 2p3/2, and the same is true for another two peaks
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at 723.8 and 726.4 eV in the Fe 2p1/2 [53]. The broad peaks at 718.8 and 731.9 eV can be
attributed to the satellite peaks of Fe. In Figure S6a,b, the peaks in the Ni 2p3/2 and the
Mo 3D of the NiFe2O4/NiMoO4 exhibit slightly negative shifts of about 0.2 eV compared
with those observed from the spectra of the NiFe PBA/NiMoO4. The peaks of the Fe 2p
exhibit a distinct positive shift compared with those of the NiFe PBA/NiMoO4, and the
ratio of the Fe3+ to Fe2+ peak area in the Fe 2p3/2 (Figures S5b and 3b) increases from 0.948
in the NiFe PBA/NiMoO4 to 1.706 in the NiFe2O4/NiMoO4. The negative movement of
binding Ni and Mo energy indicates the regulation of the electronic structure in the hetero-
interface. Meanwhile, oxygen plasma leads to the oxidation of Fe, and these two factors
eventually promote an increase in the binding energy of Fe. It has been confirmed that Fe
with a high valence state promotes processes in the OER [54–56]. The fitted O 1s peaks at
530.7, 532.3, and 533.3 eV can be attributed to metal-O, C=O [57], and surface-adsorbed
oxygen, respectively.
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Figure 3. XPS: (a) Ni 2p, (b) Fe 2p, and (c) O 1s spectra of NiFe2O4/NiMoO4; (d) Ni 2p and (e) Fe 2p
spectra of NiFe2O4/NiMoO4 after OER testing for 3 h; (f) Mo 3D spectra of NiFe2O4/NiMoO4 before
OER testing and after OER testing.

Electrochemical performance. For the purpose of measuring the electrochemical
performance of the prepared samples, a three-electrode electrochemical system was used.
An aqueous solution of 1 M KOH was selected as the electrolyte solution. The polarization
curves of all samples with iR corrected are shown as Figure 4a. The peaks around 1.38 V
can be assigned to the oxidation of nickel species to a higher valence state. Furthermore, the
NiFe2O4/NiMoO4 demonstrates the lowest overpotential of 253 mV to reach 10 mA cm−2,
while the overpotential required to achieve 10 mA cm−2 for the NiFe PBA/NiMoO4,
NiMoO4 O2-Pl, NiMoO4, and Ni foam is 310, 313, 324, and 431 mV, respectively. In addition,
for the NiFe2O4/NiMoO4, an overpotential of 270 and 309 mV are required to achieve
50 mA cm−2 and 500 mA cm−2, respectively.
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Figure 4. (a) Polarization curves and (b) corresponding Tafel slope plots of as-prepared catalysts;
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NiFe2O4/NiMoO4 at 50 mA cm−2 with iR corrected.

As shown in Figure 4b, the Tafel slope of the NiFe2O4/NiMoO4 is the smallest, at
46.4 mV dec−1, compared with that of the NiFe PBA/NiMoO4 (119.2 mV dec−1), NiMoO4
O2-Pl (139.8 mV dec−1), NiMoO4 (136.8 mV dec−1), and Ni foam (230.1 mV dec−1).
The smaller Tafel slope of the NiFe2O4/NiMoO4 indicates its faster kinetics [4,6]. The high
performance of the NiFe2O4/NiMoO4 can be attributed to the oxygen-plasma-induced
formation of the hetero-interface, made up of NiFe2O4 NPs and NiMoO4 nanowire arrays
and containing iron with a higher valence. Iron with a higher valence has been confirmed
to be conducive to the OER [54–57].

Figure 4c shows the electrochemical impedance spectroscopy (EIS) of all samples, and
it can clearly be observed that the smallest charge transfer resistance (Rct) is found in the
NiFe2O4/NiMoO4. The smaller Rct relative to the others indicates a faster charge transfer
for the NiFe2O4/NiMoO4, which may relate to the hetero-interface made up of NiFe2O4
NPs and NiMoO4 and further leads to enhanced electrocatalytic performance.

The electrochemical active surface area (ECSA) by CV measurement is shown in Figure
S4. As shown in Figure 4d, the double-layer capacitance (Cdl) of the NiFe2O4/NiMoO4,
NiFe PBA/NiMoO4, NiMoO4 O2-Pl, and NiMoO4 was calculated to be 4.21, 3.09, 2.49,
and 3.67 mF cm−2. The larger value of Cdl indicates a higher electrocatalytic OER activity
of the NiFe2O4/NiMoO4, which is attributed to more exposed active sites related to the
iron with a higher valence. Long-term stability is an important index for evaluating a
catalyst. As shown in Figure 4e, the NiFe2O4/NiMoO4 displays outstanding durability (a
4% increase in the overpotential at 50 mA cm−2 over a 150 h reaction).

In situ Raman spectra. To figure out the phase change and reconstruction in the OER
process, the NiFe2O4/NiMoO4 was first activated in an alkaline solution. In Figure 5a,
with the increase in the applied potential from 1.18 V to 1.43 V, the intensity of charac-
teristic peaks for Mo-O vibration decreased, which represents the dissolution of MoO4

2−.
Meanwhile, a small but sharp characteristic peak at 525 cm−1 corresponding with the Fe-O
bond in FeOOH emerged with an applied potential of 1.23 V [58], which indicates the
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formation of FeOOH in the OER process. When the potential is applied at 1.28 V, broad
peaks can be observed around 460 cm−1 and 520 cm−1, which are related to the appearance
of α-Ni(OH)2 [59]. The peak becomes sharper when the applied potential arrives at 1.33 V.
A broad peak occurs at 475 cm−1, which can be attributed to the emergence of γ-NiOOH
from α-Ni(OH)2 [32,58], and the peak tends to become sharper with an applied potential at
1.43 V, while another characteristic peak of γ-NiOOH appears at 558 cm−1 [32,59].
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In situ Raman spectra of the NiFe2O4/NiMoO4 in the initial two cycles in CVs are
shown in Figure 5b. With multiple cycles, the intensity of the characteristic peak for
γ-NiOOH gradually stabilizes and the characteristic peaks of Mo-O vibration almost
completely disappear, which can be attributed to the irreversible reconstruction of the
NiFe2O4/NiMoO4.

For comparison, the NiFe PBA/NiMoO4 was also first activated in an alkaline solution.
In Figure S8a, with the increase in applied potential, the same phenomenon of a decrease
in the intensity of characteristic peaks for Mo-O vibration can be observed. In addition,
when a potential of 1.38 V is applied to the NiFe2O4/NiMoO4, a broad peak occurs at
475 cm−1, which can be attributed to the emergence of γ-NiOOH. The same phenomenon
occurs at an applied potential of 1.28 V for NiFe2O4/NiMoO4. This fact means that the
NiFe2O4/NiMoO4 is reconstructed faster than the NiFe PBA/NiMoO4, which leads to the
better OER performance of the NiFe2O4/NiMoO4 from another aspect. However, there are
no observable peaks attributed to FeOOH, and in Figure S8b, with the increase in applied
potential, the peaks related to -CN still exist [48,49]. This illustrates that the Fe coordinating
with the cyanide group cannot catalyze the OER as an independent active site with the
increase in applied potential, which further explains the reason that the OER performance
of the NiFe PBA/NiMoO4 is close to the OER performance of the NiMoO4.

Ex situ XPS. The Ni 2p and Fe 2p spectra of the NiFe2O4/NiMoO4 after 3 h of OER
testing are shown in Figure 3d,e, respectively. In Figure 3d, the Ni 2p can be deconvoluted
into two peaks with two satellites. The fitted peaks at 855.1 and 872.7 eV can be ascribed to
Ni3+, which is attributed to NiOOH [60]. Meanwhile, two satellites of Ni can be observed
at 860.9 and 878.9 eV, respectively. As shown in Figure 3e, the two fitted peaks occur at
712.1 and 725.2 eV with a broad satellite at 718.3 eV, which can be related to FeOOH [61,62].
It can clearly be observed that there is a sharp attenuation in the peak intensity of the Mo
3d of the NiFe2O4/NiMoO4 after 3 h of OER testing, further demonstrating the irreversible
reconstruction of the NiFe2O4/NiMoO4 with the dissolution of MoO4

2−.
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Ex situ TEM. The images of the NiFe2O4/NiMoO4 after OER testing (Figure 6a,b)
clearly show the robust surface of the nanowire and numerous defects as the result of the
dissolution of MoO4

2−. The HRTEM image in Figure 6c reveals clear lattice fringes of the
(105) plane for NiOOH (JCPDF: 00-006-0075) with a crystalline interplanar spacing of 2.09 Å.
The HRTEM image in Figure 3d shows small black particles distributed in clumps, which
may relate to the amorphous FeOOH delivered by the activation of the NiFe2O4 in OER
testing. The elemental mapping images (Figure 3e) indicate that Fe is still evenly distributed
on the NiMoO4 nanowire, and Mo dissolves in large quantities, which is consistent with
the aforementioned analytical results.
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Figure 6. (a) TEM image; (b) HRTEM image of NiFe2O4/NiMoO4 after 3 h of OER testing; (c)
the corresponding HRTEM images of the area selected by the orange frame; (d) the corresponding
HRTEM images of the area selected by the blue frame; and (e) EDS mapping images for Fe, Ni, Mo,
and O elements of NiFe2O4/NiMoO4 after OER.

3. Conclusions

In summary, a heterogeneous interface of NiFe2O4/NiMoO4 with high-valence iron
through oxygen plasma can be fabricated to achieve excellent electrocatalytic activity and
stability. To achieve a current density of 50 mA cm−2, 270 mV of overpotential is required, while
an overpotential of 309 mV is required to reach 500 mA cm−2. The NiFe2O4/NiMoO4 also
exhibits a satisfactory stability (a 4% increase in the overpotential at 50 mA cm−2 over 150 h).
O2-plasma-induced electronic interaction in the hetero-interface of NiFe2O4/NiMoO4 and iron
with a higher valence play an essential role in OER performance. The potential-dependent
phase change and the fast and irreversible reconstruction of the NiFe2O4/NiMoO4 in a catalytic
process were identified by in situ Raman, ex situ XPS, and ex situ TEM measurements. Based
on this, the true active species, NiOOH and FeOOH, were determined. This work provides a
feasible design guideline for modifying electronic structure through the construction of a hetero-
geneous interface and the activation of metal sites by O2 plasma, finally leading to enhanced
OER performance.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15103688/s1. Figure S1. SEM images (a, b) and (c, d) of
NiMoO4 and NiFe PBA/NiMoO4, respectively. Figure S2. XRD patterns of NiFe PBA/NiMoO4 and
NiFe2O4/NiMoO4. Figure S3. FT-IR spectra of NiMoO4, NiFe PBA/NiMoO4 and NiFe2O4/NiMoO4.
Figure S4. XPS spectrum of (a) NiMoO4, NiMoO4 O2-Pl, NiFe PBA/NiMoO4, NiFe2O4/NiMoO4, and
of (b) NiFe2O4/NiMoO4 before OER and after OER. Figure S5. XPS (a) Ni 2p and (b) Fe 2p spectra
of NiFe PBA/NiMoO4. Figure S6. XPS analysis of NiFe PBA/NiMoO4 and NiFe2O4/NiMoO4.
The core level spectra of (a) Ni 2p3/2 and (b) Mo 3d. Figure S7. Cyclic voltammograms in a capacitive
current region at various scan rates from 20 to 100 mV s−1. (a) NiMoO4, (b) NiMoO4 O2-Pl, (c) NiFe
PBA/NiMoO4, (d) NiFe2O4/NiMoO4. Figure S8. In situ Raman spectra of NiFe2O4/NiMoO4for
activation from 1.18 V to 1.63 V (a) in a region from 250 cm−1 to 1050 cm−1 and (b) in a region from
1500 cm−1 to 2500 cm−1. Table S1. Chemical composition of NiFe2O4/NiMoO4 based on EDS.
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