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Abstract: To realize the purpose of energy saving, materials with high weight are replaced by low-
weight materials with eligible mechanical properties in all kinds of fields. Therefore, conducting
research works on lightweight materials under specified work conditions is extremely important and
profound. To understand the relationship of aluminum alloy AA5005 among flow stress, true strain,
strain rate, and deformation temperature, hot isothermal tensile tests were conducted within the
strain rate range 0.0003–0.03 s−1 and temperature range 633–773 K. Based on the true stress-true strain
curves obtained from the experiment, a traditional constitutive regression Arrhenius-type equation
was utilized to regress flow behaviors. Meanwhile, the Arrhenius-type equation was optimized by a
sixth-order polynomial function for compensating strain. Thereafter, a back propagation artificial
neural network (BP-ANN) model based on supervised machine learning was also employed to
regress and predict flow stress in diverse deform conditions. Ultimately, by introducing statistical
analyses correlation coefficient (R2), average absolute relative error (AARE), and relative error
(δ) to the comparative study, it was found that the Arrhenius-type equation will lose accuracy in
cases of high stress. Additionally, owning higher R2, lower AARE, and more concentrative δ value
distribution, the BP-ANN model is superior in regressing and predicting than the Arrhenius-type
constitutive equation.

Keywords: AA5005 alloy; high temperature; Arrhenius-type; flow stress; low strain rate; BP-ANN;
constitutive relationship

1. Introduction

Possessing excessive weight and mechanical properties, most traditional industrial
products consume immense amounts of unnecessary energy. To cater to the worldwide
tendency of energy-saving, promise strategies were put forward (e.g., renewable energy,
machine updating, and light material application). Substituting traditional high-weight
materials like carbon steel with lightweight materials such as aluminum alloy, titanium
alloy, and magnesium alloy, light material application is regarded as one idea with excellent
feasibility. At the same time, these light materials need to guarantee satisfactory mechanical
performance. Investigation from the auto industry reveals that 8% of energy consumption
can be saved by paring down 10% of vehicle weight [1]. Hence, the mechanical properties
of light materials must be investigated concretely and credibly before application. As a light
material with good corrosion resistance [2], AA5005 alloy is widely used in conductors,
cookers, auto interior materials [3], etc., and has a great application potential. However,
because of the characteristics of medium strength and temperature and strain rate sensitivity,
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the applications of Al AA5005 are limited by its poor formability at room temperature
and medium-high speed deformation conditions [4]. Consequently, aiming at providing a
detailed flow behavior reference to the work of improving the formability of AA5005 alloy,
research on studying flow stress behaviors at high temperatures and low strain rates of this
material is vital and meaningful.

In conventional ways, regression constitutive equations were extensively used to
regress the flow stress curves to describe materials’ flow behavior. Two main kinds of
equations were divided in the process of developing constitutive relations: theoretical con-
stitutive equations based on micro deformation mechanisms and phenomenal constitutive
equations based on macro experimental data. However, due to the characteristics that are
complex to solve as too many parameters are needed, it is difficult to apply theoretical
constitutive equations to engineering. Conversely, owing to the merits of fewer parameters,
simple forms, and adequate accuracy, phenomenal constitutive equations are extensively
adopted in research and engineering. So far, many phenomenal constitutive equations
that comprehensively consider the effects of strain rate, deformation temperature, and
strain during deformation processes have been presented. Among these equations, the
Johnson-Cook equation [5], Fields-Backofen equation [6], Zerilli-Armstrong equation [7],
and Arrhenius-type equation [8,9] are the most famed. The Arrhenius-type equation was
adopted in this work due to its high accuracy in modeling aluminum alloys [10].

Numerous works were undertaken by researchers with Arrhenius-type constitutive
equations in multifarious materials and various working conditions. In most cases, the
equation accuracy will increase with the increase in the number of test sets [11,12]. Still,
a larger deviation can be seen under the condition of high stress [12,13]. Additionally,
optimization works related to the Arrhenius equation were also conducted in in-depth
research. A new idea that combines regression analysis with an iterative method was
raised by Wang et al. [14] to express a magnesium alloy flow stress behavior; after a series
of isothermal compression tests, good results were achieved. Similarly, by introducing
the concept of reduced gradient refinement to the Arrhenius equation, Bodunrin [15]
successfully reduced 30–40% AAREs of two titanium alloys. So far, the AAREs calculated
by the Arrhenius-type constitutive equation have always been in the range of 3–8%, as well
as its modification methods [11–15].

Nevertheless, material deformation is a complex process with extremely high non-
linear problems, changes, or fluctuations. During the deformation process, arbitrary
parameter change will result in increasing error, especially at a high strain rate [11,13].
In addition, the constitutive equation only takes effect on the materials without phase
region transformation in most conditions. New parameters need to be determined, and
the equation needs to be recalculated when the phase region changes. All these factors
are limitations of constitutive regression equations. Since the purposes of flow behavior
models are to deliver references to formulate reasonable forming schemes and to provide
models to conduct numerical simulation, high model accuracy is the unremitting pursuit
of all researchers. Thus, new methods need to be explored to break the limitations of
constitutive equations. Fortunately, machine learning has been increasingly adopted to
solve classification and regression in all kinds of fields. Based on imitating the way human
neurons process information, artificial neural networks (ANNs) can deal with complicated
non-linear problems. Above all, high non-linear problems caused by internal metallurgical
transformation can be avoided with this technology. One of the most used ANNs is the
BP-ANN, which was firstly proposed by Werbos P [16].

So far, many flow stress regression studies have been undertaken with ANNs and the
results’ accuracy has been well verified. Bobbili et al. [17] obtained high accuracy results
for the Johnson-Cook equation under high-speed working conditions of the armor steel.
For the compressive deformations involving creak and instability, constitutive equations
always deliver poor predictability. A comparative study was carried out, and indicated
that the ANN model can achieve high-precision outcomes without considering instability
influence [18]. Furthermore, the ANN model has better describing capability than the
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Arrhenius-type equation, which was verified under the same procedure when oscillations
happen on the curves [19]. Isothermal hot compression tests were carried out by Ji et al. [20]
and the results declare that the predicting ability of the BP-ANN model is not affected
by interconnecting metallurgic phenomena while maintaining high accuracy, which is
opposite to the Arrhenius-type model.

Although numerous works have been conducted with regression equations to describe
flow stress with all kinds of materials, AA5005 alloy has not been reported. Moreover, there
are few researches that have studied the aluminum low strain rate deformation. In the
present study, isothermal tensile tests were accomplished within a low strain rate range
of 0.0003–0.03 s−1 and a deformation temperature range of 633–773 K. Then, the strain-
compensated Arrhenius-type equation and the BP-ANN model were adopted to regress
the flow stress behavior from the perspective of performance. The detailed calculation
processes of the two models were introduced. Finally, assisted by statistical analysis
methods like R2, AARE and δ, a comparative study was conducted to determine the
predictability of both models. The developed models lay an application foundation for
process design and simulation of AA5005 alloy.

2. Materials and Methods
2.1. Experimental Procedures

The AA5005 alloy chemical composition (wt.%) is Mg 0.97, Fe 0.71, Si 0.31, Zn 0.21,
Mn 0.19, Cu 0.18, Cr 0.13, and Al balance. In the preparation stage, 27 experimental
specimens were cut down by laser cutting. The dimensions of the specimens are shown
in Figure 1. At the same time, argon and nitrogen were selected as processing gases
to prevent edge oxidation. Compared with cutting methods such as traditional cutting
and WEDM, high accuracy and fine cutting edges can be obtained by lasing cutting [21].
For the experiment, specimens were put into a resistance furnace heated to designated
temperatures and kept for 10 minutes. Then, tensile tests were conducted at different
strain rates until the specimens fractured; the strain was obtained with the help of a high-
temperature extensometer for the whole process. The temperatures (633 K, 703 K, 773 K)
in the tensile tests were above the recrystallization temperature because of the substantial
improvement of plasticity [22]. Since the softening mechanisms (like dynamic recovery
and dynamic recrystallization) that improve the processability are more fully carried out
at low strain rates [23], low strain rates of 0.0003 s−1, 0.003 s−1, 0.03 s−1 in different
orders of magnitude were adopted. Each test was repeated three times under a specified
temperature and strain rate on the model MTS-810 tensile test machine. Then, the tests in
nine different conditions were conducted. The standard deviation (S) was calculated in
different experiment conditions:

S =
1
m

m

∑
j

√
∑n

i=1(σi − σi)
2

n
, (1)

where σ is the flow stress at the specified true strain in the specified experiment condition;
σ is the average flow stress at the specified true strain in the specified experiment condition;
n is the number of specified true strain points (603 points were selected with interval 0.0004);
m is the number of repeat experiments (at 3).
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Table 1 shows the experimental parameters of nine isothermal tensile tests and their
S values with acceptable deviations. Hence, the average value of three repeat tests was
adopted. Finally, flow stress-true strain curves in the strain range 0–0.3 were obtained and
displayed in Figure 2.

Table 1. Experimental parameters of tensile tests.

Test No. Strain Rates (s−1) Temperature (K) Standard Deviation

1 0.0003 633 0.0146
2 0.003 633 0.0159
3 0.03 633 0.0173
4 0.0003 703 0.0091
5 0.003 703 0.0121
6 0.03 703 0.0148
7 0.0003 773 0.0073
8 0.003 773 0.0117
9 0.03 773 0.0153
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Figure 2. Flow stress-true strain at different strain rates in different temperatures. (a) 633 K. (b) 703 
K. (c) 773 K. 
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Figure 2. Flow stress-true strain at different strain rates in different temperatures. (a) 633 K. (b) 703 K.
(c) 773 K.



Materials 2022, 15, 3788 5 of 17

2.2. Establishment of Arrhenius-Type Constitutive Equation

The concept that the variation of flow stress σ (MPa) depends on strain rate
.
ε
(
s−1)

and temperature T (K) in the deformation process has been widely recognized. Research
shows that relational expression equations among σ,

.
ε, and T can be divided into the three

conditions below [24,25]:
(1) At low stress (ασ < 0.8):

.
ε = A1σn′ exp

(
− Q

RT

)
, (2)

(2) At high stress (ασ > 1.2):

.
ε = A2 exp(βσ) exp

(
− Q

RT

)
, (3)

(3) For whole stress range:

.
ε = A[sinh(ασ)]n exp

(
− Q

RT

)
, (4)

where Q
(

J·mol−1
)

is the activation energy; R
(

8.314 J·mol−1·K−1
)

is the gas constant; A1,

A2, A, n, n′, β, α
(
≈ β

n′

)
are temperature independent material constants.

According to the work of Zener and Hollomon [26], the plastic deformation behavior under
high temperatures was controlled by Q. Hence, the Z parameter considering the temperature
compensated strain rate with the exponential function was invented to express the relation
during plastic deformation. The relationship description between flow stress and strain rate
under a wide temperature range was realized by the Zener-Hollomon model [11–15]:

Z =
.
ε exp

(
Q
RT

)
, (5)

where Z
(
s−1) is the Zener-Hollomon parameter, a strain rate factor for the temperature

compensation.
The hyperbolic sine function is transformed by definition and combined Equation (4)

with Equation (5), the equation defining the σ ,
.
ε, and T relation can be written as follows:

σ =
1
α

ln


(

Z
A

) 1
n
+

[(
Z
A

) 2
n
+ 1

] 1
2

, (6)

To achieve the purpose of parameter acquisition by expressing the relationship be-
tween σ and

.
ε in a linear manner. The natural logarithms were taken from Equations (2)–(4),

and after being converted, the new equations were obtained as follows:

ln σ =
1
n′

ln
.
ε− 1

n′
ln B, (7)

σ =
1
β

ln
.
ε− 1

β
ln C, (8)

ln[sinh(ασ)] =
ln

.
ε

n
+

Q
nRT

− ln A
n

, (9)

Based on Equations (7) and (8), and ln σ− ln
.
ε, σ− ln

.
ε curves, ten n′ values and ten β

values were calculated by taking average slopes of curves during strain range 0.03–0.3 with
strain interval 0.03. Meanwhile, ten α values were also calculated by Equation α ≈ β/n′.



Materials 2022, 15, 3788 6 of 17

The Equation (9) was partially differentiated to obtain the relation between σ and
.
ε,

which leads to:

Q = R
{

∂ ln
.
ε

∂ ln[sinh(ασ)]

}
T

∂ ln[sinh(ασ)]

∂
(

1
T

)


.
ε

, (10)

Substituting different α values at ten strains to Equation (10). By combing with
ln[sinh(ασ)]− ln

.
ε curves and taking average slopes, ten n values at strain range 0.03–0.3

with 0.03 interval were obtained. Similarly, ten Q values were also calculated with the help
of ln[sinh(ασ)]− ln(1/T) curves.

The relationship between Z and σ can be directly established to obtain ln A values.
Substituting Equation (4) to Equation (5) and taking both sides’ natural logarithm of the
new Equation, Equation (11) was acquired after conversion:

ln Z = n ln[sinh(ασ)] + ln A, (11)

Finally, by combining Equation (11) with the plot of ln Z − ln[sinh(ασ)], ten ln A
values were obtained at ten strains during 0.03–0.3 with 0.03 strain interval. Take true
strain 0.18 as example: Figure 3 shows the ln σ− ln

.
ε (Equation (7)), σ− ln

.
ε (Equation (8)),

ln[sinh(ασ)]− ln
.
ε (Equation (10)), ln[sinh(ασ)]− ln (1/T) (Equation (10)) plots and the

average correlation coefficients (Raver) are also showed in the figure. Thus far, ten α values,
ten n values, ten Q values, and ten ln A values were obtained, which are shown in Table 2.
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(MPa)-ln (Strain rate (s−1)), (c) ln (sinh (ασ))–ln (Strain rate (s−1)), (d) ln (sinh (ασ))–1/T (K−1)
at the true strain 0.18.
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Table 2. Values of α, n, Q, lnA at strains range 0.03–0.3 with interval 0.03.

Ture Strain α n Q (J·mol−1) lnA

0.03 0.04772 4.87868 181,964.43806 24.9859
0.06 0.04619 4.81612 181,175.14546 24.92136
0.09 0.04524 4.75863 180,574.88746 24.94958
0.12 0.04504 4.72281 179,593.61103 24.79107
0.15 0.04484 4.70455 178,120.69435 24.61697
0.18 0.04448 4.70354 176,220.69435 24.32659
0.21 0.04434 4.68823 174,562.29940 24.11042
0.24 0.04404 4.68339 172,830.64202 23.82443
0.27 0.04395 4.67296 170,823.64202 23.56193
0.30 0.04393 4.67052 167,461.87983 23.01320

It is noteworthy that other than strain rate and deformation temperature, the true
strain also plays a significant part during “flow stress change”. Nevertheless, the influence
of true strain is not considered in the above equations. In former research, it has been
widely recognized that α, n, Q, ln A parameters are also influenced by true strain and can
be expressed by functions of true strain [27]. Hence, taking strain as an impact factor of
α, n, Q, and ln A the universality of the equation under different strains will be improved.
Polynomial function fitting is a practical method and has been acknowledged by researchers.
At a specified strain, the average values of α, n, Q, and ln A can be calculated, then
polynomial function curves can be adopted to describe the variations of α, n, Q, and ln A
values at different true strains. Consequently, aided by the polynomial function, the goal of
taking the strain into consideration is achieved. It is worth noticing that higher accuracy can
be obtained by a greater polynomial order. This is because the higher the polynomial order,
the higher the degree of freedom of fitting. However, it will also lead to the complexity of
the solution process [28]. In this work, a six-order polynomial function (as presented by
Equation (12)) was applied to fit α, n, Q, and ln A values, and the calculation results are
shown in Table 2:

α = B0 + B1ε + B2ε2 + B3ε3 + B4ε4 + B5ε5 + B6ε6

n = C0 + C1ε + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6

Q = D0 + D1ε + D2ε2 + D3ε3 + D4ε4 + D5ε5 + D6ε6

ln A = E0 + E1ε + E2ε2 + E3ε3 + E4ε4 + E5ε5 + E6ε6

(12)

where Bi, Ci, Di, Ei (i = 0, 1, 2, . . . , 6) denotes sixth-order polynomial coefficients.
The polynomial coefficients after fitting are shown in Table 3, and the results of fitting

curves were shown in Figure 4. The RMSEs of α, n, Q, ln A are 2.63518× 10−8, 3.7701 × 10−5,
9367.99547, 0.00306 and all R2 values of four parameters are above 0.99, which means that the
sixth order polynomial function can fit these data with enough accuracy.

Table 3. Polynomial coefficients of sixth-order polynomial function.

Polynomial Order α n Q (J·mol−1) ln A

0 0.04999 4.88046 184,672.26693 25.45296
1 −0.08123 2.193 −150,623.62814 −29.35556
2 0.01167 −103.62894 2.63224 × 106 605.05764
3 7.56052 1096.26352 −2.30957 × 107 −5582.67267
4 −60.0279 −5254.61372 8.83231 × 107 23,224.34498
5 182.34278 11,975.12441 −1.39543 × 108 −43,220.22732
6 −197.18793 −10,531.66483 5.25777 × 107 26,822.76943
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In summary, substituting Equation (12) to Equation (6), an Arrhenius-type equation
integrated into the influence of strain compensation was obtained to describe AA5005 alloy
flow behavior in the 0.03–0.3 strain range, 0.0003–0.03 s−1 strain rate range, and 633–773 K
temperature range. Equation (13) expresses the final form of the Arrhenius-type Equation:

σ = 1
α(ε)

ln

( Z′
A(ε)

) 1
n(ε)

+

[(
Z′

A(ε)

) 2
n(ε)

+ 1
] 1

2


Z′ =

.
ε exp

[
Q(ε)
RT

] (13)

where Z′ is the Zener-Hollomon parameter considering the effect of the true strain.

2.3. Modeling by BP-ANN Model

From the theory Werbos [16] put forward that applies the BP algorithm to the ANN,
Rumelhart et al. [29] explained the internal connection can be expressed by a hidden
layer that applies to input data. Next, the new machine learning methods like SVM,
LeNet, and AlexNet were proposed by Cortes C, LeCun, and Alex, respectively [30–32].
Essentially, the BP-ANN’s input–output relationship is a highly nonlinear continuous
mapping relation. Additionally, the information processing capability of the BP-ANN
origins from multiple compositions of simple nonlinear functions, and therefore it has a
strong function reproduction ability.
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The BP-ANN model is a feed-forward neural network adding to the error back propa-
gation algorithm training. This model owns the classification ability of arbitrary complex
patterns and excellent mapping ability of multi-dimensional functions [33]. Structurally,
one input layer, one output layer, and the optional number of hidden layers are included
in one ANN model. Each structure layer is composed of a certain number of neurons;
in principle, under the premise that mean square error (MSE) was taken as the objective
function, the BP algorithm calculates the minimum value of the objective function with the
help of the gradient descend updating method.

In the input layer, true strain ε, strain rate
.
ε (s−1), and temperature T (K) were set

as three input neurons. One hidden layer with five built-in neurons was adopted in the
present work. In the output layer, just the flow stress σ (MPa) as one output neuron was
set, as can be seen in Figure 5. For data training, 603 sets of data were selected from
experimental data. Among them, 70% of the whole sets (422) were chosen randomly to be
trained, and the remaining 30% of the sets (181) were divided equally to be used to validate
and test the BP-ANN model, respectively.
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Before the training work, the normalization work needs to be carried out with input
experimental values for machine-reading. A commonly used equation for normalizing the
data into the 0–1 range is presented as [34]:

e′ =
e− 0.95emin

1.05emax − 0.95emin
, (14)

where e is the experimental value; emin is the minimum value of experimental values; emax
is the maximum value of experimental values; e′ is the normalized value of e.

During the process of network operation, all data going through neurons should be
assisted with activation functions. The activation functions are used to introduce nonlinear
factors to solve the nonlinear problems [35]. Since the easily differential property of
hyperbolic and linear functions, two corresponding activation functions (sigmoid function
and purlin function) were adopted by hidden layer neurons and output layer neurons as
activation functions, respectively:

Sigmoid : f (x) = 1
1+exp(−x)

Purelin : f (x) = x
(15)
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In the process of feed-forward propagation. The propagation formulas of hidden layer
neurons and output layer neurons are as follows:

uj = f
(

n
∑

i=1
vijxi + θu

j

)
p = f

(
m
∑

j=1
wjuj + θp

) (16)

where uj is the output value of hidden layer neuron; n is the number of input layer neurons;
vij is the weight of input layer to hidden layer neuron; xi is the input value of input layer
neuron; θu

j is the bias of hidden layer neuron; p is the output value of output layer neuron;
m is the number of hidden layer neurons; wj is the weight of hidden layer neuron to output
layer neuron; θP is the bias of output layer neuron.

To measure the deviation between the input experimental value and predicted value,
the MSE was used at the end of each iteration during the back-propagation process:

EMSE =

√√√√ N

∑
i=1

(ei − pi)
2

N
, (17)

where N is the training times (20), e is the experimental value, and p is the actual neuron
output of the output layer (predicted value) after feed-forward propagation.

Matching to the Widrow-Hoff learning rule based on the gradient descent, the updated
algorithm was employed for initializing bias and weight [36]. To explain the gradient
descent update algorithm, the training error must be introduced. Thus, the training error is
the quadratic function of the input weight and bias. The gradient vector can be obtained
by taking the partial derivative of the weight and bias of the training error, respectively.
The opposite direction of the gradient vector is the direction of the gradient decreasing
the fastest, and it is easier to find the minimum value of training error in this direction.
However, the local optimum problem may happen by using the gradient descent update
algorithm. To prevent this problem and improve the model generalization ability, the
maximum iterative time was set as 40 and the number of generalization ability checking
was set as 6 [37]. In the network, the parameters vij, θu

j , wj, and θp can be optimized by
gradient descent update algorithm:

w̌ = w− u
dy
dw

, (18)

where w̌ is the optimized parameter; w is the parameter to be optimized (vij, θu
j , wj, θp); y

is the training error; u is descend rate (learning rate).
Substituting vij, θu

j , wj, θy into Equation (18) and combing the obtained equation with
Equation (15), the back-propagation gradient descent equation in the present work can be
expressed as follows:

∂J(k)
∂vij

= 2(ek − pk)wjuj
(
1− uj

)
x(k)i

∂J(k)
∂θu

j
= 2(ek − pk)wjuj

(
1− uj

)
∂J(k)
∂wj

= 2(ek − pk)uj

∂J(k)
∂θy = 2(ek − pk)

(19)

where k is the number of experimental input–output data sets for training (k ∈ [1, 422]).
Based on Equations (13)–(19), the BP-ANN model program enters the iterative cycle

until the MSE value satisfies the model requirement or the maximum training time reaches
the maximum number. The flow chart of the BP-ANN model is given in Figure 6.
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Figure 6. Flow chart of the BP-ANN model.

3. Results

After 30 iterations, BP-ANN model training stopped with MSE 0.0266 and gradient
0.742. Table 4 shows the R2 values of training data, validation data, test data, and all data
of the BP-ANN model. All R2 values were very close to 1, which indicates the predicted
values of the ANN-model had great correlation. Figure 7 shows the comparisons of the
experimental curves and predicted values by the Arrhenius-type equation and BP-ANN
model at each strain rate (0.0003 s−1, 0.003 s−1, 0.03 s−1) and temperature (633 K, 703 K,
773 K). It can be seen that the Arrhenius-type equation can predict flow stress with true
strain change in most deforming conditions, except at stain rate 0.03 s−1 and temperature
633 K. However, almost all the points predicted by the BP-ANN model are located on the
experimental curves, showing higher accuracy.

Table 4. R2 values of training data, validation data and test data of BP-ANN model.

Training Validation Test All

R2 0.99967 0.99982 0.99979 0.9997
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4. Discussion

From Figure 7, a large deviation occurs at 0.03 s−1 strain rate while flow stress is high.
This indicates that the prediction capability of the Arrhenius-type regression equation will
fail to meet the requirement when high accuracy is needed. To explain this phenomenon,
we should combine Equations (2) and (3) with α values calculated before. It was found that
all ασ values in this study were lower than 0.8, which means all tensile tests were carried
out under low stress (ασ < 0.8). Therefore, the developed Arrhenius-type model may lose
accuracy in high-stress ranges.

To comparatively investigate the predictability of both models, the statistical measure-
ment analyses R2, AARE, and relative error (δ) were adopted during this study. The R2

is used to verify the correlation between experimental values and predicted values. The
closer the R2 value is to the critical correlation coefficient (present work: 1), the higher the
correlation. However, because the bias is not considered, the R2 value is insufficient to
verify the accuracy. Nevertheless, the AARE makes up for the above shortcoming by calcu-
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lating the relative error between the predicted value and experimental value, term by term.
The smaller the AARE value, the more accurate the predicted value is. Consistently, δ is em-
ployed for observing error distribution on most occasions. With more data concentrated in
the area with small δ values, the model with better predicting performance can be obtained.
The R2, the AARE, and the δ can be calculated by the following three equations [38–40]:

R2 =
∑N

i=1
(
Ei − E

)(
Pi − P

)√
∑N

i=1
(
Ei − E

)2
∑N

i=1
(

Pi − P
)2

, (20)

AARE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100% , (21)

δ =
Ei − Pi

Ei
× 100% , (22)

where E is the experimental flow stress value; E is the average value of experimental flow
stress values; P is the predicted flow stress value; P is the average value of predicted values.

The correlation strength can be expressed by correlation plots. If a predicted value
is closer to the experimental value, the corresponding point will be closer to the perfect
match line. Figure 8a shows flow stress values predicted by the Arrhenius-type equation
are well satisfied with a linear relationship with R2 0.99573. Large deviations occur at
the high-stress stage, which is in accordance with the phenomenon we discussed before.
However, in Figure 8b, almost all data points are distributed on the perfect match line and
with R2 0.99977, which demonstrates an excellent linear relationship was achieved by the
BP-ANN model. Instead of other models having specific formula expressions, the working
mechanism of the BP-ANN model is more like a black box that adjusts the weights and
biases automatically, like neurons in the human body. The BP-ANN model, which achieves
the target accuracy through multiple iterations, fits the experimental data better than the
Arrhenius model, only through finite linear regressions.
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In order to make a comparative study of AAREs at different strains within the experi-
mental strain range, histograms were created for a visual representation, see Figure 9a. The
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AAREs between the Arrhenius-type predicted values and experimental data at all kinds
of strains are above 3%. However, the AAREs of the BP-ANN model at all strains are all
under 1.5%, which is much lower than that of the Arrhenius-type equation. By combining
the comparison of the whole strain range AAREs (Arrhenius-type equation 3.8492 and BP-
ANN model 0.682), the conclusion could be reached that the BP-ANN model always keeps
lower deviations than the Arrhenius-type equation in the whole strain range. Furthermore,
another obvious comparison can be seen from the relative error distribution histogram
of the two models (Figure 9b). A large range of relative error (−9–11%) is occupied by
the Arrhenius-type equation, and distribution is relatively scattered, which indicates the
Arrhenius-type equation’s low reliability. On the contrary, embracing a narrow error range
(−5–3%) and that 95% of errors are located in the range −1–1%, the BP-ANN model is
reliable to maintain a low accuracy.
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By calculating the AAREs of ten scatter points (see Figure 7) at a specified true strain
but in different deformation conditions (different temperatures and strain rates), the AARE
distributions were analyzed with the help of 3D histogram plots, see Figure 10. As in
Figure 10a, large errors emerge in the working conditions that cause high flow stress values.
For example, the 7.21042% AARE value can be discovered at strain rate 0.03 s−1, temperature
633 K. This phenomenon also shows consistency with Figures 7a and 8a. In general, AAREs of
the Arrhenius-type equation keep high values, except at strain rate 0.003 s−1 and temperature
703 K. At the same time, the BP-ANN model’s AAREs are much smaller than that of the
Arrhenius-type equation, and no big AARE occurs under all conditions, see Figure 10b.
Especially in the case of high stress, the accuracy of the BP-ANN model is not affected. Hence,
the prediction ability of the BP-ANN model is better than the Arrhenius-type regression
equation under most of the working conditions proposed in this paper.
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5. Conclusions

High temperature and low strain rate tensile tests were conducted to obtain the
flow stress curves of aluminum AA5005 alloy in the 0–0.3 strain range, 0.0003–0.03 s−1

strain rate range, and 603–773 K deformation temperature range. In this study, a strain-
compensated Arrhenius-type constitutive equation and BP-ANN model were adopted to
establish constitutive relation. Additionally, the calculating processes of the two models
were expounded exhaustively in this work. Following are the conclusions:

(1) By scattering predicted points of two models to compare with the experimental
flow stress-true strain curves, both models can describe the flow behavior of AA5005
alloy. However, drawbacks were discovered from the comparison plots and statistical
analyses. The results show the Arrhenius-type equation is disabled to predict the flow
behavior at high flow stress conditions. The reason for this phenomenon is that all tests
were processed in low flow stress, which is a little incompatible with the Arrhenius-type
equation considering overall flow stress.

(2) Furthermore, the correlations and accuracy of two models in different strains were
compared. Both models keep excellent correlations with the R2 values 0.99573 and 0.99977,
respectively. In terms of AARE analysis, in different strains, the performance of the BP-
ANN model is far better than the Arrhenius-type model. In different deform conditions,
the BP-ANN model also has better accuracy (except at strain rate 0.003 s−1 and temperature
703 K). Comparing the overall AAREs of the two models, the BP-ANN model (0.682%)
behaves much better than the Arrhenius-type equation (3.8492%).

(3) To make a comprehensive comparison, the relative error was also used to evaluate
the models’ accuracy. The relative errors of the BP-ANN model are distributed in a more
narrow and higher accuracy range than the Arrhenius-type equation. This means the BP-
ANN model is more accurate and reliable than the Arrhenius-type equation in describing
the flow behavior of AA5005 alloy.

The models developed in the present experiment lay a foundation for industrial
weight-losing application and numerical simulation of the alloy under high-temperature
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and low strain rate tensile conditions. High accuracy can especially be achieved by the
BP-ANN model.
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