Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Heat Treatment
2.3. Microscopic Observations
2.4. Microhardness Measurements
2.5. Tensile Strength Measurements
2.6. Electrochemical Impedance Spectroscopy
3. Results and Discussion
3.1. Microstructure
3.2. Microhardness and Elastic Modulus
3.3. Tensile Strength
3.4. EIS
4. Conclusions
- The microstructure of Ti-6Al-7Nb changed as a function of cooling media in terms of grain size and shape. Thus, the sample annealed in the oven presented a structure made up of columnar alpha, equiaxial alpha, and intergranular beta phases; the one cooled in water presented fine equiaxed α and β grains, indicating a rapid cooling process. For the sample annealed in oil, a remarkable increase was observed in the grain size of the material as a consequence of the heating in the β region and the cooling taking somewhat longer when compared with the water quenching. The mechanical tests showed that the values of elastic modulus were similar for all the studied samples, indicating that the heat treatment followed by cooling in various media did not significantly affect this parameter.
- For all the heat-treated samples, the main fracture mechanism was a mixture of ductile and brittle fractures with dimples and cleavage-like morphology, while in the non-treated sample, the ductile fracture mechanism was predominantly distinguished by the formation of dimples with different shapes and sizes.
- The polarization resistances showed very high polarization resistance in artificial saliva, and the obtained EIS spectra showed a compact passive film on the surface of the heat-treated samples. The oxide layer formed on the Ti6A17Nb specimens had the highest corrosion resistance in oil quenching (about 30% more compared with the non-treated sample).
Author Contributions
Funding
Conflicts of Interest
References
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and its Prevention -A Review. Recent Patents Corros. Sci. 2010, 2, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Kuffner, B.H.B.; Capellato, P.; Ribeiro, L.M.S.; Sachs, D.; Silva, G. Production and Characterization of a 316L Stainless Steel/β-TCP Biocomposite Using the Functionally Graded Materials (FGMs) Technique for Dental and Orthopedic Applications. Metals 2021, 11, 1923. [Google Scholar] [CrossRef]
- Gabriel, S.B.; Dille, J.; Nunes, C.A.; Soares, G.D.A. THe effect of niobium content on the hardness and elastic modulus of heat-treated ti-10mo-xnb alloys. Mater. Res. 2010, 13, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Gepreel, M.A.-H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Avinash, D.; Kumar, S.L. Investigations on surface-integrity and mechanical properties of biocompatible grade Ti-6Al-7Nb alloy. Mater. Technol. 2021, 1–9. [Google Scholar] [CrossRef]
- Manivasagam, G.; Mudali, U.K.; Asokamani, R.; Raj, B. Corrosion and Microstructural Aspects of Titanium and its Alloys as Orthopaedic Devices. Corros. Rev. 2003, 21, 125–160. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of Metallic Biomaterials: A Review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Harandi, S.E.; Raman, R.K.S. A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications. JOM 2015, 67, 1143–1153. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Paradkar, A.G.; Kamat, S.; Gogia, A.; Kashyap, B. Various stages in stress–strain curve of Ti–Al–Nb alloys undergoing SIMT. Mater. Sci. Eng. A 2007, 456, 292–299. [Google Scholar] [CrossRef]
- Gil, F.J.; Ginebra, M.-P.; Manero, J.M.; Planell, J.A. Formation of α-Widmanstätten structure: Effects of grain size and cooling rate on the Widmanstätten morphologies and on the mechanical properties in Ti6Al4V alloy. J. Alloys Compd. 2001, 329, 142–152. [Google Scholar] [CrossRef]
- Jovanović, M.; Tadić, S.; Zec, S.; Mišković, Z.; Bobic, I. The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy. Mater. Des. 2006, 27, 192–199. [Google Scholar] [CrossRef]
- Kolli, R.P.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- De Fontaine, D.; Paton, N.E.; Williams, J.C. The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Metall. 1971, 19, 1153–1162. [Google Scholar] [CrossRef]
- Aleixo, G.; Afonso, C.; Coelho, A.A.; Caram, R. Effects of Omega Phase on Elastic Modulus of Ti-Nb Alloys as a Function of Composition and Cooling Rate. Solid State Phenom. 2008, 138, 393–398. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Xu, C.; Sikan, F.; Atabay, S.; Muñiz-Lerma, J.A.; Sanchez-Mata, O.; Wang, X.; Brochu, M. Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion. Mater. Sci. Eng. A 2020, 793, 139978. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, F.; Cheng, X.; Fu, K.; Liu, J.; Wang, Y.; Liu, T.; Zhu, Z. Effect of microstructures on ballistic impact property of Ti–6Al–4V targets. Mater. Sci. Eng. A 2014, 608, 53–62. [Google Scholar] [CrossRef]
- Hutiu, G.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A.G. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography. Metals 2018, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Hein, M.; Kokalj, D.; Dias, N.F.L.; Stangier, D.; Oltmanns, H.; Pramanik, S.; Kietzmann, M.; Hoyer, K.-P.; Meißner, J.; Tillmann, W.; et al. Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications. Metals 2022, 12, 122. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of metals I: Brittle and ductile fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef] [Green Version]
- Scully, J.; Silverman, D.; Kendig, M. (Eds.) Electrochemical Impedance: Analysis and Interpretation; 100 Barr Harbor Drive, PO Box C700; ASTM International: West Conshohocken, PA, USA, 1993. [Google Scholar] [CrossRef]
- Mansfeld, F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim. Acta 1990, 35, 1533–1544. [Google Scholar] [CrossRef]
- Boukamp, B.A. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Socorro-Perdomo, P.; Florido-Suárez, N.; Voiculescu, I.; Mirza-Rosca, J. Comparative EIS Study of AlxCoCrFeNi Alloys in Ringer’s Solution for Medical Instruments. Metals 2021, 11, 928. [Google Scholar] [CrossRef]
- Perdomo, P.P.S.; Suárez, N.R.F.; Vázquez, A.V.; Rosca, J.C.M. Comparative EIS study of titanium-based materials in high corrosive environments. Int. J. Surf. Sci. Eng. 2021, 15, 152. [Google Scholar] [CrossRef]
- Ibriş, N.; Rosca, J.C.M. EIS study of Ti and its alloys in biological media. J. Electroanal. Chem. 2002, 526, 53–62. [Google Scholar] [CrossRef]
- González, J.; Mirza-Rosca, J. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J. Electroanal. Chem. 1999, 471, 109–115. [Google Scholar] [CrossRef]
Composition (wt%) | |||||||
---|---|---|---|---|---|---|---|
Al | Nb | Fe | C | O | N | Si | Ti |
6.21 | 7.06 | 0.13 | 0.082 | 0.10 | 0.031 | 0.088 | Balance |
Sample | Lo (mm) | do (mm) | So (mm2) | Fm (KN) | σmax (MPa) |
---|---|---|---|---|---|
Oil | 80 | 7 | 38.48 | 29.91 | 784.4 |
Water | 26.23 | 681.8 | |||
Oven | 35.30 | 927.1 | |||
No TT | 35.30 | 927.1 |
Sample | Ecorr (V) | Icorr (μA/cm2) | βc (V/dec) | βa (V/dec) | Rp (kΩ) |
---|---|---|---|---|---|
Oil | −350 | 0.057 | 0.051 | 0.053 | 191.6 |
Oven | −410 | 0.059 | 0.036 | 0.041 | 182.5 |
Water | −408 | 0.063 | 0.049 | 0.037 | 163.7 |
No TT | −430 | 0.075 | 0.044 | 0.041 | 147.5 |
Sample | Rsol [Ω·cm2] | Rct [Ω·cm2] | Y0·10−6 [Ω−1·cm−2·s−n] | n | χ2 |
---|---|---|---|---|---|
Oil | 33.88 ± 1.22 | 2754.22 ± 12.65 | 0.264 ± 0.032 | 0.84 ± 0.11 | 1.2 × 10−4 |
Water | 30.19 ± 0.56 | 2187.76 ± 18.34 | 0.302 ± 0.065 | 0.84 ± 0.08 | 1.1 × 10−4 |
Oven | 33.88 ± 1.03 | 2187.76 ± 11.12 | 0.133 ± 0.031 | 0.95 ± 0.05 | 2.3 × 10−4 |
No TT | 21.87 ± 0.38 | 2089.29 ± 17.62 | 0.424 ± 0.062 | 0.96 ± 0.02 | 1.5 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulka, I.; Florido-Suarez, N.R.; Mirza-Rosca, J.C.; Saceleanu, A. Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy. Materials 2022, 15, 3813. https://doi.org/10.3390/ma15113813
Hulka I, Florido-Suarez NR, Mirza-Rosca JC, Saceleanu A. Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy. Materials. 2022; 15(11):3813. https://doi.org/10.3390/ma15113813
Chicago/Turabian StyleHulka, Iosif, Nestor R. Florido-Suarez, Julia C. Mirza-Rosca, and Adriana Saceleanu. 2022. "Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy" Materials 15, no. 11: 3813. https://doi.org/10.3390/ma15113813
APA StyleHulka, I., Florido-Suarez, N. R., Mirza-Rosca, J. C., & Saceleanu, A. (2022). Mechanical Properties and Corrosion Behavior of Thermally Treated Ti-6Al-7Nb Dental Alloy. Materials, 15(11), 3813. https://doi.org/10.3390/ma15113813