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Abstract: Self-sensing concrete is a smart material known for its cost-effectiveness in structural
health-monitoring areas, which converts the external stimuli into a stress/strain sensing parameter.
Self-sensing material has excellent mechanical and electrical properties that allow it to act as a
multifunctional agent satisfying both the strength and structural health-monitoring parameters. The
main objective of this review is to understand the theories and principles behind the self-sensing
practices. Many review papers have focused on the different types of materials and practices
that rely on self-sensing technology, and only a few articles have discussed the theories involved.
Understanding the mechanism and the theories behind the conduction mechanism is necessary.
This review paper provides an overview of self-sensing concrete, including the principles such as
piezoresistivity and piezopermittivity; the tunnelling effect, percolation threshold, and electrical
circuit theories; the materials used and methods adopted; and the sensing parameters. The paper
concludes with an outline of the application of self-sensing concrete and future recommendations,
thus providing a better understanding of implementing the self-sensing technique in construction.

Keywords: self-sensing; piezoresistive; piezopermittive; electrical resistance; percolation threshold;
tunnelling effect; gauge factor

1. Introduction

Concrete is an excellent building material developed 200 years ago by the Roman
Empire. It is known for its high strength, affordability, aesthetic and durable nature. It has
applications in several forms, from simple to complex structures such as nuclear power
plants, dams, tunnels, residential buildings, roads, and pavement [1]. These building mate-
rials are exposed to heavy loads and aggressive environments, resulting in aging, cracking,
temperature variation, deterioration, sulphate attack, corrosion, etc. [2]. Therefore, the
structure should be designed to satisfy its function in a severe and aggressive environment.
In that case, the material and design are the main factors considered during the preconstruc-
tion and construction phases. In addition, at the time of serviceability, the structure has to
be periodically monitored to detect the cracks and other damaging parameters and should
be maintained accordingly; this technique is termed structural health monitoring (SHM).
SHM is a technique of examining a structure’s performance by periodically providing
information on stress, displacement and cracks as well as other information related to the
real-time condition of the structure through various sensors. SHM helps reduce the cost
of repair and maintenance throughout the life span. The technique consists of onboard
sensors for data acquisition and a central processing unit for monitoring purposes [3–5].

In the 19th century, many sensors were developed to monitor the performance of build-
ings. The strain gauge was the first sensing device introduced to monitor displacement and
stress, followed by accelerometer and extensometer sensors. Later, due to its complication
in instrumentation set up and low sensitive behaviour of conventional sensors, smart
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sensors like piezoelectric sensors, fibre optical grating, wireless sensors and shape memory
alloys were introduced [6–16]. The commonly used conventional sensors are shown in
Table 1. However, attached and embedded sensors have drawbacks such as poor durability,
short span, low sensitivity, and low compatibility [17].

Table 1. Conventional Sensors Used in Building Aspects.

Sensor Type Application Limitations

Accelerometer [6,7] Measures the motion and vibration of a structure that is
exposed to dynamic loads Low durability and non-intrinsic

Extensometer [6,7] Measures the elongation of material subjected to stress Vulnerable and less sensitivity

Strain gauge [8]
Determines stresses in the structure by responding to the
changes in dimensions due to creep, crack, temperature

change, moisture change, etc.

Low sensing, worse durability
and non-intrinsic

Piezoelectric sensors [9–11]
Measure impedance-based damage detection, guided wave
damage detection, and structural dynamics applications in

a structure

More AUD is required and
non-intrinsic

Optical fibre sensors [12,13] Measure the strain, temperature, and pressure in a structure Vulnerable and non-intrinsic
Wireless smart sensors [14] Detect, locate, and assess structural damages in a structure Complication in implementing
Vision-based displacement
measurement system [15] Used for sensing the displacements in a structure Not accurate and non-intrinsic

Shape Memory Alloy [16] Used in building materials to withstand varied thermal
conditions by gaining its original properties

More AUD is required and
non-intrinsic

Research and development have recently introduced intrinsic self-sensing concrete
to overcome the above issues by satisfying both the strength parameter and the structural
health monitoring purposes. Self-sensing is a method based on the principle of conversion
of mechanical or chemical parameters into an electrical sensing output. Many researchers
have implemented this method in several applications, such as strain and stress detect-
ing [18], traffic monitoring [19], corrosion monitoring [20], earthquake monitoring [7]
and crack detection. Figure 1 presents various applications of self-sensing techniques for
structural and health monitoring purposes.
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The past works of literature related to self-sensing technologies are graphically repre-
sented in Figure 2. This study concentrates on the electromechanical and electrochemical
mechanisms that self-sensing concrete relies on. The theories, materials, sensitivity and
influencing parameters are discussed. This review paper discusses the general applica-
tions of self-sensing concrete, the drawbacks, and the research that must be focused on in
the future.
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2. Sensing Mechanism

To monitor the real-time stress and strain in concrete structures, researchers have
developed many health-monitoring techniques, among which self-sensing is one of the
emerging ones. Self-sensing is a technique that responds to external factors such as loading
conditions, environmental variations, and temperature variations by converting them into
electrical output properties [20]. This conversion can be obtained by adding conductive
fillers to the matrix material, applying an electric field, or connecting the composite with
equivalent circuit models. Although the initial cost is high compared with traditional
sensors, the later maintenance and repair work can be neglected and is comparatively
economical. Various attributes can determine the sensing nature of the material to measure
the stress or strain, including electromechanical, electromagnetic, electrochemical, dielectric,
magnetic, optical, etc.

Among these attributes, the electromechanical and electrochemical mechanisms are
research focuses due to their fast response to external conditions [7]. This review discusses
a detailed study of the above two mechanisms.

3. Electromechanical Mechanism

Electromechanics is a principle in which the sensing nature is determined through
electrical properties applying different loading conditions. The electromechanical sensing
mechanism discussions are analysed based on three main perspectives: piezoresistivity,
piezopermittivity and piezoelectric performances. Piezoresistivityand piezopermittiv-
ity deal with self-sensing techniques, whereas piezoelectric materials is not suitable for
self-sensing techniques. In this review, a detailed review of piezoresistivity and piezoper-
mittivity are discussed. Table 2 presents different techniques involved in electromechani-
cal principles.
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Table 2. Properties adopted for different methods of electromechanical principle.

Condition Piezoresistivity Piezopermittivity Piezoelectricity

Mechanism Change in electrical resistivity on
the application of external stimuli

Change in capacitance on
subjected to external stimuli

Change in Electric field, on
subjected to external stimuli

Materials

Conductive filler (steel fibre, nano
nickel particles, carbon fibre, carbon
nanotube, functionalized graphene
groups) and non-conductive matrix

(cement-based composites,
alkali-based materials, etc.)

Composite (fibre reinforced
polymer matrix, concrete),

dielectric film and electrodes
(copper, aluminium or steel)

Conductive filler (steel fibre, nano
nickel particles, carbon fibre, carbon
nanotube, functionalized graphene
groups) and non-conductive matrix

(cement-based composites,
alkali-based materials, etc.)

Dominant factor Current and Voltage Frequency Voltage

3.1. Piezoresistive Performance

Piezoresistivity is defined as the resistivity of material that changes with strain, i.e., the
conversion of external load to electrical resistivity, or, in other words, change in resistivity
on the application of an external loading condition [20,21]. It is the most widely used
method in self-sensing concrete as the sensing parameters provide more accurate results
than other self-sensing techniques; adding conducting filler to the matrix improves both
the strength and sensing parameters. The change in resistivity is due to the change in
dimensions when the material is subjected to strain or stress [22,23]. Figure 3a represents
the instrumental set up for the piezoresistive method, and Figure 3b shows piezoresistive
behaviour of the specimen when subjected to compression load.
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Electrical behaviour in the composite is due to the presence of conductive fillers. For
intrinsic self-sensing material, the electrically conducting fillers such as fibres and particles
are fused with cement or polymer-based matrix (cement mortar, cement paste or concrete,
polymer). The electrical conductivity of the commonly used functional fillers is shown in
Table 3 [24–26].

3.1.1. Materials

• Conductive material:

The conductive functional fillers are responsible for piezoresistive behaviour, capa-
ble of sensing stress, strain, deflection, cracks, humidity, and temperature by forming a
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conductive path along with the matrix material [27]. The functional fillers include fibrous
and powdered materials (micro and nano) such as steel fibres, nickel powder, graphite
nano-derivatives like graphene powder, reduced graphene oxide and carbon micro- and
nano-functional fillers such as carbon black, carbon fibres (short and continuous), carbon
nanotubes and carbon nanofibers [28–31]. The hybrid fillers, such as graphene-coated car-
bon fibres and nickel-coated fibre materials, can also provide excellent sensing properties
to the composite material.

• Non-conductive material:

The matrix element refers to an insulating or semi-insulating material with electrical
resistivity ranging from 10 to 102 Ω·cm. The role of matrix material is to bind the fillers
together to form a bulk composite. For structural self-monitoring purposes, the generalized
matrix material is cement-based composites, including concrete, mortar and cement paste.
Other material composites like geopolymer and alkali-activated composites are currently
under research.

The sensing ability of the matrix material is poor, but it directly depends on mechanical
behaviour such as stress and strain, which depends on electrical conductivity [32,33].

Table 3. Types of fillers used in self-sensing and their properties.

Conductive Material Geometric Shape Tensile Strength
(GPa)

Elastic Modulus
(GPa) Aspect Ratio Density

(kg/m3)

Steel fibres (straight) [25] Fibre (Micro filler) 500 200 97.5 7850
Steel fibres (twisted) [26] Fibre (Micro filler) 2428 200 100 7900
Carbon nano fibre [27,28] Particle (Micro filler) 4900 230 100–500 1000

CNT [29] Particle (Nano filler) 11 300–1000 ~1000 50–150
Nano graphene platelets [30,31] Particle (Nano filler) 5000 1000–2000 50–300 1800

Carbon black [31,34] Particle (Nano filler) 2000–2400 - 120 1800–2100

3.1.2. Sensing Theories

Piezoresistivity depends on ionic and electron transfer mechanisms. Ionic transfer
relates to the ionic motion in the composite material at saturation time: When the pores
in the structure fill with water or another moist substance, the ionic species (Na+, Ca+,
K+, OH−, SO4

2−) dissolve from their solid state [35], which decreases resistivity. The
electron transfer occurs in a dry state where the transfer of ions is difficult. Therefore,
the conductivity occurs by tunnelling current. The tunnelling current is assumed to be
developed by two theories, the percolation theory and the field emission effect [31,36–43].

• Percolation theory

The percolation theory is used to analyse the physical properties of a heterogeneous
composite and can be explained by the formation of conductive paths [44]. The concept
lies in the fact that when the conductive particles come in contact with each other or the
volume of the fraction of fillers approaches a critical value (i.e., percolation threshold ϕc), a
continuous network is extended throughout the system [44–48].

The conduction process undergoes three conditions depending on the volume of the
fraction of functional fillers. Figure 4 shows a graph divided into three zones with the
volume of fractional fillers (ϕ) along the X-axis and electrical resistivity along theY-axis.
Zone A indicates the insulating region, where the ionic conduction takes place due to the
hydration process in the cement matrix and the filler concentration (ϕ) is less than the
critical filler content (ϕc), that is, ϕ < ϕc. In Zone B, on the application of external stimuli,
the composite material changes from an insulating medium to a conducting medium. The
filler materials come in contact with each other, resulting in a percolation process (ϕ = ϕc).
Guessero etal. studied percolation theory in which the conductivity takes place due to
the electron transfer between the fillers, which results in a tunnelling effect, as shown in
Figure 5. Zone C indicates the conducting region, where the filler concentration exceeds
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the critical filler concentration (ϕ > ϕc). The percolation threshold (ϕc) depends on many
factors such as filler concentration, filler size and filler orientation, as shown in Table 3. The
electrical conductivity is determined by the power law [47],

σ = σo

(
ϕ f − ϕc

)s
(1)

where σ is the electrical conductivity of the composite, σo is the electrical conductivity of
the filler, ϕ f is the volume fraction of the filler, ϕc is the percolation threshold and s is
the conductivity exponent. The percolation threshold indicates the point of a material’s
transformation from an insulator to a conductor.
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Parameters Influencing Percolation Threshold

Filler Geometry:

The shape of the filler material can influence the percolation value. Particles with a high
surface area and high aspect ratio can form a conductive network below the percolation
threshold. The fractional volumes of filler for different filler geometries based on the
interparticle distance between the two conductive fillers are provided in Table 4 [45].
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Table 4. Influencing parameters of the percolation threshold.

Parameter Formula Description

Filler geometry
Vf−Sphere

=
(πD3)

6(D+DIP)
3

D refers to particle size; DIP is interparticle distance of the filler [45].Vf−Planar
=

(2πtD2)
(D+DIP)

3

Vf−3D =
(27πtD2)

4(D+DIP)
3

Filler and matrix
properties

fc ∼ 0.16
(

R1
R2
∼ 1

)
f = volume fraction of minor phase, fc = percolation threshold,

fc < 0.16
(

R1
R2
� 1

) R1 = particle size of the major filler, R2 = particle size of the minor filler.
Spherical filler in a homogeneous composite with random orientation [49]

fc � 0.16 Ellipsoidal filler in an isotropic composite with random orientation [49]

Filler concentration

δ =
δ f (ϕ−ϕc)

γ

(1−ϕc)

(i) (ϕ < ϕc)
(ii) ( ϕ ∼ ϕc)
(iii) (ϕ > ϕc)

δ = electrical conductivity of the material, δf = conductivity of the filler
material, ϕ = filler concentration, ϕc = percolation threshold, γ = universal
critical exponential [44].
(i) Insulation Zone
(ii) Percolation Zone
(iii) Conducting Zone

Filler and matrix properties:

The properties of the filler and the matrix condition play an important role in the
formation of the conducting network. The properties near the percolation zone can be
given by the following formula:

Properties α| f − fc|

where f is the volume fraction of the minor phase and fc refers to the percolation threshold.
For a homogeneous composite with randomly distributed fillers, fc is approximately 0.16,
which is called a Sher-Zallen invariant [49,50].

The filler material plays an important role in the formation of the network. The
percolation threshold changes for different shapes of filler and depends on the homogeneity
of the composite member. Based on the nature of the composite and the shape of the filler
material, the percolation threshold can be determined as given in Table 4, in which R1
represents the particle size of the composite material and R2 represents the particle size of
the conductive filler material [49].

Filler Concentration:

The concentration of filler in the composite plays a crucial role in forming the network
and percolation threshold value. The conductivity of the sensing material decreases when
the filler concentration is less than the critical filler concentration; the transformation of
phase from insulating to conducting medium occurs when the filler concentration becomes
equal to the critical filler concentration. The conductivity of the sensing material increases
with an increase in filler concentration, but when it exceeds the critical filler value, a
cluster of networks is formed nearby thus making the material unstable at the time of
measurement [50].

The percolation threshold varies for different fibre materials concerning the cor-
responding matrix; Table 5 shows the percolation thresholds for different fibres with
their percentages.
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Table 5. Percolation thresholds for different filler materials with respect to their matrix.

Filler Matrix % of Fibres Percolation Threshold (%) References

Carbon black Cementitious material 0.2–0.5 7.22–11.39 [49]
Expanded graphite High Density Polyethylene 0.1 4.46 [50]

Graphite Epoxy 0.5 1.13 [51]
Graphite Poly(styrene-methyl methacrylate) 0.5, 1 0.878 [52]

Expanded graphite Polymethylmethacrylate 1 0.529 [52]
Graphite nanoplatelets Polypropylene - 0.67 [53]
Graphite nanoplatelets Epoxy 0.2, 0.4, 0.6 0.5 [54]
Graphite nanoplatelets Polymer composite 0.5 0.52 [55]

Carbon fibres polymer matrix 1, 1.5 0.9 [56]
MWCNT Cementitious material 0.5, 1.15 1.00 [56]
MWCNT Cementitious material 1 1.15 [56]
MWCNT Cementitious material 0.3–0.6 0.35–0.7 [56]

The percolation theory assumes that the piezoresistive behaviour, that is, the change
in resistivity near ϕc, is due to the conductivity of the conductive fillers that are in contact
with each other [51,52]. The theory is not applicable to discontinuous conductive particles.

• Field emission effect:

Field emission theory gives a better explanation for the non-contacted filler particles.
The theory states that a potential barrier forms between the non-contacted conductive
filler material that develops conductivity when the conductive particles overlap or the gap
between the particles ranges in nanometre distances [57]. This conductivity phenomenon
is due to the tunnelling effect. Simmons derived an equation for the tunnelling effect [58]:

J =

[
3(2mϕ)

1
2

2S

]( e
h

)2
V (2)

where J is the current density, ϕ and S are the gap barrier and gap width, m is the electron
mass, e refers to the charge of a single unit and h is the Planck constant. However, the
tunnelling effect due to the field emission effect has limited significance to the tunnelling
effect that occurs due to contact conductivity; it does, however, significantly enhance
the piezoresistive properties. This is due to the particle gap, which is too large for field
emission theory, in which the conductivity becomes difficult. The filler gap can be adjusted
by increasing the filler concentration [59,60].

3.1.3. Sensing Techniques and Measuring Parameters

• Sensing technique

Sensing in concrete materials takes place using either two- or four-probe electrode
configuration methods, as shown in Figure 6. Even though the two-probe method, the
simplest and most commonly used approach in research, works to determine the material’s
resistance, the four-probe method gives a better result by eliminating the contact resistance
between the electrodes and the composite material [61,62]. In addition to the measurement
of resistance, the electrode material, which acts as a bridge between the cement composite
and the measuring elements, plays a critical role. The electrode should have low electrical
resistance and stable electrical conductivity. Metals like copper, stainless steel, silver and
aluminium are used as electrodes in the form of a metal plate with or without a hole, metal
foil, mesh, a bar and copper wire wrapped with conductive paints such as silver, copper
and carbon black [61–65].
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To measure the electrical behaviour of the composite, two types of current modes are
used: direct current (DC) and alternating current (AC). The direct current test is said to be
the simplest method, but the current does not travel long distances, and it can lead to the
movement of ions, resulting in electrical polarization in the composite. Due to the electrical
polarization, it is difficult to measure the electrical resistance; therefore, to overcome this
problem, DC voltage is applied over the composite before the time of loading so that the
polarization is complete at the time of measurement. Another approach to overcoming
this problem is using alternating current (AC), where the polarization still occurs, but
it can be altered by increasing the frequency range and lowering the amplitude of the
AC voltage [66–69]. Table 6 shows the electrical behaviour for different matrix and filler
materials through different methods. Measuring piezoresistivity is complicated due to
the presence of an electrode as a medium; for this reason, implementing this method in
practical structural applications is complicated.

Table 6. Resistivity of materials according to contact mode.

Matrix Fibre (%) Method Electrode Type Current
Type

Resistivity
(Ω·cm) × 103 References

Alkali activated
blast furnace slag

Carbon
fibre (0.58) Four-probe method Silver paint wrapped

with copper wire DC 9.956 [61]

E.C.C. Carbon fibre (1) Surface electrodes An electrode made
up of copper plate AC 7.5 [62]

ECC CNT (0.5) Surface electrodes An electrode made
up of copper plate AC 84.5 [62]

E.C.C. Carbon
black (0.01) Surface electrodes An electrode made

up of copper plate AC 97.34 [62]

UHPC Steel fibre (2) Two-probe method - AC 420 [68]

Concrete MWCNTs (0.05) Four-probe method An electrode made
up of copper plate DC 181 [68]

• Measuring parameters:

The performance of piezoresistivity can be determined using a cube or prism under
different loading conditions in anelastic regime, a plastic deformation region and a failure
condition. The electrical nature of the material plays a dominant role in measuring the
sensing parameters. The electrical resistance is determined using Ohm’s law based on two
different conditions. Under the loading condition, the voltage (V) and current (I) are mea-
sured from the ammeter, from which the resistance of the material is determined [68–70].
The Table 7 shows the resistance formula for different circuit system.
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Table 7. The resistances for the different types of circuit current.

Circuit Type Ohm’s Law Description

Direct current circuit V = IR V refers to the voltage (V), I is the intensity of the current (A) and R is
the electrical resistance (Ω) [68].

Alternating current circuit Z = I
R

Z is the impedance (including resistance and reactants), which refers to
the total opposition of the current flow [70].

The sensing behaviour can be determined by sensitivity parameters such as a fractional
change in electrical resistivity or a force sensitivity coefficient, stress sensitivity coefficient
or strain sensitivity coefficient (also called a gauge factor). The sensitivity properties for
different filler materials are listed in Table 8 [71–79].

Table 8. The conditions adopted for determining sensitivity.

Condition F.C.R. Gauge Factor Sensitivity Criterion

δρ
ρ �

δl
l

δR
R =

δρ
ρ

( δR
R )
δl
l

=

(
δρ
ρ

)
ρl
l

In case 1, the gauge factor is dictated by the change in resistivity
(δρ/ρ) and has a magnitude that depends on the piezoresistivity of

the material, and it is not limited.
δρ
ρ ~ δl

l
δR
R =

(
δl
l

)
(2 + 2µ) δR

R = (2 + 2µ)
In case 2, the maximum value of µ is 0.5, so the maximum value

that the G.F. can obtain is 2, which is low.
δρ
ρ �

δl
l

δR
R =

(
δl
l

)
(1 + 2µ) δR

R = (1 + 2µ) In case 3, the maximum G.F. that can be obtained is 3, which is low.

Based on the above three conditions, case 2 and case 3 are limited due to low G.F. values; thus, case 1 is assumed
to be suitable for obtaining high sensitivity.

The resistivity offered against the electrical conductivity (ρ) and the difference in
resistivity (∆ρ) can be determined using the following equations [70,71]:

ρ = R ·
(

A
l

)
(3)

where ρ refers to the electrical resistivity (Ω·cm), A is an area at the cross-section of the
specimen (cm2), l refers to the distance between the consecutive electrodes (cm) and R
refers to the resistance of the material. From Equation (3), the fractional change in resistivity
can be obtained as

δR
R

=
δρ

ρ
+

(
δl
l

)
(1 + 2µ) (4)

where δR/R = the fractional change in resistance, δρ/ρ = the change in resistivity, δl/l =
longitudinal strain and µ = Poisson’s ratio. The value of fractional resistivity varies based
on the loading conditions, and it is adopted for quantitatively evaluating the self-sensing
capacity of a composite. The gauge factor of the sensing material is stated as a fractional
change in resistance to strain (per unit); this parameter is used to quantitatively evaluate
the feasibility of a composite as a sensor, and it is given by

GF =

(
δR
R

)
δl
l

(5)

Based on Equation (3), both changes in resistivity and change in strain can result in
a change in resistance, so three conditions are adopted for determining the sensitivity, as
shown in Table 8 [32].

Table 9 shows the sensitivity parameters for different fibre proportions on different
cementitious composites. As the loading condition and volume of fibre proportion increase,
the sensing parameter varies. The higher the loading rate, the greater the FCR and the lower
the resistivity [80]. The gauge factor increases with the increase in loading rate and fibre
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proportion, and a higher gauge factor provides higher sensitivity. The table displays that
carbon nanotube and carbon fibre show greater sensitivity in the cementitious composite.

Table 9. Sensing parameters for different fibre proportions.

Type of Filler Type of Matrix Percentage of Filler
Material (%)

Sensitivity Properties
References

F.C.R. Gauge Factor Resistivity (Ohms·cm)

Steel Fiber

Cementitious
matrix

0.5 - 87.26 102.86

[81–83]

1 - 155.99 21.43
1.5 - 164.24 17.13
2 - 156.45 11.39

Concrete
20 0.194 1.78 -
40 0.13 4.68 -
60 0.122 0.77 -

Cement
mortar

Lengthy twisted (1.5) 138.09 55.54
Lengthy smooth (1.5) - 99.85 109.06
Lengthy hooked (1.5) - 88.5 175.03
Medium twisted (1.5) - 139.68 113.58
Medium smooth (1.5) - 99.7 352.11

Short smooth (1.5) - 52.9 628.97

Carbon
Nanotube

Cement paste 0.2 0.02 - -

[84–86]

0.3 0.03 - -

Cement paste
0.6 - 1 1
0.7 - 50 50
1.2 - 2 2

Concrete
0.25 20 - -
0.5 25 - -

Carbon Fiber

Concrete
0.5 12.5 - -

[87,88]

1 11 -
Cement paste 0.5 405.3

Cement paste
0.1 13
0.5 3
1 2

Concrete
0.5 0.37
2 1.01
3 1.32

C.F., C.N.T. Cement paste 0.1, 0.5 160.3 25 [88]
S.F., C.N.T Concrete 2, 0.5 0.236 67.8 [89]

S.F, CB Concrete 20, 1 (kg/m3) 0.323 1.08 - [90]
S.F, CB, CF concrete 60, 1, 2 (kg/m3) 0.169 1.55 [90]

3.2. Piezopermittivity

The relative electrical permittivity describes the dielectric behaviour of a material. It
involves capacitance-based measurement. The capacitance in a composite is due to the
polarization resulting from the movement of charge carriers when the material is subjected
to an electric field. When the electric field is applied, the ions in the medium are repelled,
which causes a dipolar effect, resulting in polarization. The effect of strain due to the
application of loading conditions on permittivity is referred to as piezopermittivity. This
type of technology is suitable for both new and existing structures. Permittivity is one of
the main factors governing the sensing behaviour of the composite material [41,91,92].

The piezopermittivity technique is more advantageous than piezoresistivity because
the electrodes need not be in intimate contact with the matrix composite and a conductive
filler is not necessarily required, making the measuring technique easier and more eco-
nomical. Many research works have been focused on piezoresistivity, but relatively little
research has been reported on piezopermittivity.

The addition of conductive fillers to a matrix material results in an increase in permit-
tivity due to the polarization effect. High permittivity is attractive for E.M.I. shielding, and
low values are adopted for electromagnetic transparency. Polarization occurs in both con-
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ductive and non-conductive materials, and the mechanism is different in the two mediums.
In a conductive medium, polarization occurs due to the interaction between the charged
carrier particles. In non-conductive materials, the heterogeneous nature of the material
results in polarization [36,93–98].

3.2.1. Materials

In capacitance-based sensing materials, functional fillers are not required for determin-
ing the sensing characteristics. The materials with high permittivity are used as capacitors
in piezopermittivity measurement. Matrix material or non-conductive material such as
cement or ceramic has high permittivity with relatively low electrical conductivity.

Cement is a dielectric medium; ionic conduction takes place in the presence of moisture,
and with the addition of conductive filler, electrical conduction takes place [94,95]. With the
addition of nanofiller to the matrix material, the relative permittivity decreases as it occupies
the filler space by limiting the polarization effect. With the addition of carbon fibres or
microparticles to the matrix, the relative permittivity increases [95–99]. The permittivity
and resistivity values for different filler materials are provided in Table 10 [95–100].

Table 10. Permittivity and resistivity values for different materials.

Conducting Type Material Permittivity
(F/m)

Conducting CFRP 1.6 × 103

Conducting Copper 2.4 × 103

Conducting Carbon fibre 4.0 × 103

Non-Conducting Cement paste 28
Non-Conducting Mortar 13.2
Non-Conducting Concrete 11.9

3.2.2. Sensing Theory

• Sensing method:

Permittivity is determined by measuring the capacitance of the composite material.
The experimental method consists of a specimen sandwiched by a dielectric film and the
electrode. The L.C.R. meter is not suitable for measuring the capacitance of a low resistive
material; therefore, an electrically insulated sheet (dielectric film) is positioned between
the electrode and specimen. The commonly used electrodes are copper wire or copper
rods. The electrodes are bonded to the upper and lower surfaces of the specimen using
double-sided adhesive tape. This adhesive tape acts as a dielectric film [101–106]. The
specimen setup is shown in Figure 7.
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The tests need to be performed for a specimen with square areas, which are line up on
the same plane in the same direction [99]. The electrodes should be of the same length and
width as that specimen. Pressure is applied to the specimen in a perpendicular plane. The
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capacitance is then measured using an L.C.R. meter, with an electric field applied over the
thickness of the specimen.

• Measurement technique:

The technique involved in measuring electrical permittivity is somewhat more com-
plicated than measuring electrical resistivity because of the introduction of an interfacial
capacitance at each electrode. In the case of sandwiched electrodes, the capacitance is
perpendicular to the plane of the cement composite, and in the case of coplanar electrodes,
the capacitance is in a plane with cement composite. The equations for the capacitors in
series and in parallel are given below [104]:

1
Cm

=
1
C
+

2
Ci

(6)

Cm = C + Co (7)

where Cm is the measured capacitance, Co is the capacitance at A = 0, C is the volumetric
capacitance of a cement composite and Ci or Cc is the interfacial capacitance. The volumetric
capacitance is given by

C =
ξokA

l
(8)

where ξo is the permittivity of free space (8.85× 10−12 F/m), l is the inter-electrode distance,
A is the area of the specimen in the plane perpendicular to the direction of capacitance
measurement and k is the relative permittivity of the specimen [103,105]. Therefore (6) and
(7) become

1
Cm

=
l

ξokA
+

2
Ci

(9)

Cm = (ξokA)l + CCo. (10)

Ci is replaced by Co as the interfacial capacitances are parallel to each other. Figure 8
represents a graphical plot between 1/C and l where the slope ( ξok

l ) can be determined.
The intercept on the vertical axis at l = 0 equals 2/Cc.
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The parallel plate capacitor is easier to implement on a structure than the series method.
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• Sensitivity measurement:

The sensitivity measurement for capacitance is similar to the piezoresistivity measure-
ment, and the fractional change in capacitance is derived from (8).

Since C = ξokA
l ,

∆C
C

=
∆k
k

+
∆A
A
− ∆l

l
=

∆k
k
− ∆l

l
(1 + 2µ) (11)

where µ is the Poisson ratio, ∆C
C is the fractional change in capacitance, ∆k is the change

in relative permittivity and ∆l and ∆A represent the change in length and the change in
area. From the above equation, both the change in k and the change in l contribute to the
change in C [90]. Table 11 shows the conditions under which the capacitance changes. The
negative sign implies compressive strain, and the positive sign indicates tensile strain. In
condition 1, if ∆k

k is negative and ∆l
l is positive or vice versa, then the fractional change

in capacitance is said to be negative, indicating a compressive strain. If both values are
positive, the positive value indicates a tensile strain.

Table 11. Conditions adopted for determining sensitivity nature.

Condition Sensing Effectiveness

∆k
k �

∆l
l

∆C
C
∆l
l
=

∆k
k
∆l
l

∆k
k ~ ∆l

l
∆C
C
∆l
l
= −2µ

∆k
k �

∆l
l

∆C
C
∆l
l
= −(1 + 2µ)

Conditions 2 and 3 are limited due to the negligible value of ∆k
k , mainly due to the

dimensional changes. This results in low sensing effectiveness. Condition 1 is preferred for
high sensitivity [90].

3.3. Influencing Parameters

Loading condition:

The sensitivity parameter varies for different loading conditions. Figure 9 shows the
graphical representation of load vs fractional change in resistance (F.C.R.). Three loading
conditions were conducted in past literature: compression, tension and flexural.
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In the case of compressive load, the graph is divided into three zones, as represented
in Figure 9. Zone A represents the elastic regime; a conductive path is formed due to the
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increase in the tunnelling effect, in which on the removal of the load, the F.C.R. becomes 0.
Zone B is formed after the elastic regime, where the micro-cracks start to originate inside
the composite and where the conductive networks are reconstructed and form a balance
stage. As loading continues, the cracks are propagated, and the conductive network breaks
down, resulting in an increase in resistivity.

In the case of tension, the resistivity behaviour contrasts with the behaviour under
compressive load, where the resistivity varies. On application of tensile loading conditions,
the filler material separates and loses contact with itself, resulting in the breakdown of the
network. Electrical resistivity increases with the increase of tensile stress, with a decrease
in the tunnelling effect.

In the case of flexural behaviour, the resistivity behaviour follows the pattern of both
compression and tension. On application of bending, the top region of the specimen
undergoes compressive behaviour, and the bottom phase undergoes tensile behaviour, as
shown in Figure 9.

Curing age:

The curing period is one of the important parameters that affect conductivity. On
increasing the curing age, the hydration rate increases, which increases the hydration
product, making the concrete member dense. The hydration product gets trapped in the
pores, thus, limiting the formation of the conductive network [107].

Therefore, the electrical resistivity increases with longer curing. Figure 10 presents the
differing resistivities of different materials at different curing times [108].
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Figure 10. Curing effects for different fibres at different curing ages.

Dispersion of filler material:

The dispersion of conductive filler in the binder material plays an important role
in the formation of a conductive network. If the filler material is not dispersed properly
in the matrix medium, the matrix fails to hold the filler and results in low electrical and
mechanical properties. The factors that influence the conductive fillers are the morphology
and geometrical shape of the filler material, the dispersion medium, the surface features of
filler and the dispersion method [109].

Two types of dispersion methods are adopted, physical, which includes ultrasonica-
tion, ball milling and shear milling [110–112], and chemical, like covalent and non-covalent
fictionalization and plasma methods [113,114].
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Other influencing factors:

In addition to the above influencing parameters, other factors such as temperature,
water-cement ratio and freeze-and-thaw effects also have considerable effects on the sensing
performance, and further research is needed on the above-mentioned topics.

4. Electrochemical Principle

An electrochemical reaction can be performed by placing two conducting materials
(electrodes) into the cement composite (electrolyte) and connecting them electrically. The
flow of current takes place through two reactions: electrons in the form of electrodes and
ion carriers in the electrolyte. By measuring this current flow, microstructure, hydration,
and several properties of the cement-based materials can be studied. AC impedance
spectroscopy is one of the emerging techniques used based on the electrochemical principle
to detect the behaviour of the composite member [104].

4.1. Alternate Current-Impedance Spectroscopy

AC impedance spectroscopy is based on the electrochemical principle in which on
applying the voltage to a composite material through a proper mode of a channel, the
mineral and chemical reactions in the composite start to respond to the applied parameter,
resulting in the determination of the behaviour of the composite such as its microstructural
characterization and structural performance [115–118]. This technique provides promising
information on pore structure study, the hydration rate of cement-based materials, corrosion
and permeability studies.

The Nyquist plot is a graphical chart representing the real and imaginary terms of
impedance parameters that gives accurate information regarding the cement-based com-
posite materials. Figure 11 presents a Nyquist plot that contains different circles and lines
that represent the different frequency ranges [119,120]. The frequency arc denotes the bulk
material effects and the polarization effect of the electrode and specimen, respectively [104].

Figure 11. Nyquist curve.

The large diametric arc is treated as the low-frequency line. As the frequency range
reduces to 10−6 Hz, a complete low-frequency arc is obtained, and a high-frequency arc is
obtained by varying the frequency ranges and the geometry of the samples [119,120].

In order to obtain an accurate measurement, an equivalent circuit model is used.
Appropriate equivalent circuit models can give information on microstructural charac-
terization and structural health [121–127]. Figure 12 shows the experimental setup for
AC impedance analysis, where the impedance is connected to the specimen through a
circuit system.
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4.2. Equivalent Circuit Model

Cement composite consists of a solid-liquid gel that comprises different chemical and
mineral materials and has different electrical properties. On applying an electrical voltage,
a complex electrochemical system is formed, and it is determined through either a parallel
or series connection.

Many researchers have proposed several models for determining the behaviour of the
cement composite. The circuit model consists of a resistor, capacitor and inductor as main
parameters and a constant phase angle (CPE) that is treated as a distributing parameter
in order to avoid the complications that are caused due to the rough solid–electrode
interface [128–130]. Different electrical models have been established by researchers in
order to determine the microstructural behaviour of the composite and the hydration rate
of the material, analyse the effect of conductive filler in the medium, chloride migration, etc.
The models represented in Figures 13–16 show different electrical circuit models proposed
by the researchers. This method provides an accurate result.
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5. Applications

In practical health-monitoring applications, self-sensing materials are used in several
structural features including beams, columns, bridges, etc. The following are the methods
adopted for the implementation of self-sensing technology in structural applications [131–134]:

• In the bulk form, the structure is developed entirely using self-sensing materials,
which both satisfies the structural health monitoring parameter and also strengthens
the structure. It is easy to construct but economically expensive.

• Coated type—the non-conductive material is coated with a conductive or self-sensing
medium. It provides both strength and sensitivity to the composite.

• Sandwiched type—involves covering the composite on the top and bottom surfaces
using the conductive medium.

• Bonded type—The self-sensing sensors are attached over the surface of the composite.
• Embedded type—performed by inserting a self-sensing sensor inside the concrete

composite. The sensors are typically as small as or slightly larger than the size of the
conventional coarse aggregates.

In the transportation infrastructure, self-sensing techniques are implemented in pave-
ments, roads, bridges, railway tracks, etc. The sensors collect information regarding vehicle
speeds and flow rates, traffic density, moving weights, etc. [135–137].

6. Discussion

This paper provides an overview of the principles involved in the self-sensing tech-
nique. The researchers used different approaches to apply the self-sensing techniques, and
the following conclusions are obtained from the study.

• Electromechanical principle—the piezoresistive and piezopermittivity techniques
were the focus. The filler material plays a major role in the conductivity and the
piezoresistivity. The filler should not be less or more than the percolating value. The
conducting mechanism depends on the tunnelling theory, where the electron transfer
occurs when the filler particle gets overlapped. The four-probe method is more
suitable for measuring the sensitivity parameters, but there are some complications in
measuring due to the instrumental setup, whereas in the piezopermittivity method,
the filler material is unnecessary for the conducting mechanism. The electrodes are
replaced by a dielectric medium, the measuring technique becomes easier and the
method becomes more economical due to the absence of conducting fillers. However,
this technique fails to give an accurate sensing result.
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• Electrochemical principle-based method—focused on AC impedance spectroscopy
techniques. Various electrical circuit models were established to determine the pore
structure, fibre orientation, corrosion monitoring and chloride migration. The recently
developed method gives more accurate results for the sensing parameters.

Even though the electromechanical-based sensing techniques have several applica-
tions, the conductive filler material used for sensing is somewhat uneconomical in practical
applications, and the results are not accurate. AC impedance spectroscopy provides better
results and is also more economical than the above method.

7. Scope for Future Work

More research has to be focused on the AC impedance spectroscopy technique in
practice. A suitable testing device has to be developed for easy implementation in practi-
cal applications.
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