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Abstract: Aluminum alloy tubes are widely used in various industries because of their excellent
performance. Up to now, when the tube is bent, the elastoplastic deformation evolution mechanism
of the cross-section has not been clear, and no direct analytical proof has been found. In this paper,
based on the bilinear material model assumption, a new mechanical model of tube plane bending
deformation is constructed. The analytical model can describe in detail the evolution mechanism of
elastic–plastic deformation on the cross-section of the tube after bending deformation, the position of
the elastic–plastic boundary, the position of the radius of the strain neutral layer, and the relationship
between the bending moment over the section and the bending radius. According to this model, the
deformation law of the tube cross-section during bending is elucidated. The results are as follows:
(1) the deformation evolution of the cross-section of the bending deformed tube calculated by the
analytical model is in good agreement with the finite element model (FEM) of pure bending. (2) By
comparing the results of the analytical model with FEM results, and the processing test of the self-
designed four-axis free bending forming tube bender, the bending moments are in good agreement.
(3) Compared with the bending moments calculated by several other analytical models of tube
bending, this model has a relatively small deviation value.

Keywords: free bending forming; section deformation mechanism; stress superposition; aluminum
alloy tube; mechanical model

1. Introduction

In aviation, aerospace, ship building, automobile production, and other industrial
systems, a large number of circular tubes are often used to transmit fuel, hydraulic control
medium, air pressure control medium, etc., to achieve the long-distance transmission of
working medium [1]. In the existing literature, a large amount of research can be found on
the theoretical analysis of tube bending deformation. Al-Qureshi and Russo [2,3] presented
a theoretical analysis of the elastic–plastic bending of the thin-walled tube, and by establish-
ing approximate equations, a quantitative method for predicting the springback behavior
and residual stress distributions was provided. At the same time, Tang [4] developed
practical formulae to explain the elastic–plastic deformation behavior of thin-walled tubes,
such as stresses, wall thickness change, shrinking rate at the tube section, deviation of
neutral axis, and bending moment. Lu Shiqiang et al. [5] also revised this analytical model
and, based on plane strain assumption and exponent hardening law, investigated the plastic
deformation in tube bending. Some similar theoretical formulae were developed to explain
the phenomena in tube bending and were validated by the springback experiment. Meghar-
bel et al. [6] performed a theoretical analysis on the elastic–plastic bending of square and
circular pipes using the constitutive equation of the power exponent reinforced material
and provided an analytical method in the form of an analytical equation to predict the
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moment forming a tube section with a specific radius of curvature. Using the plate bending
theory, Daxin et al. [7] deduced the approximate calculation formula of the radius of the
strain neutral layer and the thinning amount of the outer tube wall thickness and further
revealed the deformation mechanism of tube bending. However, because the influence of
deformation perpendicular to the bending plane direction was ignored, and the material
performance parameters were not considered, the calculated value was too large and thus
needs further correction. Using the neutral layer offset formula established by Daxin, Zhan
et al. established an analytical model of pipe bending springback [8]. Zhu et al. [9] devel-
oped a theoretical analysis model based on this model that can calculate the springback
angle of rectangular H96 tubes. Cheng et al. recently improved the analytical model to
allow the mechanical analysis of thin-walled tubes with mandrel support or welds [10,11].
Meanwhile, Li et al. established a hybrid analytical–numerical model based on axial force
balance to analyze the neutral layer shifting (NLS) phenomenon in the process of tube bend-
ing and thus proposed an innovative process to improve bend formability by analyzing the
equilibrium conditions of bending moment and force in the process of tube bending [12].
They also constructed another method for calculating the radius of the neutral layer [13],
and this method was used by Fang Jun et al. [14] to analyze the thinning behavior of the
0Cr21Ni6Mn9N tube. Moreover, to improve the tube geometry, mechanical properties, and
formability, an integrated machining strategy was proposed by Ma et al., which integrates
cold bending operations and heat treatment, and the expected dimensional accuracy and
mechanical properties were achieved [15]. However, none of these analytical models took
into account the elastoplastic evolution of the tube cross-section when the tube was bent.

On the other hand, in terms of tube forming technology, three-dimensional free
bending forming technology has become another rapidly developing metal tube form-
ing technology, compared with conventional tube bending techniques, such as roll-draw
bending, and roll-pull bending. It can realize the continuous multi-bending and one-time
forming of the tube without changing the die assembly, and the forming effect is quite
good [16,17]. The basic principle of a torque superposed spatial bending method was pro-
posed by Brosius et al. [18] and Staupendahl et al. [19,20]. Based on this principle and the
theory of elastic–plastic mechanics, Hudovernik et al. [21] established an analytical model
for the spatial bending of square tubes and verified the validity of the analytical model by
comparing the forming process parameters obtained by numerical simulation, experiment,
and analytical calculation. However, this model assumed that the strain on the section
was balanced, so the error was relatively large. Staupendahl [22] improved this model
and proposed an analytical model in which the strain decreases linearly along the edge
to the central layer. Similarly, in the aspect of the free bending forming of circular tubes,
Zhang et al. [23,24] and Wu et al. [25], among others, established a mechanical analytical
model for the combined deformation of circular tubes in space by bending and twisting
and studied the elastic–plastic deformation mechanism of the cross-section. Bending and
torsional deformation of composite pipes may become a new research focus in the future.
Jonnalagadda et al. [26] developed a straightforward analytical model of a composite tube
subjected to bending and torsion. This analytical model, however, ignored the stress–strain
variation in the thickness direction of the tube. In summary, the analytical models proposed
in the preceding papers were only roughly proven by varying the tube bending radius
values in the numerical model and sample test, which were not validated by numerical
simulation of the elastic–plastic deformation evolution of the tube section.

In this paper, based on the Mises yield criterion, the law of full quantity, and the
principle of stress superposition, the mechanical model of the plane bending deformation
of the tube was established by using an aluminum alloy bilinear material model. This
analytical model was used to analyze the elastic–plastic evolution of the tube cross-section,
the position of the elastic–plastic boundary, and the radius of the strain neutral layer.
Furthermore, the relationship between the bending moment of the section and the bending
radius was also obtained. Moreover, to verify the accuracy and validity of the analytical
model and further reveal the mechanical mechanism of bending forming of the tube, the
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mechanical model was compared with the simplified finite element model (SFEM) of pure
bending forming of the tube, the FEM of free bending forming of the tube, and the physical
test of free bending forming of the tube carried out by the self-designed four-axis free
bending forming equipment; the results of the bending moment were in good agreement.

2. Mechanical Model of Free Bending of Tube
2.1. Sectional Geometry and Pure Bending Deformation of the Tube

Figure 1 shows the schematic diagram of the cross-sectional shape and pure bending
forming of the tube. The center of the tube on the cross-section is taken as the origin O of the
coordinate system, and the plane where the cross-section is located and the pure bending
plane are taken as the coordinate plane to establish the Cartesian coordinate system Oxyz.
In this coordinate system, the longitudinal section Oyz of the tube is the pure bending
plane; the x-axis is the bending rotation axis of the cross-section; and the z-axis passes
through the geometric centroid of the tube of all cross-sections and is perpendicular to the
cross-section. The outer radius and inner radius of the tube are d and c, respectively.

Figure 1. Schematic diagram of cross-sectional shape and pure bending forming of the tube.

2.2. Principle of Three-Axis Free Bending Forming Technology and Bending Moment Calculation

As shown in Figure 2, a typical three-axis free bending forming system is mainly
composed of five parts: the tube, bending die, ball bowl, fixed die, and feeding mechanism.
During the free bending process of the tube, the feeding mechanism continuously pushes
the tube through the fixed die and the bending die along the z-axis under the driving action
of the z-direction drive motor. At the same time, the ball bowl rotates around the center
point O2 of the fixed die outlet under the driving action of the x- and y-axis motors; the
bending die is embedded at the outlet of the ball bowl to achieve dynamic contact with
the tube and rotate around the fixed die. Here, the radius of revolution of the bending
die is r. The bending die, the ball bowl, and the fixed die all have spherical contacts. The
rotation and offset of the bending die promote the bending of the tube. R is the bending
radius of the geometric center layer after the free bending deformation of the tube, and O1
is the bending arc center of the tube. During the forming process, the tube is subjected to
the combined action of the force Ft from the bending die perpendicular to the axis of the
tube and the force FL along the z-direction from the feeding mechanism, and the combined
action of Ft and FL causes the tube to bend. Hence, according to the geometric relationship,
the y-axis direction component FU of Ft can be expressed as

FU = FTcos
(

θ

2

)
(1)
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Figure 2. Schematic diagram of free bending forming device.

It is assumed that the hole center point C of the bending die is the force application
point for the tube to bear the bending moment, so the bending moment M is calculated as
Equation (2):

M = Ft r
(

cos
(

θ

2

))2
+ FL r sin

(
θ

2

)
(2)

2.3. Basic Assumptions

In order to facilitate the study of section deformation of the tube and simplify the
derivation process of formula, the following basic assumptions are made according to the
basic principle of elastic–plastic bending theory.

(1) Unidirectional stress–strain assumption: it is assumed that each fiber of the profile
tube wall is in the stress–strain state of unidirectional tension or compression during
the free bending deformation of the tube.

(2) Plane strain assumption: it is assumed that the cross-section of the tube is always
plane before and after free bending deformation, without warping deformation, and
the position of the geometric center point of the section does not change.

(3) Bilinear material model assumption: it is assumed that the tube is a homogeneous ma-
terial, a continuous elastic–plastic deformation body, and the stress–strain relationship
under unidirectional loading is

σ =

{
εE
σ Y + (ε− εY)D

ε ≤ εY
ε > εY

(3)

where σy = εYE.

2.4. Analytical Model of Mechanics

After free bending deformation of the tube, the strain neutral layer moves to the inner
layer, and the strain neutral layer does not coincide with the geometric center layer. In the
bending plane, it is assumed that the coordinate system at the strain neutral layer is O1uvw
(illustrated in Figure 1), and the coordinate system at the geometric center layer remains
unchanged and is still Oxyz.

Under a certain bending radius R, when different external bending moments M are
applied externally, the distribution of stress and strain on the cross-section of the tube is
different after bending deformation. Therefore, according to the different conditions of
the stress–strain distribution state of the section, the stress–strain distribution state of the
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section can be divided into the fully elastic deformation stage (shown in Figure 3) and the
elastic–plastic deformation stage (depicted in Figure 4).

Figure 3. Fully elastic deformation stage.

Figure 4. Elastic–plastic deformation stage.

In the coordinate system O1uw where the strain neutral layer is located as shown in
Figure 4, the tangential engineering strain at a point P on the section can be expressed as

ε =
s
ρε

for R− ρε − d ≤ s ≤ R− ρε + d (4)

There is a coordinate conversion relationship between the coordinate system O1uw
where the strain neutral layer is located and the coordinate system Oyz where the geometric
center layer is located: u = s + (R− ρε). Zhai Ruixue et al. also used this formula to
conduct the springback analysis of rectangular profiles in tension bending [27]. Therefore,
the expression of the tangential strain of the section in the coordinate system Oyz where
the geometric center layer is located can be found as

ε =
(R− ρε)− u

ρε
for− d ≤ u ≤ +d (5)

According to the assumption of the bilinear material model, the expression of the total
tangential stress on the section shown in Figure 4 under the elastic–plastic deformation
state is calculated by

σ =


−σY + (ε + εY)D
εE
σY + (ε− εY)D

c1 ≤ u ≤ d
c0 ≤ u ≤ c1
−d ≤ u ≤ c0

(6)
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The following relationship can be obtained by substituting Equation (5) into Equation (6):

σ =


−σY +

(
(R−ρε)−u

ρε
+ εY

)
D c1 ≤ u ≤ d

(R−ρε)−u
ρε

E c0 ≤ u ≤ c1

σY +
(
(R−ρε)−u

ρε
− εY

)
D −d ≤ u ≤ c0

(7)

In the elastic–plastic deformation stage, the cross-section of the tube can be divided into
three deformation regions, namely the outer tensile plastic deformation area, the middle
elastic deformation area, and the inner compressive plastic deformation area. Figure 5a
shows that the plastic deformation starts from the outer radius of the section along the
y-direction and gradually expands to the inner radius; during this deformation process,
the elastic–plastic boundary line lies between c and d. As the bending degree of the tube
increases, the boundary line of the elastic–plastic region expands further inward and moves
between the strain-neutral layer and the inner radius c, as shown in Figure 5b. Following
this, the elastoplastic deformation evolution of the cross-section shown in Figure 5 is
analytically modeled, and the position of the elastoplastic boundary line, the position
of the strain-neutral layer, and the applied bending moment on the cross-section in the
corresponding deformation state are obtained.

Figure 5. Evolution of the elastic-plastic deformation region of the cross-section. (a) The elastoplastic
boundary lies between inner radius c and outer radius d along the y-direction; (b) The elastoplastic
boundary lies between geometric center layer and inner radius c along the y-direction.

As depicted in Figure 5, on any cross-section, the areas of the compressive plastic
deformation zone, the elastic deformation zone, and the tensile plastic deformation zone
are A1, A2 and A3, respectively, and the static moments of these to the x-axis are S1, S2 and
S3, respectively. Similarly, it is assumed that the moments of inertia about the x-axis are I1,
I2 and I3, respectively.

Case (a): −d ≤ c0 ≤ −c and c ≤ c1 ≤ d

As illustrated in Figure 5a, the area of the tensile plastic deformation zone A3 in the
tube can be obtained by Equation (8).

A3 =
∫ c0

−d
2
√

d2 − y2dy = 2d2
(

1
2

t +
1
4

sin2t
)∣∣∣∣t2

t1
(8)

where t1 = sin−1−d
d , t2 = sin−1 c0

d .
Similarly, the area of the compressive plastic deformation zone A1 can be calculated

by Equation (9).

A1 =
∫ d

c1

2
√

d2 − y2dy = 2d2
(

1
2

t +
1
4

sin2t
)∣∣∣∣t4

t3
(9)
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where t3 = sin−1 c1
d , t4 = sin−1 d

d .
Then, the area of the elastic deformation zone A2 of the tube cross-section can

be obtained:

A2 = π
(

d2 − c2
)
− 2d2

((
1
2

t +
1
4

sin2t
)∣∣∣∣t2

t1
+

(
1
2

t +
1
4

sin2t
)∣∣∣∣t4

t3

)
(10)

where t1 = sin−1−d
d , t2 = sin−1 c0

d , t3 = sin−1 c1
d , t4 = sin−1 d

d .
It can be seen from Figure 5a that the static moment in the tensile plastic deformation

zone can be obtained by Equation (11):

S3 =
∫ c0

−d
2y
√

d2 − y2dy =
−2d3

3
(cost)3

∣∣∣∣t2
t1

(11)

where t1 = sin−1−d
d , t2 = sin−1 c0

d .
Similarly, the static moment in the compressive plastic deformation zone can be

obtained by Equation (12):

S1 =
∫ d

c1

2y
√

d2 − y2dy =
−2d3

3
(cost)3

∣∣∣∣t4
t3

(12)

where t3 = sin−1 c1
d , t4 = sin−1 d

d .
The static moment in the elastic deformation zone can be expressed as S2 = −(S1 + S3),

and thus Equation (13) can be obtained by incorporating Equations (11) and (12) as follows:

S2 =
2d3

3
(cost)3

∣∣∣∣t2
t1

+
2d3

3
(cost)3

∣∣∣∣t4
t3

(13)

where t1 = sin−1−d
d , t2 = sin−1 c0

d , t3 = sin−1 c1
d , t4 = sin−1 d

d .
Further, as depicted in Figure 5a, the moment of inertia in the tensile plastic deforma-

tion zone can be obtained by Equation (14):

I3 =
∫ c0

−d
2y2
√

d2 − y2dy =
d4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t2

t1
(14)

where t1 = sin−1−d
d , t2 = sin−1 c0

d .
Similarly, the moment of inertia in the compressive plastic deformation zone can be

obtained by Equation (15):

I1 =
∫ d

c1

2y2
√

d2 − y2dy =
d4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t4

t3
(15)

where t3 = sin−1 c1
d , t4 = sin−1 d

d .
Likewise, according to the mechanics of materials, the moment of inertia of the circular

tube section shown in Figure 1 to the central axis can be expressed as

Ix =
π

4

(
d4 − c4

)
(16)

the moment of inertia in the elastic deformation zone is I2 = Ix − I1 − I3; that is,

I2 = π
4
(
d4 − c4)− d4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣t2

t1
− d4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣t4

t3
(17)

where t1 = sin−1−d
d , t2 = sin−1 c0

d , t3 = sin−1 c1
d , t4 = sin−1 d

d .

Case (b): −c < c0 ≤ 0 and 0 < c1 ≤ c
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As illustrated in Figure 5b, the area of the tensile plastic deformation zone can be
obtained by Equation (18):

A3 =
∫ −c
−d 2

√
d2 − y2dy +

∫ c0
−c 2

(√
d2 − y2 −

√
c2 − y2

)
dy

= 2d2
((

1
2 t + 1

4 sin2t
)∣∣∣∣ t2

t1
+
(

1
2 t + 1

4 sin2t
)∣∣∣∣ t4

t3

)
− 2c2

(
1
2 t + 1

4 sin2t
)∣∣∣∣ t6

t5

(18)

where t1 = sin−1−d
d , t2 = sin−1−c

d , t3 = sin−1−c
d , t4 = sin−1 c0

d , t5 = sin−1−c
c , t6 = sin−1 c0

c .
Similarly, As described in Figure 5b, the area of the compressive plastic deformation

zone can be calculated by Equation (19):

A1 =
∫ c

c1
2
(√

d2 − y2 −
√

c2 − y2
)

dy +
∫ d

c 2
√

d2 − y2dy

= 2d2
((

1
2 t + 1

4 sin2t
)∣∣∣∣ t′2

t′1
+
(

1
2 t + 1

4 sin2t
)∣∣∣∣ t′4

t′3

)
− 2c2

(
1
2 t + 1

4 sin2t
)∣∣∣∣ t′6

t′5

(19)

where t′1 = sin−1 c
d , t2′ = sin−1 d

d , t3′ = sin−1 c1
d , t4′ = sin−1 c

d , t5′ = sin−1 c1
c , t6′ = sin−1 c

c .
Then the area of the elastic deformation zone A2, as shown in Figure 5b, can be

expressed as Equation (20):

A2 = π
(
d2 − c2)

+2c2
((

1
2 t + 1

4 sin2t
)∣∣∣∣t6

t5
+
(

1
2 t + 1

4 sin2t
)∣∣∣∣t′6t′5

)
−2d2

[(
1
2 t + 1

4 sin2t
)∣∣∣∣t2

t1
+
(

1
2 t + 1

4 sin2t
)∣∣∣∣t4

t3

]
−2d2

[(
1
2 t + 1

4 sin2t
)∣∣∣∣t′2t′1 +

(
1
2 t + 1

4 sin2t
)∣∣∣∣t′4t′3

] (20)

where t1 = sin−1−d
d , t2 = sin−1−c

d , t3 = sin−1−c
d , t4 = sin−1 c0

d , t5 = sin−1−c
c , t6 = sin−1 c0

c ,
t′1 = sin−1 c

d , t′2 = sin−1 d
d , t′3 = sin−1 c1

d , t′4 = sin−1 c
d , t′5 = sin−1 c1

c , t′6 = sin−1 c
c .

Moreover, the static moment in the tensile plastic deformation zone can be obtained
by Equation (21):

S3 =
∫ −c
−d 2y

√
d2 − y2dy +

∫ c0
−c 2y

(√
d2 − y2 −

√
c2 − y2

)
dy

= 2c3

3 (cost)3
∣∣∣∣t6
t5
− 2d3

3 (cost)3
∣∣∣∣t2
t1
− 2d3

3 (cost)3
∣∣∣∣t4
t3

(21)

where t1 = sin−1−d
d , t2 = sin−1−c

d , t3 = sin−1−c
d , t4 = sin−1 c0

d , t5 = sin−1−c
c , t6 = sin−1 c0

c .
Similarly, the static moment in the compressive plastic deformation zone can be

obtained by Equation (22):

S1 =
∫ c

c1
2y
(√

d2 − y2 −
√

c2 − y2
)

dy +
∫ d

c 2y
√

d2 − y2dy

= 2c3

3 (cost)3
∣∣∣∣t′6t′5 − 2d3

3 (cost)3
∣∣∣∣t′4t′3 − 2d3

3 (cost)3
∣∣∣∣t′2t′1

(22)

where t′1 = sin−1 c
d , t′2 = sin−1 d

d , t′3 = sin−1 c1
d , t′4 = sin−1 c

d , t′5 = sin−1 c1
c , t′6 = sin−1 c

c .
The static moment in the elastic deformation zone can be expressed as S2 = −(S1 + S3).

Thus, Equation (23) can be obtained by incorporating Equations (21) and (22), as follows:

S2 =
2d3

3

(
(cost)3

∣∣∣∣t2
t1

+ (cost)3
∣∣∣∣t′2t′1
)
+

2d3

3

(
(cost)3

∣∣∣∣t4
t3

+ (cost)3
∣∣∣∣t′4t′3
)
−2c3

3

(
(cost)3

∣∣∣∣t6
t5

+ (cost)3
∣∣∣∣t′6t′5
)

(23)

where t1 = sin−1−d
d , t2 = sin−1−c

d , t3 = sin−1−c
d , t4 = sin−1 c0

d , t5 = sin−1−c
c , t6 = sin−1 c0

c ,
t′1 = sin−1 c

d , t′2 = sin−1 d
d , t′3 = sin−1 c1

d , t′4 = sin−1 c
d , t′5 = sin−1 c1

c , t′6 = sin−1 c
c .
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As illustrated in Figure 5b, in order to facilitate the integration, the inertia moment
of the elastic deformation zone needs to be divided into two parts to calculate separately,
namely the inertia moment I′2 of the lower half of the x-axis and the inertia moment I ′′2 of the
upper half of the x-axis. I ′2 and I ′′2 can be obtained by Equations (24) and (25), respectively.

I′2 =
∫ 0

c0
2y2
(√

d2 − y2 −
√

c2 − y2
)

dy

= d4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣ t2

t1
− c4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣ t4

t3

(24)

where t1 = sin−1 c0
d , t2 = 0, t3 = sin−1 c0

c , t4 = 0.

I ′′2 =
∫ c1

0 2y2
(√

d2 − y2 −
√

c2 − y2
)

dy

= d4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣ t2

t1
− c4

2

(
1
2 t− 1

8 sin4t
)∣∣∣∣ t4

t3

(25)

where t1 = 0, t2 = sin−1 c1
d , t3 = 0, t4 = sin−1 c1

c .
Furthermore, using material mechanics, the moment of inertia I3 in the tensile plastic

deformation zone can be obtained by Equation (26):

I3 =
π

8

(
d4 − c4

)
− d4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t2

t1
+

c4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t4

t3
(26)

where t1 = sin−1 c0
d , t2 = 0, t3 = sin−1 c0

c , t4 = 0.
Likewise, the moment of inertia in the compressive plastic deformation zone can be

acquired by Equation (27):

I1 =
π

8

(
d4 − c4

)
− d4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t2

t1
+

c4

2

(
1
2

t− 1
8

sin4t
)∣∣∣∣t4

t3
(27)

where t1 = 0, t2 = sin−1 c1
d , t3 = 0, t4 = sin−1 c1

c .

2.4.1. Calculating Bending Moment

After free bending deformation, there is a tangential force equilibrium relationship, as
shown in Equation (28), and a moment equilibrium relationship, as shown in Equation (29),
between the internal stress and external load of the section along the z-axis.

FT =
∫
A1

σdA +
∫
A2

σdA +
∫
A3

σdA (28)

M =
∫
A

σudA =
∫
A1

σudA +
∫
A2

σudA +
∫
A3

σudA (29)

Substituting Equation (7) into Equation (28) can obtain the expression of tangential
force FT .

FT =
∫
A1

−σY +
(
(R−ρε)−u

ρε
+ εY

)
DdA +

∫
A2

(R−ρε)−u
ρε

EdA

+
∫
A3

σY +
(
(R−ρε)−u

ρε
− εY

)
DdA

(30)
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In addition, substituting Equation (7) into Equation (29) can obtain the expression of
total bending moment M.

M =
∫
A1

[
−σY +

(
(R−ρε)−u

ρε
+ εY

)
D
]
udA +

∫
A2

(R−ρε)−u
ρε

EudA

+
∫
A3

[
σY +

(
(R−ρε)−u

ρε
− εY

)
D
]
udA

(31)

2.4.2. Calculating the Position of the Elastic–Plastic Boundary of the Cross-Section and the
Radius of the Strain Neutral Layer

Bringing u = c0, u = c1 and εY into Equation (5), we can calculate the position of the
elastic–plastic boundary line of the cross-section of the tube after bending.

c0 = (R− ρε)− ρεεY (32)

c1 = (R− ρε) + ρεεY (33)

So far, the analytical expressions for all the variables on the cross-section of the tube
during free bending deformation have been given. Moreover, when the free bending radius
R is given, by solving Equations (30), (32), and (33) simultaneously, the variable values c0,
c1, and ρε in two elastic–plastic states can be solved. Finally, by taking the variables c0, c1,
and ρε into Equation (31), the moment M on the cross-section required for deformation
can be calculated. Next, in order to verify the accuracy and validity of the above analytical
model, these analytical formulas were implemented in MATLAB software and compared
with the SFEM, FEM, and actual machining results of tube samples to prove that this
analytical model is feasible to analyze the bending deformation of tube.

3. Finite Element Simulation Model
3.1. Finite Element Model of Free Bending Forming

The finite element model (FEM) used to verify the correctness and feasibility of the an-
alytical model for the deformation evolution of the cross-section of the tube during the free
bending forming process is shown in Figure 6, which was meshed in ABAQUS/Explicit.
The finite element mesh size of the tube was 0.8 mm, and the mesh size of each other
component was divided according to the size of the tube mesh. This model mainly focuses
on the motion behavior and contact conditions between the tube and the bending die. Thus,
the bending die and tube were set as deformable solid parts, meshed with 8-node hexahe-
dral linear elements (C3D8R). On the other hand, to reduce the amount of computation,
other components such as the ball bowl and the fixed die were set as discrete rigid bodies
meshed with 4-node rigid elements (R3D4), and the clamping equipment was set as a shell
of 4-node curved shell elements (S4R). The contact form was universal contact, and the
friction coefficient was 0.1 and obeyed the Coulomb friction formula. The mass scaling
factor was 10,000 times. The Von Mises criterion was adopted.

Figure 6. FEM of a 3D spatial free bending system.
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3.2. Mechanical Parameters Used in FEM

The materials of the tube and bending die were aluminum alloy and die steel, respec-
tively. Tensile tests complying with GB/T228-2002 were conducted on an AG-Xplns100KN
universal testing machine, and the tensile strain rate was 0.5 mm/s. Corresponding me-
chanical properties and strain–stress curves are shown in Table 1 and Figure 7.

Table 1. Mechanical properties used in FEM.

Material Young’s Modulus E/GPa Yield Stress σS/MPa Ultimate Strength σB/MPa Poisson’s Ratio µ Density ρ/
(
Kg/m3

)
LHC D/MPa

AI6061 69.85 149.2 228.2 0.3 2.71 × 103 492
Cr12MoV 218 750 0.28 7.85 × 103

Figure 7. Stress–strain curves.

3.3. SFEM of Pure Bending Forming

To analyze the evolution of stress and strain with bending deformation over the cross-
section without the influence of tool contact and contact stresses, as illustrated in Figure 8,
SFEM was set up, in which bending was applied by boundary conditions. Since there is no
contact interface in this approach, without considering friction and inertia, the calculation
results will not be disturbed by changes in external conditions. On the other hand, so as
to make the actual tube bending process have static characteristics within a given feed
rate range, SFEM was regarded as a static problem, and an implicit solver was used to
solve it. The advantage of using this calculation scheme is that the equilibrium equations
will be solved in each time step, to maintain static equilibrium in the whole simulation
process [28]. This allows a reliable analysis of mathematical constructs that cannot be
directly validated by FEM and experiments. Like the explicit model shown in Figure 7,
SFEM was also meshed with C3D8R elements. Moreover, to make the simulation conditions
closer to the real bending environment of the tube, only a 57 mm long tube segment was
considered, which represents the tube length between the center of the bending die hole
and the center point of the fixed die outlet, with boundary conditions at both ends of the
tube simulating bending.
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Figure 8. SFEM to simulate bending without tool contact.

Here, as illustrated in Figure 8, bending was applied around the binormal vector (the
normal vector of the curved plane) at one end of the tube segment by a rotating boundary
condition, and a fully fixed constraint was imposed by a fixed boundary condition at the
neutral axis at the other end of the segment. The rotation around the binormal vector was
given by the bending angle θ, which, in the specific case of a 57 mm long tube segment,
was equal to 57 mm/R.

4. Performance of the Analytical Model
4.1. Bending Tubes by Using the Four-Axis Free Bending Forming Device
4.1.1. Four-Axis Free Bending Forming Device

The AI 6061 tube used for finite element analysis and tube processing was a round
tube with an outer diameter of 18 mm and an inner diameter of 14 mm. Moreover, the
bending of the tube was completed by four-axis free bending equipment as shown in
Figure 9, which was independently developed and produced by the team. The bending
machine is mainly composed of a rotatable transportation system and a die assembly. The
rotatable transportation system consists of a motor outputting thrust, a motor outputting
torque, and two pairs of splints. They feed the tube forward into the die assembly (z-axis).
The die assembly is mainly composed of a fixed die, a ball bowl, a bending die, and a
driving plate. Through the driving plate, the bending die leaves the coordinate origin and
rotates around the fixed die driven by the x-axis motor and y-axis motor. The continuous
change of the bending die position can make the tube realize continuous gradual radius
forming or spiral curve forming. Indeed, by replacing different die components, round,
square, or special-shaped tubes can be processed separately.

4.1.2. Process Planning

Firstly, when starting to bend a tube, the driving plate moves away from the coordinate
origin to the target position. Its moving distance is

H = h +
L· r

2R√
1−

( r
2R
)2

(34)

where H denotes the total distance that the motor pushes the driving plate in the y-axis
direction, h denotes the gap between the driving plate and the initial position of the ball
bowl, L represents the horizontal distance between the driving plate and the center point
of the fixed die outlet, and r is the radius of rotation of the bending die around the center
point of the exit of the fixed die.
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Figure 9. Four-axis free bending forming equipment.

Secondly, when the tube is stably formed, the driving plate and the bending die are
kept in a fixed position.

Thirdly, when the target tube is completed, the driving plate drives the ball bowl to
return to the z-axis of the machine tool coordinate. The moving distance of the driving
plate is

H′ = −

∣∣∣∣∣∣2h +
L· r

2R√
1−

( r
2R
)2

∣∣∣∣∣∣ (35)

Finally, the driving plate returns to the machine coordinate origin. Its moving distance
is h.

4.2. Verification of Section Deformation Using the Analytical Model

Four sets of bending radius data were selected to verify the validity of the analytical
model. The first set of data should satisfy Case (a) in Section 2.2 and make the elastic–plastic
boundary line shown in Figure 5a, located between c and d, and thus the bending radius R
was set to 3600 mm. The result of SFEM is depicted in Figure 10a. Similarly, the second
group of data should conform to Case (b) in Section 2.2, and the elastoplastic boundary
line depicted in Figure 5b should be located between the inner radius c and the x-axis, so
the selected bending radius R was set to 400 mm and 200 mm. The results of SFEM are
depicted in Figure 10b,c. Furthermore, the third set of data should also conform to Case (b),
but the elastoplastic boundary line illustrated in Figure 5b was located under the x-axis.
Thus, the selected bending radius R was set to 100 mm. The result of SFEM is depicted
in Figure 10d. In fact, for Case (b), three bending radii were chosen with radius values of
400 mm, 200 mm, and 100 mm because the actual tube radii were thought to be almost
within this range.
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Figure 10. Elastoplastic boundary evolution of SFEM as the bending radius R varies, (a) when
R = 3600 mm, (b) when R = 400 mm, (c) when R = 200 mm, (d) when R = 100 mm.

Figure 10 shows the evolution of the elastic–plastic boundary with bending radius R
in the SFEM. Table 2 demonstrates the data characterization of key parameters in section
deformation between the analytical model, SFEM, FEM, and actual sample processing.
The bending moments calculated by the analytical model, SFEM, FEM, and actual sample
processing are denoted by M1, M2, M3, and M4, respectively. When R = 3600 mm, as
shown in Table 2, according to the analytical formula, c0 and c1 were calculated as−7.56 mm
and 7.56 mm, respectively. This is the same as the result in Figure 10a, except that the values
of c0 and c1 in Figure 10a are close to ±8 mm. This shows that the degree of deformation of
the tube section calculated with the analytical model is larger than that calculated by SFEM.

Table 2. Comparison of section deformation parameters between analytical model, SFEM, FEM, and
actual sample processing.

R mm c0 mm c1 mm ρε mm M1 N·mm M2 N·mm M3 N·mm M4 N·mm

3600 −7.56 7.56 3600 61,196 58,016 59,754 -
400 −0.839 0.84 399.99 80,131 94,547 96,369 95,868
200 −0.419 0.42 199.99 84,258 101,701 103,747 102,629
100 −0.209 0.21 99.99 92,322 106,281 108,653 107,851

As shown in Table 2, the same conclusion can also be drawn by comparing the
calculated bending moment values (M1 = 61, 196, M2 = 58, 016).

When R = 400 mm, the analytical model calculated c0 and c1 values of −0.839 mm
and 0.84 mm, respectively. The difference between the two was 0.001 mm. However,
since the difference is too small, the radius ρε of the strain neutral layer coincides with
the radius R to the geometric center layer. On the other hand, the values of c0 and c1
shown in Figure 10b are around ±0.6 mm to ±0.7 mm. This demonstrates that the degree
of deformation of the tube section calculated by the analytical model is smaller than that
calculated by SFEM. The same conclusion can also be drawn by comparing the bending
moment values (M1 = 80, 131, M2 = 94, 547). This may be due to the energy consumed
in the z-direction fiber elongation in the tensile deformation zone, the z-direction fiber
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shortening in the compressive deformation zone, and the warpage deformation on the tube
section, as shown in Figure 11.

Figure 11. Tube cross-section deformation.

When R = 200 mm, the c0 and c1 calculated by the analytical model were −0.419 mm
and 0.42 mm, respectively, and the difference between the two was still 0.001 mm. Likewise,
the values of c0 and c1 shown in Figure 10c are also approximately −0.4 mm and 0.45 mm,
respectively. In addition, from Figure 10c, it can be seen that the elastoplastic boundary line
of the tensile deformation area is closer to the centerline than the elastoplastic boundary
line of the compressive deformation area. This may be attributed to the plastic flow
compensation of the y-direction fibers to the z-direction fibers in the tensile zone, which
promotes the rapid movement of the elastoplastic boundary line to the central layer. In
contrast, the compression zone becomes thicker in the y-direction due to the compressive
motion of the fibers in the z-direction, so that the speed of c1 moving towards the center
layer lags behind c0.

When R = 100 mm, in the analytical model, the values of c0 and c1 continued to
decrease, reaching −0.21 mm and 0.21 mm, respectively. Nevertheless, in SFEM, as shown
in Figure 10d, there is an obvious displacement of the strain neutral layer, which is approxi-
mately 0.4 mm. In addition, the elastic–plastic boundary line of the stretching deformation
area is already located below the geometric center layer at this moment, at about 0.1 mm.
On the contrary, the elastic–plastic boundary line of the compressive deformation area
retreats to 0.6 mm. At the same time, it can also be seen that a certain degree of wall
thickness thinning occurs on the convex side. Based on the above analysis, it can be found
that in this case, the values of c0 and c1 between the analytical model and SFEM have a
huge deviation. This may be due to the lack of characterization parameters such as wall
thickness change and section distortion in the analytical model, and the wall thickness
change and section distortion are the main causes of strain neutral layer offset. Hence,
when the section deformation is severe, the calculation of c0 and c1 has a large deviation
between the analytical model and SFEM. That is, when R ≥ 200 mm, the variation of c0
and c1 in the analytical model and SFEM are consistent; when R < 200 mm, the calculation
results of c0 and c1 in the two are deviated.

The change law of ρε has the same problem. Since the difference between ρε and R
is very small, and the maximum is only 0.001 mm, the offset of the strain neutral layer
is not displayed in the analytical model. This results in a large deviation between ρε in
the analytical model and SFEM when R decreases to a certain extent, such as 100 mm.
As shown in Figures 10d and 12, the stress neutral layer and strain neutral layer have
deviated from the geometric center layer relatively significantly and moved towards the
compression deformation region, which will prevent the elastoplastic boundary in the
compression deformation region from moving further to the geometric center layer. At this
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time, the position of the neutral layer cannot be represented in the analytical model and
needs to be improved in the future.

Figure 12. The position of the strain neutral layer ρε shown by SFEM when the bending radius R is
100 mm.

In conclusion, it can be seen from the above analysis that c0 and c1 predicted by the
analytical model are accurate and effective on the whole. However, the calculation of
the predicted value of ρε is conservative. The subsequent addition of the characterization
parameters to the analytical model to characterize the wall thickness change may be more
accurate for the calculation of c0 and c1 and ρε in small bending radii.

4.3. Comparison of Bending Moments of Tubes

As described in Table 2, when conducting comparative tests, the analytical model,
SFEM, FEM, and experimental investigations must follow the same bending radii, i.e.,
R = 3600 mm, 400 mm, 200 mm, and 100 mm. This requires that, when calculating M3
and M4, the loading radii should be used in the experiments instead of the radii after
springback. If the radii after springback are used for comparison, it can be obtained from
the springback law that the loading radii potential must be less than 3600 mm, 400 mm,
200 mm, and 100 mm, respectively. This will inevitably lead to inaccurate comparison
results. At the same time, since the springback deformation in free bending is instanta-
neous springback, the tube shapes seen in FEM and actual experiments are the results of
springback, as shown in Figures 13 and 14.

Figure 13. Tube forming in FEM simulation.
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Figure 14. Tube processing in a four-axis free-form bending device.

Figure 13 depicts the shapes of tubes with varying radii in FEM. The corresponding
bending moments were calculated using Equation (2), which are represented by M3 in
Table 2. It should be noted that M3 is calculated by taking the average of Ft and FL values
measured in the steady-state region, and the tube advances at a rate of 10 mm/s. Likewise,
Figure 14 illustrates the shapes of tubes with varying radii that were completed in a four-axis
free-form bending device. The corresponding bending moments were also calculated using
Equation (2), which are shown in Table 2 as M4. It should be noted that M4 is computed by
averaging the Ft and FL values measured in the steady-state region, and the tube moves
at a rate of 5 mm/s. In addition, it should be noted that when R = 3600, because the
bending radius is too large, the eccentric distance U of the bending die is too small. At the
same time, the machine tool equipment, particularly the die assembly, contributes to elastic
deformation. Consequently, the bending moment cannot be calculated.

ξi.j(i, j = 1, 2, 3, 4) was used to express the deviation between the bending moments
in Table 2. The deviation between the bending moments can be calculated by Equation (36);
the calculation results are shown in Table 3.

ξi.j =
Mi −Mj

Mi
·100% (36)

Table 3. Deviation calculation between bending moments in Table 2 (unit: %).

R mm ξ1.2 ξ1.3 ξ1.4 ξ2.3 ξ2.4 ξ3.4

3600 5.19 2.36 - −2.99 - -
400 −17.99 −20.26 −19.63 −1.93 −1.38 0.52
200 −20.71 −23.13 −21.80 −2.01 −0.91 1.08
100 −15.12 −17.69 −16.82 −2.23 −1.48 0.74

For ξ1.2, Table 3 shows that the smallest deviation is 5.19%, which occurs at the bending
radius of 3600 mm, when the circular tube has just entered the stage of plastic deformation.
In contrast, the largest deviation is −20.71%, which occurs at the bending radius of 200 mm.
As shown in Figure 15, comparing M1 and M2, it is found that the bending moment
required for the bending deformation of the tube in SFEM is almost saturated at this time,
so the growth of M2 is relatively slow.



Materials 2022, 15, 3997 18 of 21

Figure 15. Development trend of bending moment, M1 and M2, with decreasing radius.

In contrast, the analytical model does not take into account the influence factors such
as wall thickness thinning, wall thickness increase, and cross-section distortion, so M1 is
still rising rapidly. According to this, it is inferred that ξ1.2, ξ1.3, and ξ1.4 all have a trend
of increasing first and then decreasing. Tables 2 and 3 show that FEM as a whole has the
largest calculated bending moment value, resulting in the largest deviation of ξ1.3 as well.
This may be because FEM not only calculates the energy consumed by the deformation of
the tube but also calculates the energy required for the friction between the tube and the
mold and between the mold and the mold when calculating the bending moment. At the
same time, it is also found that the bending moment M4 calculated by the machine tool is
slightly smaller than the bending moment M3 calculated by FEM. This may be due to the
elastic deformation and insufficient rigidity of the die device of the machine tool. Thus,
the bending moment M1 required for the bending deformation of the tube calculated by
the analytical model can meet the actual demand. The accuracy and effectiveness of the
analytical model are also demonstrated.

4.4. Comparison of Several Typical Analytical Bending Moment Results

In this section, the results and deviations of some typical analytical calculations
of tube bending moment are compared. M5 and M6 are used to indicate the bending
moments calculated by Lu and Tang, respectively; M7 and M8 denote the bending moments
established by Daxin E [29] using the bilinear material model and exponential material
model, respectively. The specific calculation results can be seen in Figure 16.

To more easily characterize the accuracy of each analytical bending moment depicted
in Figure 16, the deviation of each analytical bending moment, i.e., M1, M5, M6, M7 and
M8, was calculated by using Equation (36), with M2 and M2 as the reference benchmarks.
The minimum deviation δmin, maximum deviation δmax, and average deviation δave in each
group of deviations are shown in Table 4. In addition, δave is expressed by Equation (37):

δave =
1
4

4

∑
k=1

∣∣ξi.j
∣∣ (37)

where k denotes the sequence number of the radius value in k = 1, 2, 3, 4.
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Figure 16. Specific calculation results of M1, M5, M6, M7, and M8.

Table 4. Accuracy analysis of bending moments: M1, M5, M6, M7 and M8 (unit: %).

M1 M5 M6 M7 M8
ξ1.2 ξ1.3 ξ5.2 ξ5.3 ξ6.2 ξ6.3 ξ7.2 ξ7.3 ξ8.2 ξ8.3

δmin 5.19 2.36 −22.62 −26.29 36.55 35.16 74.44 73.92 19.62 18.08
δmax −20.71 −23.13 −53.07 −56.02 62.09 60.96 83.56 83.07 36.89 35.00
δave 14.75 15.86 40.55 43.73 43.70 42.45 77.21 76.70 24.79 23.10

For ξi.2 and ξi.3 (i = 1, 2, 3, and 4), it can be found in Table 4 that the deviations
of M1 are almost all the minimum, that is, δmin = 5.19% or 2.36%, δmax = −20.71% or
−23.13%, δave = 14.75% or 15.86%. In contrast, although they are all based on the bilinear
material model, the deviations of M7 are almost all the maximum, that is, δmin = 74.44%
or 73.92%, δmax = 83.56% or 83.07%, δave = 77.21% or 76.70%. On the other hand, M5 is
an improvement based on M6, so the three deviations of M5 are basically better than that
of M6. Therefore, according to the comparative analysis of deviations, it can be inferred
that the order of bending moment accuracy from small to large is M1 < M8<M5<M6<M7.
Thus, based on the above analysis, it can be found that the accuracy of the bending moment
calculated by the analytical model provided in this paper is still relatively high, which
verifies the accuracy of the analytical model.

5. Conclusions

This work focuses on providing insight into the elastic–plastic deformation of the
cross-section in tube bending. The main conclusions and remarks are as follows:

(1) An analytical model is developed to accurately clarify the evolution of the elastic–
plastic deformation of the cross-section in tube bending, not only qualitatively but
also quantitatively, which can calculate the position of the elastic–plastic boundary of
the tube and the radius of the strain neutral layer and the applied bending moment
on the cross-section under a given bending radius.

(2) The evolution of section elastic–plastic deformation predicted by the analytical model
is consistent with SFEM as a whole. As the bending radius gradually changes from
large to small, the position of the elastic–plastic boundary line is basically consistent
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with the SFEM. Only when the radius is reduced to a certain extent, such as 100 mm,
there is a certain deviation between the two results.

(3) The bending moments with varying radii calculated by the analytical model are
in accordance with the results of SFEM, FEM, and the experimental investigation.
Furthermore, compared with Tang’s model, Lu Shiqiang’s model and Daxin’s model,
the bending moment errors calculated by this analytical model tend to be much better
than the existing model. With the future introduction of wall thickness deformation,
it is expected that the deviation of the bending moment, the strain neutral layer, and
the elastic–plastic boundary will be reduced even further.
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Nomenclature

R Bending radius of the original center layer after tube deformation
ρ Bending radius of bent tube at any position
Ri, Ro Innermost and outermost bending radius of the tube, after bending deformation
ρε Bending radius of strain neutral layer, after tube bending deformation
θ Bending angle after tube deformation
A Distance from the center of the bending die to the front end of the guiding mechanism
U Eccentricity of bending die
λ Deflection angle of bending die
c, d, to Outer radius, inner radius, and wall thickness of the tube
E Young’s modulus
D Linear hardening coefficient (LHC) of material
c0 Distance from the boundary layer between elastic deformation zone and tensile plastic

deformation zone to the geometric center layer
c1 Distance from the boundary layer between elastic deformation zone and compressive

plastic deformation zone to the geometric center layer
s Relative distance from a point P on the section to the strain neutral layer ρε

u Relative distance from a point P on the section to the geometric center layer R
M Bending moment applied on the cross-section of tube
FT Tangential force applied on the cross-section of tube
FL Z-axis thrust of propulsion mechanism acting on the tube
Ft The force, applied by bending die, perpendicular to the axis of the tube
σi, σo Tangential stress of the innermost and outermost fibers of tube
εi, εo Tangential strain of the innermost and outermost fibers of tube
σ, σY , σz Stress, yield stress, tangential stress
ε, εY , εz Strain, elastic limit strain, tangential strain
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