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Abstract: Concrete is the most widely used material in construction. It has the characteristics of
strong plasticity, good economy, high safety, and good durability. As a kind of structural material,
concrete must have sufficient strength to resist various loads. At the same time, due to the brittleness
of concrete, compressive strength is the most important mechanical property of concrete. To solve
the disadvantages of the low efficiency of the traditional concrete compressive strength prediction
methods, this study proposes a firefly algorithm (FA) and random forest (RF) hybrid machine-learning
method to predict the compressive strength of concrete. First, a database is built based on the data of
published articles. The dataset in the database contains eight input variables (cement, blast furnace
slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age) and one output
variable (concrete compressive strength). Then, the correlation of the eight input variables was
analyzed, and the results showed that there was no high correlation between the input variables;
thus, they could be used as input variables to predict the compressive strength of concrete. Next, this
study used the FA algorithm to optimize the hyperparameters of RF to obtain better hyperparameters.
Finally, we verified that the FA and RF hybrid machine-learning model proposed in this study can
predict the compressive strength of concrete with high accuracy by analyzing the R values and RSME
values of the training set and test set and comparing the predicted value and actual value of the
training set and test machine.

Keywords: hybrid machine-learning method; concrete; compressive strength

1. Introduction

Concrete is made up of cementitious material, aggregate, water, admixture, and
mineral admixture following a certain proportion by uniform mixing, compaction molding,
curing hardening, and becoming a kind of artificial stone [1–5]. It is one of the most
important civil building materials at present [6–13]. Concrete not only has the characteristics
of abundant raw materials, low price, and a simple manufacturing process but also has the
characteristics of high compressive strength and good durability [6,14–17]. Due to these
characteristics, concrete has been widely used in construction, shipbuilding, the machinery
industry, and other fields [18–21].

However, in the process of concrete preparation, when cement particles contact with
water, the clinker minerals on the surface of cement particles will immediately hydrolyze or
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hydrate with water to generate new hydration products and release a certain heat, which is
called the hydration reaction of concrete [22,23]. For concrete engineering, the cement and
water hydration reaction needs to release a certain amount of heat, called the hydration
heat of concrete [24,25].

The heat release rate and size of the hydration heat mainly depend on the mineral
composition of cement, cement fineness, admixture, and other factors, among which
the mineral composition is the most important factor [26]. The rate and quantity of the
hydrating heat releases of tricalcium aluminate, tricalcium silicate, and dicalcium silicate
decrease successively. The cement commonly used in concrete is Portland cement. After
mixing Portland cement, there are mainly tricalcium silicate, dicalcium silicate, tricalcium
aluminate, and iron solid solutions, which react with water. The chemical equation involved
in the hydration process of cement concrete is as follows:

3(CaO · SiO2) + 6H2O = 3CaO · 2SiO2 · 3H2O + 3Ca(OH)2 (1)

2(CaO · SiO2) + 4H2O = 3CaO · 2SiO2 · 3H2O + 3Ca(OH)2 (2)

3CaO · Al2O3 + 6H2O = 3CaO · Al2O3 · 6H2O (3)

4CaO · Al2O3 · Fe2O3 + 7H2O = 3CaO · Al2O3 · 6H2O + CaO · Fe2O3 · H2O (4)

Although the hydration heat can accelerate the growth of the early strength of concrete,
increase the frost resistance of concrete, and has the advantage for concrete construction
projects in the winter, the heat in the concrete due to hydration gathered in the interior
is not easy to release, which results in a dramatic increase in the temperature inside the
concrete, and thus a large temperature difference between the concrete inside and outside,
and this causes apparent temperature stress and makes the concrete crack, which greatly
affects the strength and other properties of concrete [27].

At the same time, the cement production process will discharge emissions, which has
brought a high burden to the environment [23]. To ease the preparation of concrete with the
cement hydration heat, concrete compressive strength, and other properties of the impact
of the cement production process and the burden of carbon emissions to the environment,
using fly ash, blast furnace slag, metakoalin, and other mineral admixtures to replace part
of the cement as supplementary cementing materials has become the main solution.

Researchers have successfully applied fly ash into concrete after a great deal of research
and achieved good results in improving the performance of concrete. Zhu et al. studied the
influence of fly ash on the durability of concrete pavement, and the research results showed
that the concrete mixed with fly ash could not only reduce the amount of cement but also
have a good influence on the durability of concrete [1,28]. Huang et al. studied the effect on
the properties of mixed concrete with the expansive agent and fly ash, the research results
showed that the incorporation of fly ash on concrete when adding an expansive agent or
not has a different influence on the durability of concrete, fly ash has little influence on the
dilatancy of concrete without the expansive agent, and fly ash has a positive impact on the
durability of concrete with the expansive agent.

When the content of fly ash exceeds 10%, this effect is weakened, and when the
expansion agent and fly ash are mixed into concrete at the same time, the original fly
ash must be used [29]. Jang et al. studied the influence of the water–binder ratio and fly
ash content on concrete durability, and the research results showed that the compressive
strength of concrete with fly ash was better than the compressive strength of concrete
without fly ash, and the durability of concrete improved with the increase in the fly ash
content.

Blast furnace slag is a kind of organic melting mixture discharged from a blast furnace
when smelting pig iron, and it is a type of industrial waste residue. In recent years,
increasing researchers have paid attention to the improvement of concrete performance
by blast furnace slag. Vibha et al. studied the effects of blast furnace slag on the slump,
compressive strength, bending strength, and splitting tensile strength of concrete at different
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displacement levels [30]. Wang et al. studied the influence of air-warming blast furnace
slag and crushed limestone on the mechanical properties of concrete.

The results show that air-warming blast furnace slag and crushed limestone both
have positive effects on the mechanical properties of concrete, and the influence of air-
warming blast furnace slag on the mechanical properties of concrete is better than that of
crushed limestone [31]. The compressive strength of concrete is one of the most important
properties. However, there are relatively few studies on the influence of fly ash and
blast furnace slag on the compressive strength of concrete. The use of fly ash and blast
furnace slag in improving the concrete compressive strength performance and alleviate the
impact of carbon emissions on the environment both play an important role. However, the
prerequisite for mineral admixtures to play a role in concrete is that the quality of mineral
admixtures must meet the requirements.

Otherwise, the addition of mineral admixtures will not only not improve the com-
pressive strength of concrete but also negatively affect the properties, such as cohesion,
segregation, and condensation time of secreting water. As the quality of fly ash and blast
furnace slag is different in different regions, it is of great significance to study the influence
of fly ash and blast furnace slag on the compressive strength of concrete. The laboratory
test method is the most common method used by researchers to study the compressive
strength of concrete.

However, the laboratory experiment method has the disadvantages of low efficiency,
high cost, and energy consumption. To solve these problems, many researchers have
proposed the machine-learning method to predict the compressive strength of concrete.
Cui et al. proposed the XGBoost model based on the Boosting Tree algorithm to predict the
compressive strength of concrete, and the research results show that the model has high
prediction accuracy when the compressive strength is greater than 40 MPa [32].

Al-Shamir et al. proposed a regularized extreme learning machine (RELM) to predict
the compressive strength of concrete and used k-fold cross-validation to evaluate the relia-
bility of the established RELM model. The results show that compared with other models,
the RELM model can predict the compressive strength of concrete more accurately [33]. The
above machine-learning models have achieved good results in predicting the compressive
strength of concrete, which confirms the feasibility of using machine-learning models to
predict the compressive strength of concrete.

Although there are many scholars put forward using machine-learning method to
predict the compressive strength of concrete, it should be pointed out that most of the pre-
diction models still exist problems, such as low efficiency and bad prediction results [34–49].
Thus, looking for a more efficient and precise machine-learning model to predict the com-
pressive strength of concrete is necessary [50–54]. This study aims to propose a new hybrid
model to accurately and effectively predict the compressive strength of cement-fly ash-slag
ternary concrete.

A new regression technique RF algorithm has been used to predict the compressive
strength, which is more accurate and computationally efficient than other commonly used
prediction tools [55–61]. Nonparametric stochastic forest is a set of stochastic decision
trees used to deal with nonlinear regression problems, and its superiority in numerical
prediction has been proved by several civil engineering problems. However, the feasibility
of estimating the compressive strength of cement-fly ash-slag ternary concrete by RF
method has not been studied yet.

In addition, RF can measure the relative importance score of each input variable to
quantify the significance level of each influence parameter on the compressive strength
of concrete. Therefore, to improve the accuracy and efficiency of the machine-learning
model to predict the compressive strength of concrete, a method of predicting concrete
compressive strength with the FA and RF hybrid machine-learning model is proposed in
this paper.
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2. Methodology
2.1. Dataset Collection

The database is the basis for verifying whether a machine-learning model can accu-
rately predict the compressive strength of concrete. To ensure the sufficient accuracy of
the data sets, 225 data sets were collected from the previous literature published by other
authors, and a database was established with these data sets [62]. The data sets in this
database all have a common feature, namely, they all contain cement, blast furnace slag,
fly ash, water, superplasticizer, coarse aggregate and fine aggregate, age, and concrete
compressive strength variables. The input variables are cement, blast furnace slag, fly ash,
water, superplasticizer, coarse aggregate, fine aggregate, and age. The output variable is
concrete compressive strength.

A reliable database is a key to verifying the prediction accuracy of concrete compres-
sive strength by the model. To verify the reliability of the database, the author analyzed the
data set of the database as shown in Table 1. Table 1 analyzed the maximum value, median,
mode, mean, standard deviation, and variance of the nine variables. According to Table 1,
the range of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate,
fine aggregate, age, and concrete compressive are included in the database are 132–491 g,
11–214 g, 24.5–195 g, 121.8–247 g, 1.7–22.19 g, 814–1080.8 g, 612–880 g, 3–100 days, and
7.32–76.44 MPa, respectively. The mode values of these nine variables are 446, 24, 141, 162,
6, 967, 801, 28, and 27.68, respectively.

Table 1. Variable data analysis.

Variables Minimum Maximum Median Mode Average Std. Variance

Cement (kg/m3) 132 491 213.8 446 446 106.2 1127.82
Blast furnace slag (kg/m3) 11 214 97 24 24 58.28 3388.44

Fly ash (kg/m3) 24.5 195 122 141 141 38.5 1479.09
Water (kg/m3) 121.8 247 175.1 162 162 21.26 451.99

Superplasticizer (kg/m3) 1.7 22.1 8.4 6 6 3.46 11.98
Coarse aggregate (kg/m3) 814 1080.8 942 967 967 78.46 5156.35

Fine aggregate (kg/m3) 612 880 764.4 764.4 801 58.23 3391.26
Age (days) 3 100 28 28 28 23.71 561.76

Compressive strength (MPa) 7.32 76.24 36.44 36.44 27.68 14.19 201.32

To see the data distribution of the nine variables in the database more intuitively, we
made the frequency distribution histogram of the nine variables, as shown in Figure 1.
Figure 1 clearly shows that the frequency distribution histogram of fly ash, water, super-
plasticizer, age, and concrete compressive strength is unimodal. The frequency distribution
histograms of blast furnace slag and coarse aggregate are single-peak type, while the fre-
quency distribution histograms of cement and fine aggregate are double-peak. In other
words, the data of the nine variables in the database are reasonably distributed and cover a
wide range. Therefore, it can achieve a better result in predicting the compressive strength
of concrete with the data set in the database.

The analysis of two or more variables that are correlated is called correlation analysis,
which measures the closeness of the relationship between two variables. The correlation
coefficient between input variables is high positive or high negative, in other words, the
high correlation between input variables will affect the prediction effect of the model.
To determine the correlation between input variables, this study conducted correlation
analysis on the eight input variables before the model training the result is shown in
Figure 2. It can be seen from Figure 2 that there is a certain correlation among the eight
input variables, among which the correlation between Cement and Blast Furnace Slag is
about 0.5 at the highest; however, the correlation between them is less than 0.6. That is to
say, using the eight variables as the input variables to predict the compressive strength of
concrete the model will not be affected by multicollinearity.
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2.2. Applied Machine-Learning Models

In this study, a hybrid FA and RF machine-learning model is proposed to predict the
compressive strength of concrete, where FA is used to tune the hyperparameters of RF and
RF is used to predict the compressive strength of concrete.

FA is a meta-heuristic algorithm based on firefly flashing behavior. The main idea of
the firefly algorithm is that a firefly with weak light moves to a firefly with strong light
to complete a position update. The firefly algorithm has the following three assumptions:
(1) fireflies are not differentiated in gender, and fireflies with strong luminescence will
attract fireflies with weak luminescence. (2) The attraction between fireflies is proportional
to the brightness. (3) The brightest fireflies make random movements. Based on the above
three assumptions, the mathematical model of the firefly algorithm is obtained as follows
(Appendix A):

First, Ii is used to represent the absolute brightness of the ith firefly, and the objective
function value of the firefly’s location was expressed by the absolute brightness of the firefly.
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The absolute brightness Ii of the firefly located at
→
x (xi1, xi2 · · · xid) is equal to the function

value at
→
xi —that is, Ii = f (

→
x i).

If the ith firefly is brighter than the jth firefly, the jth firefly will move toward the ith
firefly due to the attraction of the ith firefly. The attraction of the ith firefly to the jth firefly
is proportional to its relative brightness. The relative brightness of the ith firefly to the jth
firefly is defined as:

Iij
(
rij
)
= Iie

−γr2
ij (5)

where Ii is the brightness of the ith firefly, and γ is the absorption coefficient of light
intensity.

Assuming that the attraction of the ith firefly to the jth firefly is proportional to the
brightness of the ith firefly to the jth firefly, the attraction of the ith firefly to the jth firefly is
defined as:

βij
(
rij
)
= β0e−γr2

ij (6)

where β0 is the maximum attraction, βij is the attraction of the ith firefly to the jth firefly, rij
is the Cartesian distance of the ith firefly to the jth firefly, and is defined as:

rij = ‖xi − xj‖ =

√√√√ d

∑
k=1

(
xi,k − xj,k

)2
(7)

Suppose that the position of the jth firefly is updated because it is attracted by the ith
firefly, and the updated formula is:

xj(t + 1) = xj(t) + βij
(
rij
)(

xi(t)− xj(t)
)
+ αξ j (8)

where t is the number of iterations,
→
ξ is the random number vector, α is constant, and

usually α ∈ [0, 1]. As can be seen from the position update formula, position update mainly
depends on the attractiveness, if β0 = 0 in the position update formula, the formula becomes
a random walk model. The code of the firefly algorithm can be found in the appendix
section.

Figure 3 gives the flow chart of the hybrid model using FA and RF. First, the collected
data sets are randomly divided into training data sets and test data sets. Then, FA is used to
tune the rf’s hyperparameters, and the performance of the RF is evaluated using a 10-fold
cross-validation model. Once the optimal hyperparameters are determined, the RF model
is used to predict the compressive strength of the test data set.
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RF algorithm is a typical integrated learning algorithm. RF is based on statistical
theory and uses autonomous resampling technology to extract multiple sample sets from
training samples. The algorithm constructs several decision tree models by using the
extracted sample sets and gathers the decision tree models together to obtain the final result
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by voting or taking the average. RF is an ensemble classifier constructed by a decision tree
model {h(X, θk), k = 1, · · ·K } using bagging integration, where { θk} is an independent
random vector with the same distribution. Input sample x into RF and find the final output
f (x) = majority{h(x, θk)|k = 1, 2, · · ·K } . RF can classify a variety of data accurately. It
can process a large number of input parameters and evaluate the importance of variables in
determining categories. The construction process of the RF algorithm is shown in Figure 4.
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3. Results and Discussion
3.1. Hyperparameter Tuning

Machine learning has its super-parameters in operation, and these parameters have
a great influence on itself. These parameters are often not obtained by training but need
to be set before the learning process begins. There are many hyperparameters in the
machine-learning model. Before running the machine model, the hyperparameters can be
optimized utilizing hyperparameter tuning to improve the performance of the machine-
learning model. In this study, the FA model was used to optimize the hyperparameter of
the RF model. The relationship between iterations and RSME value is shown in Figure 5.
It can be seen from Figure 5 that with the increase in iteration times, the RSME value
decreases sharply at first and then tends to be stable. The variation trend shows that the
hyperparameter tuning of the RF model with FA can achieve good results.
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A common test method used to test the accuracy of an algorithm is 10-fold cross-
validation. The main idea of this method is to randomly divide the data set into ten parts,
and take nine of them and one of them as the test data, in turn, for the experiment. To
further obtain the corresponding optimized hyperparameters, 10-fold cross-validation was
used for hyperparameter tuning in this study. The results of the 10-fold cross-validation
are shown in Figure 6. It can be seen from Figure 6 that the minimum value of RSME is
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obtained at the 10th fold, which is about 3.9 (as shown by the red dotted line), and the
results show that there will be no over-fitting phenomenon in predicting the compressive
strength of concrete with the proposed RF model.
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3.2. Model Evaluation

In the field of machine learning, models need to be evaluated to verify the performance
of trained models. Different types of models use different evaluation methods. After the
establishment of the machine-learning model for concrete compressive strength prediction,
the next important step is to evaluate the prediction effect of the established machine-
learning model. In this study, the accuracy of the prediction of concrete compressive
strength by the RF model was verified by comparing the predicted value and actual value
of concrete compressive strength.

Figure 7 shows the comparison between the predicted value and the actual value of
concrete compressive strength in the training set and test set, where the horizontal line
represents the error. It can be seen from Figure 7 that the predicted value of the training
set has a high consistency with the actual value. Although the predicted value of the test
set has several electrical points with large errors from the actual value, the predicted value
is generally consistent with the actual value. The results show that the RF model can
accurately predict the compressive strength of concrete.
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To see the fitting effect of predicted value and actual value of training set and test set
more intuitively, the scatter diagram of predicted value and actual value of training set
and test set is given in Figure 8. It can be seen from Figure 8 that the concrete compressive
strength of both the training set and the test set is concentrated at 0–70 MPa, and the
predicted value and actual value of the training set and the test set have a good fitting
effect on the whole, with only a few points with large errors in the test set. In the training
set, there were several points where the actual value of concrete compressive strength was
about 6 MPa, and the predicted value was as high as 20 or 30 MPa.
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However, it should be noted that the minor differences in individual data points do
not affect the overall predictive performance of the RF model, that is, the RF model can
accurately predict the compressive strength of concrete. The R value of the training set is
0.9747, the RSME value is 3.6037, the R value of the test set is 0.8753, and the RMSE value is
6.6271. Thus, the R value and RMSE value of the training set and the test set have common
characteristics—namely, their R value is high, and their RSME value is low. It is proved
again that the RF model tuned by FA has a good effect on predicting the compressive
strength of concrete, and there is no over-fitting situation.
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3.3. Variable Importance Evaluation

Figure 9 shows the importance scores of the eight input variables to the compressive
strength of concrete obtained by the RF model. It can be seen from Figure 9 that age has
the highest score of 4.5910 among the eight variables—that is to say, age has the greatest
influence on the compressive strength of concrete among the eight input variables, and the
compressive strength of concrete is proportional to age. Thus, the compressive strength
of concrete increases with the increase in age within a certain range. The importance of
cement to concrete compressive strength scored is 3.0853—the second-highest among the
eight input variables.
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That is to say, cement also has a great influence on the compressive strength of concrete,
and the compressive strength of concrete is proportional to the amount of cement. The
importance of blast furnace slag, water, superplasticizer, fly ash, coarse aggregate, and fine
aggregate to the compressive strength of concrete is 0.8551, 0.7639, 0.5629, 0.4696, 0.1839,
decreasing successively. Thus, the importance of these six variables to the compressive
strength of concrete decreases successively.

From the importance score of variables, it can be seen that the compressive strength
of concrete is proportional to the eight variables, that is, the increase in any one of the
eight variables will improve the compressive strength of concrete. Since age and cement
have a great influence on the compressive strength of concrete, engineers should pay more
attention to the age and cement when designing concrete with high compressive strength,
and less attention should be paid to the amount of fine aggregate.

4. Conclusions

In this study, a hybrid FA and RF machine-learning model was proposed to predict
the compressive strength of concrete. A database of 225 data sets was established based on
previously published articles, which was used as the data set for predicting the compressive
strength of concrete. The data set took cement, blast furnace slag, fly ash, water, super-
plasticizer, coarse aggregate, fine aggregate, and age as the input variables. The concrete
compressive strength was used as the output variable. The FA algorithm was used to
tune the hyperparameters of the RF algorithm, and then the results of the hyperparameter
tuning were verified by 10-fold cross-validation. Finally, the accuracy of the model was
verified by analyzing the R value and RSME values well as the predicted value and actual
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value of the training set and the test set. The following conclusions can be drawn from the
research process.

1. Using FA to tune the hyperparameter of RF, the RSME value decreases greatly at first
and then tends to be stable with the increase in iteration number, this proves that
FA can achieve better results in adjusting the hyperparameter optimization of the RF
model, which is better than the random selection of hyperparameters.

2. The RF model tuned by FA can be used to predict the compressive strength of con-
crete and achieve better results. The R values of the training set and the test set
were 0.9747 and 0.8753, respectively, and the RSME values were 3.6037 and 6.6271,
respectively—that is, the training set and the test set both had high R values and low
RSME values, and the consistency between the predicted value and the actual value
of the concrete compressive strength of the training set and the test set was high. The
above two conclusions prove that the FA and RF mixed models achieved better results
in predicting the compressive strength of concrete.

3. The importance scores of age, cement, blast furnace slag, water, superplasticizer, fly
ash, coarse aggregate, and fine aggregate to the compressive strength of concrete
decreased successively and were all positive. That is, the compressive strength of
concrete was proportional to these eight variables, and the importance of these eight
variables to the compressive strength of concrete decreased in turn.
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Appendix A

Algorithm A1 Code of Firefly Algorithm

begin
Objective function f(x), x = (x1, ..., xd) T

Generate initial population of fireflies xi (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t<MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : i all n fireflies
if (Ij > Ii)
Move firefly i towards j in d-dimension via Levy flights
end if
Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

end



Materials 2022, 15, 4193 13 of 15

References
1. Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The effect of metakaolin on the corrosion behavior of cement mortars.

Cem. Concr. Compos. 2005, 27, 125–130. [CrossRef]
2. Ambroziak, A.; Ziolkowski, P. Concrete compressive strength under changing environmental conditions during placement

processes. Materials 2020, 13, 4577. [CrossRef] [PubMed]
3. Zhu, F.; Wu, X.; Zhou, M.; Sabri, M.M.; Huang, J. Intelligent design of building materials: Development of an ai-based method for

cement-slag concrete design. Materials 2022, 15, 3833. [CrossRef] [PubMed]
4. Zhang, S.; Fan, Y.; Huang, J.; Shah, S.P. Effect of nano-metakaolinite clay on hydration behavior of cement-based materials at early

curing age. Constr. Build. Mater. 2021, 291, 123107. [CrossRef]
5. Wang, Q.-A.; Zhang, J.; Huang, J. Simulation of the compressive strength of cemented tailing backfill through the use of firefly

algorithm and random forest model. Shock Vib. 2021, 2021, 5536998. [CrossRef]
6. Chokkalingam, R.B.; Santhanam, M. Durability characteristics of high early strength concrete. Curr. Sci. 2017, 113, 1568–1577.

[CrossRef]
7. Xu, W.; Huang, X.; Huang, J.; Yang, Z. Structural analysis of backfill highway subgrade on the lower bearing capacity foundation

using the finite element method. Adv. Civ. Eng. 2021, 2021, 1690168. [CrossRef]
8. Liang, X.; Yu, X.; Chen, C.; Ding, G.; Huang, J. Towards the low-energy usage of high viscosity asphalt in porous asphalt

pavements: A case study of warm-mix asphalt additives. Case Stud. Constr. Mater. 2022, 16, e00914. [CrossRef]
9. Huang, J.; Zhang, J.; Ren, J.; Chen, H. Anti-rutting performance of the damping asphalt mixtures (dams) made with a high

content of asphalt rubber (ar). Constr. Build. Mater. 2021, 271, 121878. [CrossRef]
10. Huang, J.; Li, X.; Kumar, G.S.; Deng, Y.; Gong, M.; Dong, N. Rheological properties of bituminous binder modified with recycled

waste toner. J. Clean. Prod. 2021, 317, 128415. [CrossRef]
11. Ren, J.; Zhao, H.; Zhang, L.; Zhao, Z.; Xu, Y.; Cheng, Y.; Wang, M.; Chen, J.; Wang, J. Design optimization of cement grouting

material based on adaptive boosting algorithm and simplicial homology global optimization. J. Build. Eng. 2022, 49, 104049.
[CrossRef]

12. Ren, J.; Zhang, L.; Zhao, H.; Zhao, Z.; Wang, S. Determination of the fatigue equation for the cement-stabilized cold recycled
mixtures with road construction waste materials based on data-driven. Int. J. Fatigue 2022, 158, 106765. [CrossRef]

13. Ren, J.; Yin, C. Investigating mechanical characteristics of aggregate structure for road materials. Int. J. Pavement Eng. 2022, 23,
372–386. [CrossRef]

14. Ma, Z.; Yao, P.; Yang, D.; Shen, J. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate,
recycled powder and newmade concrete. J. Mater. Res. Technol. 2021, 15, 1030–1045. [CrossRef]

15. Wang, X.; Xu, T.; Andrade, M.J.d.; Rampalli, I.; Cao, D.; Haque, M.; Roy, S.; Baughman, R.H.; Lu, H. The interfacial shear strength
of carbon nanotube sheet modified carbon fiber composites. In Challenges in Mechanics of Time Dependent Materials; Springer:
Berlin, Germany, 2021; Volume 2, pp. 25–32.

16. Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren, Y.; Lu, H. Nanoindentation measurement of core–skin interphase viscoelastic
properties in a sandwich glass composite. Mech. Time-Depend. Mater. 2021, 25, 353–363. [CrossRef]

17. Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren, Y.; Liu, Y.; Nie, X.; Qian, D.; Griffith, D.T.; Lu, H. The effect of resin uptake on the
flexural properties of compression molded sandwich composites. Wind Energy 2022, 25, 71–93. [CrossRef]

18. Liew, K.M.; Sojobi, A.O.; Zhang, L.W. Green concrete: Prospects and challenges. Constr. Build. Mater. 2017, 156, 1063–1095.
[CrossRef]

19. Pani, L.; Francesconi, L.; Rombi, J.; Stochino, F.; Mistretta, F. The Role of Parent Concrete in Recycled Aggregate Concrete. In
Proceedings of the 20th International Conference on Computational Science and Its Applications (ICCSA), Electr Network,
Cagliari, Italy, 1–4 July 2020; pp. 368–378.

20. Ngohpok, C.; Sata, V.; Satiennam, T.; Klungboonkrong, P.; Chindaprasirt, P. Mechanical properties, thermal conductivity, and
sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE J. Civ. Eng. 2018, 22,
1369–1376. [CrossRef]

21. Wang, Q.-A.; Zhang, C.; Ma, Z.-G.; Huang, J.; Ni, Y.-Q.; Zhang, C. Shm deformation monitoring for high-speed rail track slabs
and bayesian change point detection for the measurements. Constr. Build. Mater. 2021, 300, 124337. [CrossRef]

22. Tian, Y.; Jin, N.; Jin, X. Coupling effect of temperature and relative humidity diffusion in concrete under ambient conditions.
Constr. Build. Mater. 2018, 159, 673–689. [CrossRef]

23. Wang, X.-Y. Kinetic hydration heat modeling for high-performance concrete containing limestone powder. Adv. Mater. Sci. Eng.
2017, 2017, 4090265. [CrossRef]

24. Wang, X.-Y. Analysis of hydration-mechanical-durability properties of metakaolin blended concrete. Appl. Sci. 2017, 7, 1087.
[CrossRef]

25. Wang, X.-Y.; Park, K.-B. Analysis of the compressive strength development of concrete considering the interactions between
hydration and drying. Cem. Concr. Res. 2017, 102, 1–15. [CrossRef]

26. Kim, H.K.; Lee, H.K. Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cem. Concr.
Compos. 2018, 91, 67–75. [CrossRef]

27. Jeong, S.-M.; Se-Hwan, K.; Yang, W.-H.; Young-Sun, K.; Jun-Do, K.; Gun-cheol, L. An experimental study on the hydration heat of
concrete using phosphate based inorganic salt. J. Korea Inst. Build. Constr. 2020, 20, 489–495.

http://doi.org/10.1016/j.cemconcomp.2004.02.041
http://doi.org/10.3390/ma13204577
http://www.ncbi.nlm.nih.gov/pubmed/33066626
http://doi.org/10.3390/ma15113833
http://www.ncbi.nlm.nih.gov/pubmed/35683131
http://doi.org/10.1016/j.conbuildmat.2021.123107
http://doi.org/10.1155/2021/5536998
http://doi.org/10.18520/cs/v113/i08/1568-1577
http://doi.org/10.1155/2021/1690168
http://doi.org/10.1016/j.cscm.2022.e00914
http://doi.org/10.1016/j.conbuildmat.2020.121878
http://doi.org/10.1016/j.jclepro.2021.128415
http://doi.org/10.1016/j.jobe.2022.104049
http://doi.org/10.1016/j.ijfatigue.2022.106765
http://doi.org/10.1080/10298436.2020.1748189
http://doi.org/10.1016/j.jmrt.2021.08.116
http://doi.org/10.1007/s11043-020-09448-y
http://doi.org/10.1002/we.2661
http://doi.org/10.1016/j.conbuildmat.2017.09.008
http://doi.org/10.1007/s12205-017-0144-6
http://doi.org/10.1016/j.conbuildmat.2021.124337
http://doi.org/10.1016/j.conbuildmat.2017.10.128
http://doi.org/10.1155/2017/4090265
http://doi.org/10.3390/app7101087
http://doi.org/10.1016/j.cemconres.2017.08.010
http://doi.org/10.1016/j.cemconcomp.2018.04.017


Materials 2022, 15, 4193 14 of 15

28. Zhu, K.; Yao, L.Y.; Ma, Q. Study on the durability of high volume fly ash pavement concrete. In Proceedings of the International
Conference on Resource Environment and Information Technology (REIT 2010), Kaifeng, China, 19–21 August 2010; pp. 535–538.

29. Huang, S.J.; Ge, Z.C.; Zhou, L.; Zhou, J.L. Effect of fly ash on expansion properties of concrete added with expansive agents. In
Proceedings of the International Conference on Biotechnology, Chemical and Materials Engineering (CBCME 2011), Kunming,
China, 28–29 December 2011; pp. 684–687.

30. Vibha, V.; Reddy, B.V.V. A study on properties of concrete made with processed granulated blast furnace slag as fine aggregate. In
Proceedings of the 5th International Conference on Building Materials and Construction (ICBMC), Tokyo, Japan, 26–29 February
2020.

31. Wang, A.G.; Deng, M.; Sun, D.S.; Li, B.; Tang, M.S. Effect of crushed air-cooled blast furnace slag on mechanical properties of
concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 758–762. [CrossRef]

32. Cui, X.N.; Wang, Q.C.; Zhang, R.L.; Dai, J.P.; Li, S. Machine learning prediction of concrete compressive strength with data
enhancement. J. Intell. Fuzzy Syst. 2021, 41, 7219–7228. [CrossRef]

33. Al-Shamiri, A.K.; Yuan, T.F.; Kim, J.H. Non-tuned machine learning approach for predicting the compressive strength of
high-performance concrete. Materials 2020, 13, 1023. [CrossRef]

34. Li, K.; Long, Y.; Wang, H.; Wang, Y.-F. Modeling and sensitivity analysis of concrete creep with machine learning methods. J.
Mater. Civ. Eng. 2021, 33, 04021206. [CrossRef]

35. Park, J.-R.; Lee, H.-J.; Yang, K.-H.; Kook, J.-K.; Kim, S. Study on influence of range of data in concrete compressive strength with
respect to the accuracy of machine learning with linear regression. Appl. Sci. 2021, 11, 3866. [CrossRef]

36. Hasanipanah, M.; Noorian-Bidgoli, M.; Armaghani, D.J.; Khamesi, H. Feasibility of pso-ann model for predicting surface
settlement caused by tunneling. Eng. Comput. 2016, 32, 705–715. [CrossRef]

37. Ren, J.; Xu, Y.; Zhao, Z.; Chen, J.; Cheng, Y.; Huang, J.; Yang, C.; Wang, J. Fatigue prediction of semi-flexible composite mixture
based on damage evolution. Constr. Build. Mater. 2022, 318, 126004. [CrossRef]

38. Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Armaghani, D.J.; Farazmand, A. Feasibility of indirect determination of blast
induced ground vibration based on support vector machine. Measurement 2015, 75, 289–297. [CrossRef]

39. Ren, J.; Xu, Y.; Huang, J.; Wang, Y.; Jia, Z. Gradation optimization and strength mechanism of aggregate structure considering
macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture. Constr. Build. Mater. 2021, 300, 124262.
[CrossRef]

40. Hasanipanah, M.; Armaghani, D.J.; Amnieh, H.B.; Abd Majid, M.Z.; Tahir, M.M. Application of pso to develop a powerful
equation for prediction of flyrock due to blasting. Neural Comput. Appl. 2017, 28, 1043–1050. [CrossRef]

41. Ren, J.; Li, D.; Xu, Y.; Huang, J.; Liu, W. Fatigue behaviour of rock asphalt concrete considering moisture, high-temperature, and
stress level. Int. J. Pavement Eng. 2021, 1–11. [CrossRef]

42. Hajihassani, M.; Armaghani, D.J.; Marto, A.; Mohamad, E.T. Ground vibration prediction in quarry blasting through an artificial
neural network optimized by imperialist competitive algorithm. Bull. Eng. Geol. Environ. 2015, 74, 873–886. [CrossRef]

43. Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A. Developing a hybrid pso–ann model for estimating the ultimate
bearing capacity of rock-socketed piles. Neural Comput. Appl. 2017, 28, 391–405. [CrossRef]

44. Chen, W.; Hasanipanah, M.; Rad, H.N.; Armaghani, D.J.; Tahir, M. A new design of evolutionary hybrid optimization of svr
model in predicting the blast-induced ground vibration. Eng. Comput. 2019, 37, 1455–1471. [CrossRef]

45. Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for
predicting tbm penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [CrossRef]

46. Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ann-based techniques in predicting
cohesion of sandy-soil combined with fiber. Geomech. Eng. 2020, 20, 191–205.

47. Cai, M.; Koopialipoor, M.; Armaghani, D.J.; Thai Pham, B. Evaluating slope deformation of earth dams due to earthquake shaking
using mars and gmdh techniques. Appl. Sci. 2020, 10, 1486. [CrossRef]

48. Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating tbm advance
rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [CrossRef]

49. Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive
strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [CrossRef]

50. Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.S.; Li, X. Prediction of the compressive strength for cement-based materials with
metakaolin based on the hybrid machine learning method. Materials 2022, 15, 3500. [CrossRef]

51. Xu, W.; Huang, X.; Yang, Z.; Zhou, M.; Huang, J. Developing hybrid machine learning models to determine the dynamic modulus
(e*) of asphalt mixtures using parameters in witczak 1–40d model: A comparative study. Materials 2022, 15, 1791. [CrossRef]

52. Huang, J.; Zhou, M.; Sabri, M.M.S.; Yuan, H. A novel neural computing model applied to estimate the dynamic modulus (dm) of
asphalt mixtures by the improved beetle antennae search. Sustainability 2022, 14, 5938. [CrossRef]

53. Ma, H.; Liu, J.; Zhang, J.; Huang, J. Estimating the compressive strength of cement-based materials with mining waste using
support vector machine, decision tree, and random forest models. Adv. Civ. Eng. 2021, 2021, 6629466. [CrossRef]

54. Huang, J.; Zhang, J.; Gao, Y. Intelligently predict the rock joint shear strength using the support vector regression and firefly
algorithm. Lithosphere 2021, 2021, 2467126. [CrossRef]

55. Huang, J.; Duan, T.; Zhang, Y.; Liu, J.; Zhang, J.; Lei, Y. Predicting the permeability of pervious concrete based on the beetle
antennae search algorithm and random forest model. Adv. Civ. Eng. 2020, 2020, 8863181. [CrossRef]

http://doi.org/10.1007/s11595-012-0543-y
http://doi.org/10.3233/JIFS-211088
http://doi.org/10.3390/ma13051023
http://doi.org/10.1061/(ASCE)MT.1943-5533.0003843
http://doi.org/10.3390/app11093866
http://doi.org/10.1007/s00366-016-0447-0
http://doi.org/10.1016/j.conbuildmat.2021.126004
http://doi.org/10.1016/j.measurement.2015.07.019
http://doi.org/10.1016/j.conbuildmat.2021.124262
http://doi.org/10.1007/s00521-016-2434-1
http://doi.org/10.1080/10298436.2021.1969018
http://doi.org/10.1007/s10064-014-0657-x
http://doi.org/10.1007/s00521-015-2072-z
http://doi.org/10.1007/s00366-019-00895-x
http://doi.org/10.1016/j.tust.2016.12.009
http://doi.org/10.3390/app10041486
http://doi.org/10.1016/j.jrmge.2019.01.002
http://doi.org/10.1007/s00521-021-06004-8
http://doi.org/10.3390/ma15103500
http://doi.org/10.3390/ma15051791
http://doi.org/10.3390/su14105938
http://doi.org/10.1155/2021/6629466
http://doi.org/10.2113/2021/2467126
http://doi.org/10.1155/2020/8863181


Materials 2022, 15, 4193 15 of 15

56. Gao, Y.; Huang, J.; Li, M.; Dai, Z.; Jiang, R.; Zhang, J. Chemical modification of combusted coal gangue for u(vi) adsorption:
Towards a waste control by waste strategy. Sustainability 2021, 13, 8421. [CrossRef]

57. Huang, J.; Duan, T.; Lei, Y.; Hasanipanah, M. Finite element modeling for the antivibration pavement used to improve the slope
stability of the open-pit mine. Shock Vib. 2020, 2020, 6650780. [CrossRef]

58. Huang, J.; Asteris, P.G.; Pasha, S.M.K.; Mohammed, A.S.; Hasanipanah, M. A new auto-tuning model for predicting the rock
fragmentation: A cat swarm optimization algorithm. Eng. Comput. 2020, 38, 2209–2220. [CrossRef]

59. Ahmad, M.; Tang, X.-W.; Ahmad, F.; Pirhadi, N.; Wan, X.; Cheng, K. Probabilistic evaluation of cpt-based seismic soil liquefaction
potential: Towards the integration of interpretive structural modeling and bayesian belief network. Math. Biosci. Eng. 2021, 18,
9233–9252. [CrossRef] [PubMed]

60. Huang, J.; Alyousef, R.; Suhatril, M.; Baharom, S.; Alabduljabbar, H.; Alaskar, A.; Assilzadeh, H. Influence of porosity and cement
grade on concrete mechanical properties. Adv. Concr. Constr. 2020, 10, 393–402.

61. Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.; Li, X. Towards sustainable construction materials: A comparative study of prediction
models for green concrete with metakaolin. Buildings 2022, 12, 772.

62. Yeh, I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808.
[CrossRef]

http://doi.org/10.3390/su13158421
http://doi.org/10.1155/2020/6650780
http://doi.org/10.1007/s00366-020-01207-4
http://doi.org/10.3934/mbe.2021454
http://www.ncbi.nlm.nih.gov/pubmed/34814343
http://doi.org/10.1016/S0008-8846(98)00165-3

	Introduction 
	Methodology 
	Dataset Collection 
	Applied Machine-Learning Models 

	Results and Discussion 
	Hyperparameter Tuning 
	Model Evaluation 
	Variable Importance Evaluation 

	Conclusions 
	Appendix A
	References

