Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fillers and Adhesive
2.2. Test Specimen Preparations
2.3. Fabrication Method
2.4. Tensile and Flexural Tests
2.5. Microscopy and X-ray Diffraction Tests
3. Results Analyses of Additional Tensile Strength
3.1. Results Analysis of Tensile Strength and Strain at Break
3.2. Determination of Requisite Tensile Strength for Articular Cartilage Scaffold
3.3. Curve Analysis of Tensile Strength Extension
3.4. Mechanism Analysis of Additional Tensile Strength
4. Results Analysis for Structural Integrity
4.1. Results Analysis of Flexural Stress, Flexural Displacement and Strain at Break
4.2. Forces and Displacements Analysis for Internal Structure Characteristics
4.3. Determination of Structural Integrity for Articular Cartilage Scaffold Design
5. Discussion of Structural Characteristics and Reversible Mechanisms
5.1. Morphology Analysis
5.2. Superlattice Structure Analysis
5.3. Discussion of Ordered-Disordered Transitional States of the Superlattice Structure
5.4. Discussion of Spatial Configuration Arrangements and Lattice Plane Distortions of the Cu3Zn Superlattice Structure Class
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vernengo, A.J.; Alini, M.; Armiento, A.R. Cartilage tissue engineering. In Tissue Engineering Using Ceramics and Polymers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 555–586. [Google Scholar]
- Buckwalter, J.A.; Mow, V.C.; Ratcliffe, A. Restoration of Injured or Degenerated Articular Cartilage. J. Am. Acad. Orthop. Surg. 1994, 2, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Nowaczyk, A.; Szwedowski, D.; Dallo, I.; Nowaczyk, J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int. J. Mol. Sci. 2022, 23, 1566. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Y.; Xing, F.; Liang, J.; Wang, Q.; Fan, Y.; Zhang, X. Cell-free scaffolds functionalized with bionic cartilage acellular matrix microspheres to enhance the microfracture treatment of articular cartilage defects. J. Mater. Chem. B 2021, 9, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, X.; Chen, J.; Zhen, Z.; Cao, B.; Wan, W.; Dou, Y.; Pan, H.; Xu, F.; Zhang, Z.; et al. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact. Mater. 2022, 9, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yuan, L.; Xu, Z.; Yi, X.; Wu, X.; Mu, C.; Ge, L.; Li, D. Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Appl. Bio Mater. 2022, 5, 734–746. [Google Scholar] [CrossRef]
- Saravanan, D.; Sollapur, S.B.; Anjappa, S.B.; Malla, C.; Satya Prasad, M.; Vignesh, S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int. J. Biol. Macromol. 2022, 195, 179–189. [Google Scholar] [CrossRef]
- Jelodari, S.; Ebrahimi Sadrabadi, A.; Zarei, F.; Jahangir, S.; Azami, M.; Sheykhhasan, M.; Hosseini, S. New Insights into Cartilage Tissue Engineering: Improvement of Tissue-Scaffold Integration to Enhance Cartilage Regeneration. Biomed Res. Int. 2022, 2022, 7638245. [Google Scholar] [CrossRef]
- Singh, B.N.; Nallakumarasamy, A.; Sinha, S.; Rastogi, A.; Mallick, S.P.; Divakar, S.; Srivastava, P. Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int. J. Biol. Macromol. 2022, 203, 389–405. [Google Scholar] [CrossRef]
- Ding, S.-L.; Liu, X.; Zhao, X.-Y.; Wang, K.-T.; Xiong, W.; Gao, Z.-L.; Sun, C.-Y.; Jia, M.-X.; Li, C.; Gu, Q.; et al. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact. Mater. 2022, 17, 81–108. [Google Scholar] [CrossRef]
- Kim, K.-J.; Kim, M.; Adamopoulos, I.E.; Tagkopoulos, I. Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients. Clin. Immunol. 2019, 202, 1–10. [Google Scholar] [CrossRef]
- Bauza-Mayol, G.; Quintela, M.; Brozovich, A.; Hopson, M.; Shaikh, S.; Cabrera, F.; Shi, A.; Niclot, F.B.; Paradiso, F.; Combellack, E.; et al. Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Adv. Healthc. Mater. 2022, 11, 2101127. [Google Scholar] [CrossRef] [PubMed]
- Wulf, C.; Zapp, P. Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers. Int. J. Hydrogen Energy 2018, 43, 11884–11895. [Google Scholar] [CrossRef]
- Yuan, H.; Li, W.; Song, C.; Huang, R. An injectable supramolecular nanofiber-reinforced chitosan hydrogel with antibacterial and anti-inflammatory properties as potential carriers for drug delivery. Int. J. Biol. Macromol. 2022, 205, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cao, L.; Parakhonskiy, B.V.; Skirtach, A.G. Hard, Soft, and Hard-and-Soft Drug Delivery Carriers Based on CaCO3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022, 14, 909. [Google Scholar] [CrossRef]
- Büyük, N.İ.; Tüfekçi, K.; Cumbul, A.; Ayşan, E.; Torun Köse, G. A novel method for providing scaffold: Decellularization of parathyroid capsule. J. Biomater. Appl. 2022, 36, 1201–1212. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, Y.; Wang, M. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomater. 2021, 123, 312–324. [Google Scholar] [CrossRef]
- Tosoratti, E.; Fisch, P.; Taylor, S.; Laurent-Applegate, L.A.; Zenobi-Wong, M. 3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage. Adv. Healthc. Mater. 2021, 10, 2101094. [Google Scholar] [CrossRef]
- Nikhil, A.; Kumar, A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Biotechnol. Bioeng. 2022, 119, 605–625. [Google Scholar] [CrossRef]
- Liu, X.; Wu, K.; Gao, L.; Wang, L.; Shi, X. Biomaterial strategies for the application of reproductive tissue engineering. Bioact. Mater. 2021, 14, 86–96. [Google Scholar] [CrossRef]
- Ibarra, G.; Gonzalez-Pozega, C.; Cuervas-Mons, M.; Rivera, A.; Fernandez-Ibarburu, B.; Garcia-Ruano, A. Reverse Dermis Flap for Coverage of Distal Leg and Ankle Defects. J. Foot Ankle Surg. 2021, 60, 839–844. [Google Scholar] [CrossRef]
- Pipino, G.; Risitano, S.; Alviano, F.; Wu, E.J.; Bonsi, L.; Vaccarisi, D.C.; Indelli, P.F. Microfractures and hydrogel scaffolds in the treatment of osteochondral knee defects: A clinical and histological evaluation. J. Clin. Orthop. Trauma 2019, 10, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, L.; Li, L.; Huang, C.; Shi, K.; Meng, X.; Wang, P.; Wu, M.; Li, L.; Cao, H.; et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 2021, 279, 121216. [Google Scholar] [CrossRef] [PubMed]
- Korthagen, N.M.; Brommer, H.; Hermsen, G.; Plomp SG, M.; Melsom, G.; Coeleveld, K.; Mastbergen, S.C.; Weinans, H.; van Buul, W.; van Weeren, P.R. A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet. J. 2019, 251, 105340. [Google Scholar] [CrossRef]
- Gu, X.; Zha, Y.; Li, Y.; Chen, J.; Liu, S.; Du, Y.; Zhang, S.; Wang, J. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 2022, 141, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-O.; Park, H.-Y.; Shin, S.-C.; Lee, D.-H.; Lee, B.-J. Perfusion-Decellularized Larynx as a Natural 3D Scaffold in a Rabbit Model. ORL 2022, 84, 81–88. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Li, X.; Jin, Y.; Yan, Z.; Yao, X.; Yuan, W.-E.; Qian, Y.; Ouyang, Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Mater. Today Bio 2022, 13, 100211. [Google Scholar] [CrossRef]
- Han, Z.D.; Luan, H.W.; Zhao, S.F.; Chen, N.; Peng, R.X.; Shao, Y.; Yao, K.F. Microstructures and Mechanical Properties of AlCrFeNiMo0.5Tix High Entropy Alloys. Chinese Phys. Lett. 2018, 35, 3–8. [Google Scholar] [CrossRef]
- Yu, T.; Liu, X.; Ye, J.; Zhang, M. Investigation of mechanical behavior of CPC/bone specimens by finite element analysis. Ceram. Int. 2014, 40, 2933–2942. [Google Scholar] [CrossRef]
- Park, J.B.; Bronzino, J.D. Biomaterials: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cook, J.L.; Hung, C.T.; Kuroki, K.; Stoker, A.M.; Cook, C.R.; Pfeiffer, F.M.; Sherman, S.L.; Stannard, J.P. Animal models of cartilage repair. Bone Jt. Res. 2014, 3, 89–94. [Google Scholar] [CrossRef]
- Katz, H.S.; Milewski, J.V. Handbook of Fillers for Plastics, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Chatterjee, A.; Islam, M.S. Fabrication and characterization of TiO2-epoxy nanocomposite. Mater. Sci. Eng. A 2008, 487, 574–585. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Fillers, 5th ed.; ChemTec Publishing: Toronto, ON, Canada, 2021. [Google Scholar]
- Kuhnt, T.; Camarero-Espinosa, S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydr. Polym. 2021, 252, 117159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, X.; Liu, A.; Pan, C.; Ding, H.; Ye, W. Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering. Mater. Lett. 2021, 291, 129563. [Google Scholar] [CrossRef]
- Zhai, T.; Li, J.; Wang, X.; Yan, W.; Zhang, C.; Verdolotti, L.; Lavorgna, M.; Xia, H. Carbon-based aerogel in three-dimensional polyurethane scaffold: The effect of in situ unidirectional aerogel growth on piezoresistive properties. Sens. Actuators A Phys. 2022, 333, 113306. [Google Scholar] [CrossRef]
- Jarvenkyla, J. Plastics Pipe. U.S. Patent US 2007/0193643 A1, 23 August 2007. [Google Scholar]
- ASTM E8/E8M-16a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- BS EN ISO 527-2:1996; Plastics—Determination of Tensile Properties. ISO: Geneva, Switzerland, 2009; Volume 1, pp. 3–7.
- BS EN ISO 178:2003; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2003; Volume 3, p. 28.
- Adeniyi, A.G.; Ighalo, J.O. A systematic review of pure metals reinforced plastic composites. Iran. Polym. J. 2021, 30, 751–768. [Google Scholar] [CrossRef]
- Janudin, N.; Kasim NA, M.; Feizal Knight, V.; Norrrahim MN, F.; Razak MA, I.A.; Abdul Halim, N.; Mohd Noor, S.A.; Ong, K.K.; Yaacob, M.H.; Ahmad, M.Z.; et al. Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gas. Polymers 2022, 14, 1906. [Google Scholar] [CrossRef]
- Lim, Y.Y. Physical and Mechanical Properties Studies of Low Brass Filler Polymer Reinforced Biomaterial. Ph.D. Thesis, National Defence University of Malaysia, Kuala Lumpur, Malaysia, 2021. [Google Scholar]
- Hiljanen-Vainio, M.; Heino, M.; Seppälä, J.V. Reinforcement of biodegradable poly(ester-urethane) with fillers. Polymer (Guildf). 1998, 39, 865–872. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, Q.; Chen, G.; Yi, C.; Qi, S.; Yang, B. Fabrication of mixed matrix membranes with zinc ion loaded titanium dioxide for improved CO2 separation. Sep. Purif. Technol. 2021, 254, 117472. [Google Scholar] [CrossRef]
- Chinta, M.L.; Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Parcha, S.R. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int. J. Biol. Macromol. 2021, 175, 495–515. [Google Scholar] [CrossRef]
- Amis, A.A. The Biomechanics of Ligaments. Biomech. Biomater. Orthop. 2004, 550–563. [Google Scholar] [CrossRef]
- Robinson, P. Properties of Wrought Coppers and Copper Alloys. In Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Almel, The Netherlands, 1990; p. 1020. [Google Scholar]
- Pan, X.; Wang, X.; Tian, Z.; He, W.; Shi, X.; Chen, P.; Zhou, L. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4V titanium alloy subjected to laser shock peening. J. Alloys Compd. 2021, 850, 156672. [Google Scholar] [CrossRef]
- Hou, J.X.; Li, X.Y.; Lu, K. Orientation dependence of mechanically induced grain boundary migration in nano-grained copper. J. Mater. Sci. Technol. 2021, 68, 30–34. [Google Scholar] [CrossRef]
- Qiang, F.; Bouzy, E.; Kou, H.; Zhang, Y.; Wang, L.; Li, J. Grain fragmentation associated continuous dynamic recrystallization (CDRX) of hexagonal structure during uniaxial isothermal compression: High-temperature α phase in TiAl alloys. Intermetallics 2021, 129, 107028. [Google Scholar] [CrossRef]
- Xu, N.; Chen, L.; Feng, R.N.; Song, Q.N.; Bao, Y.F. Recrystallization of Cu-30Zn brass during friction stir welding. J. Mater. Res. Technol. 2020, 9, 3746–3758. [Google Scholar] [CrossRef]
- Torabi, J.; Niiranen, J. Microarchitecture-dependent nonlinear bending analysis for cellular plates with prismatic corrugated cores via an anisotropic strain gradient plate theory of first-order shear deformation. Eng. Struct. 2021, 236, 112117. [Google Scholar] [CrossRef]
- Li, X.; Sun, S.; Zou, Y.; Zhu, Q.; Tian, Y.; Wang, J. Twin-coupled shear bands in an ultrafine-grained CoCrFeMnNi high-entropy alloy deformed at 77K. Mater. Res. Lett. 2022, 10, 385–391. [Google Scholar] [CrossRef]
- Xu, W.; Xin, Y.C.; Zhang, B.; Li, X.Y. Stress corrosion cracking resistant nanostructured Al-Mg alloy with low angle grain boundaries. Acta Mater. 2022, 225, 117607. [Google Scholar] [CrossRef]
- Hao, S.; Li, Z.; Yang, C.; Marsden, A.J.; Kinloch, I.A.; Young, R.J. Interfacial energy dissipation in bio-inspired graphene nanocomposites. Compos. Sci. Technol. 2022, 219, 109216. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Wang, P.; An, Q. Dynamic interactions between low-angle grain boundary and stacking fault tetrahedron in Ni-Fe solid solution alloys. J. Alloys Compd. 2022, 907, 164572. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Miskon, A.; Zaidi AM, A.; Megat Ahmad, M.M.H.; Abu Bakar, M. Numerical Simulation Study on Relationship between the Fracture Mechanisms and Residual Membrane Stresses of Metallic Material. J. Funct. Biomater. 2022, 13, 20. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Miskon, A.; Zaidi, A.M.A.; Megat Ahmad, M.M.H.; Abu Bakar, M. Structural Characterization Analyses of Low Brass Filler Biomaterial for Hard Tissue Implanted Scaffold Applications. Mater. J. 2022, 15, 1421. [Google Scholar] [CrossRef]
- Mak, T.C.W.; Zhou, G.-D. Crystallography in Modern Chemistry: A Resource Book of Crystal Structures; John Wiley & Sons, Inc.: New York, NY, USA, 1992. [Google Scholar]
- Vazdirvanidis, A.; Rikos, A.; Toulfatzis, A.I.; Pantazopoulos, G.A. Electron Backscatter Diffraction (EBSD) Analysis of Machinable Lead-Free Brass Alloys: Connecting Texture with Fracture. Metals 2022, 12, 569. [Google Scholar] [CrossRef]
- Babouri, L.; Belmokre, K.; Kabir, A.; Abdelouas, A.; El-Mendili, Y. Structural and electrochemical study of binary copper alloys corrosion in 3% NaCl solution. J. Chem. Pharm. Res. 2015, 7, 1175–1186. [Google Scholar]
- Derrouiche, S.; Lauron-Pernot, H.; Louis, C. Synthesis and Treatment Parameters for Controlling Metal Particle Size and Composition in Cu/ZnO Materials—First Evidence of Cu 3 Zn Alloy Formation. Chem. Mater. 2012, 24, 2282–2291. [Google Scholar] [CrossRef]
- Liu, A.; Shi, Z.; Reddy, R.G. Mechanism study of Cu-Zn alloys electrodeposition in deep eutectic solvents. Ionics 2020, 26, 3161–3172. [Google Scholar] [CrossRef]
- Junhua, X.; Geyang, L.; Mingyuan, G. The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films. Thin Solid Film. 2000, 370, 45–49. [Google Scholar] [CrossRef]
- Nyong, A.E.; Udoh, G.; Awaka-Ama, J.J.; Nsi, E.W.; Rohatgi, P.K. A Study of the Morphological Changes and the Growth Kinetics of the Oxides Formed by the High Temperature Oxidation of Cu-32.02% Zn-2.30% Pb Brass. Mater. Res. 2022, 25. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Yu, J.; Deng, L.; Chen, H.; Tang, X. Fabrication and characterization of ultra-thin vapour chambers with printed copper powder wick. Appl. Therm. Eng. 2022, 201, 117734. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Li, H.; Hu, C.; Yu, X.; Li, R. Reaction mechanism of Ni-coated Cu composite powder prepared by liquid-solid fluidized bed 3D electrodes. Chem. Eng. J. 2022, 428, 132529. [Google Scholar] [CrossRef]
- Sutygina, A.; Betke, U.; Scheffler, M. Hierarchical-Porous Copper Foams by a Combination of Sponge Replication and Freezing Techniques. Adv. Eng. Mater. 2022, 24, 2001516. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Q.; Guo, Z.; Liu, W.; Chang, Z.; Liu, Y.; Kang, F.; Dong, L.; Xu, C. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 2022, 46, 243–251. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, L.; Sun, W.; Yang, Z.; Wang, S.; Liu, G. Effect of chemical conversion induced by self-corrosion of zinc powders on enhancing corrosion protection performance of zinc-rich coatings. Corros. Sci. 2022, 194, 109942. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, C.; Cai, R.; Wang, Y.; Zhou, G. Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy. J. Appl. Phys. 2013, 114, 023512. [Google Scholar] [CrossRef] [Green Version]
- Moussa, M.E.; Amin, M.; Ibrahim, K.M. Effect of Ultrasonic Vibration Treatment on Microstructure, Tensile Properties, Hardness and Wear Behaviour of Brass Alloy. Int. J. Met. 2022. [Google Scholar] [CrossRef]
- Bertini, I. Inorganic and Bio-Inorganic Chemistry—Volume I; EOLSS Publications: Paris, France, 2009. [Google Scholar]
- Chatterjee, S.K. Crystallography and the World of Symmetry; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Graef, M.D.; McHenry, M.E. Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Rottenburg, P.A. Advances in Materials: Proceedings of a Symposium Organised by the North Western Branch of the Institution of Chemical Engineers Held at Manchester, 6–9 April, 1964; Oxford: Pergamon, Turkey, 1966. [Google Scholar]
- Liu, Z.; Wang, Q.; Guo, S.; Zhang, X.; Wang, Y.; Jiang, T.; Wang, H.; Zhang, S.; Jiang, W.; Liu, S.; et al. The preliminary exploration of composition origin of solid solution alloys used in thermocouple by cluster-plus-glue-atom model. Mater. Des. 2022, 216, 110562. [Google Scholar] [CrossRef]
- Hong, H.L.; Wang, Q.; Dong, C.; Liaw, P.K. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys. Sci. Rep. 2015, 4, 7065. [Google Scholar] [CrossRef]
- Celebi, O.K.; Mohammed, A.S.K.; Krogstad, J.A.; Sehitoglu, H. Evolving dislocation cores at Twin Boundaries: Theory of CRSS Elevation. Int. J. Plast. 2022, 148, 103141. [Google Scholar] [CrossRef]
- Han, G.; Qiang, J.; Li, F.; Yuan, L.; Quan, S.; Wang, Q.; Wang, Y.; Dong, C.; Häussler, P. The e/a values of ideal metallic glasses in relation to cluster formulae. Acta Mater. 2011, 59, 5917–5923. [Google Scholar] [CrossRef]
- Borisov, S.V.; Pervukhina, N.V.; Magarill, S.A. The Concentration of Crystal Structures in High-Symmetry Structural Types (Stencils) As a Consequence of Crystal Dynamics. Crystallogr. Rep. 2022, 67, 150–155. [Google Scholar] [CrossRef]
- Yu, P.; Wu, C.; Shi, L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Mater. 2021, 207, 116692. [Google Scholar] [CrossRef]
- Neil, C.J.; Wollmershauser, J.A.; Clausen, B.; Tomé, C.N.; Agnew, S.R. Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. Int. J. Plast. 2010, 26, 1772–1791. [Google Scholar] [CrossRef]
- Vidal, D.; Hillel, G.; Edry, I.; Pinkas, M.; Fuks, D.; Meshi, L. Influence of alloying elements and the state of order on the formation of antiphase boundaries in B2 phases. Intermetallics 2022, 141, 107434. [Google Scholar] [CrossRef]
- Dodaran, M.; Ettefagh, A.H.; Guo, S.M.; Khonsari, M.M.; Meng, W.J.; Shamsaei, N.; Shao, S. Effect of alloying elements on the γ’ antiphase boundary energy in Ni-base superalloys. Intermetallics 2020, 117, 106670. [Google Scholar] [CrossRef]
Property | Units | Titanium Dioxide | Low Brass | Ligament Tissue | Tendon Tissue |
---|---|---|---|---|---|
Tensile Strength | MPa | 350 a | 290 b | 36 c | 70 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.Y.; Miskon, A.; Zaidi, A.M.A. Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design. Materials 2022, 15, 4446. https://doi.org/10.3390/ma15134446
Lim YY, Miskon A, Zaidi AMA. Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design. Materials. 2022; 15(13):4446. https://doi.org/10.3390/ma15134446
Chicago/Turabian StyleLim, Yan Yik, Azizi Miskon, and Ahmad Mujahid Ahmad Zaidi. 2022. "Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design" Materials 15, no. 13: 4446. https://doi.org/10.3390/ma15134446
APA StyleLim, Y. Y., Miskon, A., & Zaidi, A. M. A. (2022). Structural Strength Analyses for Low Brass Filler Biomaterial with Anti-Trauma Effects in Articular Cartilage Scaffold Design. Materials, 15(13), 4446. https://doi.org/10.3390/ma15134446