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Abstract: 3D printing (or more formally called additive manufacturing) has the potential to revo-
lutionize the way objects are manufactured, ranging from critical applications such as aerospace
components to medical devices, making the materials stronger, lighter and more durable than those
manufactured via conventional methods. While the mechanical properties of Ti-6Al-4V parts manu-
factured with two major 3D printing techniques: selective laser melting (SLM) and electron beam
melting (EBM), have been reported, it is unknown if the corrosion resistance of the 3D-printed parts
is comparable to that of the alloy made with isothermal forging (ISF). The aim of this study was to
identify the corrosion resistance and mechanisms of Ti-6Al-4V alloy manufactured by SLM, EBM and
ISF via electrochemical corrosion tests in 3.5% NaCl solution, focusing on the effect of microstructures.
It was observed that the equiaxed α + β microstructure in the ISF-manufactured Ti-6Al-4V alloy had
a superior corrosion resistance to the acicular martensitic α′ + β and lamellar α + β microstructures
of the 3D-printed samples via SLM and EBM, respectively. This was mainly due to the fact that
(1) a higher amount of β phase was present in the ISF-manufactured sample, and (2) the fraction
of phase interfaces was lower in the equiaxed α + β microstructure than in the acicular α′ + β and
lamellar α + β microstructures, leading to fewer microgalvanic cells. The lower corrosion resistance
of SLM-manufactured sample was also related to the higher strain energy and lower electrochemical
potential induced by the presence of martensitic twins, resulting in faster anodic dissolution and
higher corrosion rate.

Keywords: additive manufacturing; three-dimensional (3D) printing; selective laser melting; electron
beam melting; isothermal forging; Ti-6Al-4V alloy; corrosion resistance

1. Introduction

Titanium alloys have been extensively used in the aerospace and biomedical sectors
as well as in the marine environment due to their excellent mechanical properties and
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superior corrosion resistance [1–4]. Ti-6Al-4V alloy is the most widely used titanium alloy
with a typical alpha-beta duplex microstructure, and is also the most common one of all
titanium alloys [5], where the electrochemical behavior has been extensively investigated.
For example, the corrosion performance was studied by correlating the microstructure and
chemical composition at grain boundaries [6–8]. In addition, fabrication processes and heat
treatment procedures can also have a significant impact on its corrosion behavior [9–12].

Compared with the isothermal forging (ISF) technology used for titanium alloy process-
ing [5,13], the additive manufacturing (AM) technology, also known as three-dimensional
(3D) printing, for titanium alloys has many prominent features, particularly with short
manufacturing cycles [14–17]. The high utilization of materials in the manufacturing of
complex structural parts enables its high integral repair and weight reduction [18,19]. In-
deed, 3D printing has recently taken the world by storm, since it is poised to revolutionize
the way objects are manufactured, ranging from critical applications such as aerospace
components to medical devices. It opens up new worlds to research in the area of mate-
rials and manufacturing, and has even become the focus of media and public attention
in recent years [20–27]. The AM technique can be used for light metal alloys to fabricate
lightweight structural parts in the aerospace and automotive industries. It can also be used
to manufacture porous components to match the human skeletons [28–30].

The 3D model of the material is first designed by computer-aided design (CAD) software.
Then, according to the thickness of the processing slice and the 2D shape data of each layer,
the component is deposited, melted and solidified layer by layer, to eventually achieve the
required part [31]. Currently, the AM techniques are mainly divided into two types: selective
laser melting (SLM) and electron beam melting (EBM), according to different processing heat
sources. The SLM-AM technique involves the use of fiber laser as the heating source. Since
the molten layer is continuously deposited onto a cold substrate in SLM-AM, it generally has
a high cooling rate and a high thermal gradient in the building direction, which leads to the
occurrence of non-equilibrium martensitic phases [32]. In contrast, EBM-AM Ti-6Al-4V alloy
technology uses electron beam to heat and melt powders on the substrate. Firstly, the powders
in the area to be melted are preheated and sintered together to reduce the temperature gradient,
which effectively avoids the generation of large internal residual stress [33]. Then, the Ti-6Al-4V
powder layer undergoes rapid melting, followed by solidification in a chamber temperature
maintaining in a range of 560–740 ◦C. Tan et al. [34] reported α′ martensitic transformation
and α/β interface evolution in varied printing thicknesses of EBM-printed Ti-6Al-4V alloy
block samples.

Unlike conventional manufacturing methods, AM is prone to be affected by several
factors, such as power input, scan rate, scan spacing and deposition direction, which could
influence the final microstructure and the resulting properties [35–39]. In addition, AM
is essentially a rapid solidification process and large temperature gradient, which results
in microstructures of components that are very different from those processed by casting,
rolling and forging [40–42], and lead to unique changes in the corrosion resistance [4]. While
a number of studies involved the mechanical properties of SLM- and EBM-manufactured
parts [43–45], there is limited information about the corrosion resistance of the additive
manufactured parts [4,6,46,47]. Dai et al. [4] reported that the unfavorable corrosion
resistance of the SLM-produced sample is related to the considerably large amount of
acicular α′ and less β-Ti phase in the microstructure compared with the grade 5 sample. Dai
et al. [6] also reported that the XY-plane possessed a better corrosion resistance compared
with the XZ-plane in 1 M HCl solution, in spite of a slight difference in 3.5 wt.% NaCl
solution, suggesting that different planes exhibit different degrees of corrosion resistance in
a harsher solution system, due to the presence of more α′ martensite and less β-Ti phase in
the microstructure on the XZ-plane of the SLM-produced Ti-6Al-4V alloy. Zhang et al. [46]
reviewed the AM of titanium alloys, including Ti-6Al-4V and Ti-24Nb-4Zr-8Sn, with a focus
on manufacturing using electron beam melting (EBM) and the resultant microstructures and
service properties. However, there is a lack of research on the relative corrosion resistance
of titanium alloys produced via SLM, EBM and conventional isothermal forging.
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In the present study, the corrosion behavior of a Ti-6Al-4V alloy fabricated by two AM
technologies and the conventional ISF method is evaluated via electrochemical techniques,
with particular attention to the effect of microstructures.

2. Materials and Methods

The AM Ti-6Al-4V samples were fabricated by EBM (Arcam Q20, Gothenburg, Swe-
den), (pre-alloyed powder size: 45–105 µm) and SLM (Farsoon High-Technology Co.,
Ltd., FS271M, Changsha, China) (pre-alloyed powder size: 15–53 µm) AM techniques,
respectively. All of the bars were prepared by layered slicing according to the CAD model,
followed by melting, cooling and solidification layer by layer. The SLM samples were
manufactured using a laser power of 340 W at a scanning rate of 1100 mm/s and a pre-
heating temperature of 120 ◦C of the substrate. The SLM scan line offset and the powder
layer thickness were set to be 0.11 mm and 0.06 mm, respectively. The EBM process was
conducted at a vacuum of 5 × 10−3 mbar being charged with helium gas in the building
chamber. The entire process started by preheating the powders to 500 ◦C with a preheating
average current of 28 mA. For each layer, a focus current of 45 mA and a speed function
setting of 32 were selected. The EBM samples were produced with a scan line offset of
0.22 mm, and a powder layer thickness of 0.09 mm. All of the bars were manufactured
in the same direction perpendicular to the substrate (Figure 1). One step ISF Ti-6Al-4V
samples were produced by our homemade isothermal forging equipment. Samples with
a dimension of 10 × 10 × 10 mm were EDM cut and prepared for the microstructural
observations and electrochemical corrosion experiments. The observational direction of ISF
Ti-6Al-4V sample was parallel to the one-step ISF direction.
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Figure 1. Schematic illustration of the SLM- and EBM-manufactured Ti-6Al-4V specimens built in the
vertical direction.

The chemical composition of the Ti-6Al-4V samples prepared by SLM, EBM and ISF is
shown in Table 1. All of the samples were ground on the SiC sandpaper from grit #240 to
#2000, and then polished with diamond paste down to 1 µm. The electrolyte adopted was
sodium chloride solution with a mass fraction of 3.5%.

Table 1. Chemical composition (wt.%) of SLM, EBM and ISF Ti-6Al-4V samples.

Ti-6Al-4V Ti Al V Fe C H O N

SLM Bal. 5.50–6.75 3.50–4.50 <0.30 <0.08 <0.015 <0.20 <0.05

EBM Bal. 6.40 4.12 0.18 0.01 0.003 0.14 0.01

ISF Bal. 5.50–6.75 3.50–4.50 <0.30 <0.08 <0.015 <0.20 <0.05

The microstructure of these samples was characterized using optical microscopy (OM,
Zeiss Axio Observer.5m), scanning electron microscopy (SEM, FEI Quanta 250) equipped
with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD, LabX XRD-6000) and
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transmission electron microscopy (TEM, JEOL JEM-2100F). The mechanically polished
samples were electro-polished to get rid of the deformed layer for the OM and SEM
characterization. The electrolyte is Kroll’s reagent which consists of 3 mL HF, 5 mL HNO3
and 92 mL H2O. The TEM foil samples were electro-polished in a twin-jet setup at 30 V and
−30 ◦C using the electrolyte containing 6 vol.% perchloric acid, 34 vol.% n-butanol and
60 vol.% carbinol. Samples for XRD analysis were also polished and ultrasonically cleaned
before the measurements.

The corrosion performance of the samples was evaluated via an electrochemical
workstation with a Galvanostat (Gamry Reference 600). Prior to the electrochemical tests,
the pre-ground samples were polished to mirror finish using diamond suspension with
a particle size of 1 µm. The polished samples were ultrasonically cleaned in acetone,
alcohol and distilled water for ten minutes, respectively, then dried for electrochemical
measurements. The electrochemical experiments were conducted in a three-electrode cell
with a platinum counter electrode and a saturated calomel electrode (SCE) acted as the
reference electrode at room temperature open to air. The area of the working electrode in
contact with the electrolyte is 0.2827 cm2. Prior to any electrochemical measurements, all
samples were immersed for a sufficiently long time until the open circuit potential (OCP)
became nearly stable. Then potentiodynamic polarization curves were measured at a rate of
0.1667 mV/s from −500 to 1500 mV versus OCP. Electrochemical impedance spectroscopy
(EIS) experiments were carried out at OCP from 10−2 to 105 Hz with an AC amplitude
of 5 mV. The results of EIS were determined using ZsimpWin 3.30 software to fit to the
corresponding equivalent circuit. The electrochemical measurements were repeated three
times to ensure the reproducibility of the results.

The obtained experimental EIS data were fitted using a transfer function developed for
the electrical component combination in the circuit described in Figure 2. It consists of the
following elements: Rs (electrolyte solution resistance), Rct (charge transfer resistance), Rf
(film resistance), CPE1 and CPE2 (double layer capacitance). Rf reflects the resistance value
of the film formed on the alloy surface, while Rct describes the resistance of the electrode
process. Then the polarization resistance (Rp) is the sum of the charge transfer resistance
(Rct) and the film resistance (Rf), i.e., Rp = Rct + Rf [10]. The passivity of the samples can be
evaluated via the polarization resistance: a high Rp indicates a higher corrosion resistance.
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Figure 2. Equivalent circuits used to fit the conduction curve in the impedance spectrum analysis.

3. Results
3.1. Microstructure and Phase Analysis
3.1.1. Metallographic Observations

The typical microstructures of three Ti-6Al-4V alloy samples made with two AM
techniques (SLM and EBM) and ISF are presented in Figure 3. All of them have an α + β

microstructure. The microstructure of the SLM-Ti-6Al-4V alloy (Figure 3a,b) consists of a
fully fine acicular α′ martensite due to the specific manufacturing process involving rapid
colling [48]. It can also be observed that the macrostructure of SLM sample contains prior β
columnar grains, which develop epitaxially along the building direction as marked with an
arrow in Figure 3a. For the EBM-Ti-6Al-4V alloy (Figure 3c,d), in the solidification process
the prior β grains were also observed with a growing direction parallel to the building
direction, as indicated by the arrow in Figure 3c. Within the columnar prior β grains, fine
α platelets and the interfacial rod-shaped β phase are typical (α + β) structures. The α

platelet herein is a typical Widmanstatten microstructure [49], including the basket shape
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and a colony form. It can also be seen that the α phase was formed around the boundaries
of columnar prior β grains. In addition, as a result of the AM manufacturing process,
some small pores were observed in both SLM and EBM samples. The microstructure of the
ISF-Ti-6Al-4V alloy (Figure 3e,f) shows an (α + β) equiaxial shaped morphology, where the
brighter areas represent the α phase, while the β phase is distributed in the dark areas.
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3.1.2. Transmission Electron Microscopy (TEM) Observations

More detailed TEM examinations were conducted with the results shown in Figure 4.
The α grains in the SLM specimen are mainly acicular along with the presence of α′

martensite (Figure 4a,b). The distinctive microstructure of the SLM specimen is primarily
composed of acicular α′ phase. In the region of the needle-shaped rod, TEM images
(Figure 4a,b) display the α′ phase, and the β phase is positioned in-between the rods which
are too small to be identified in the low-magnification OM image (Figure 3a). The phases
can be revealed by the selected area diffraction patterns (SADPs), i.e., the hexagonal close-
packed (HCP) α′ martensite (Figure 4a inset) and the (BCC) β-Ti (Figure 4b inset). Some
dislocations in the α-Ti phase (or in-between β-Ti lamellae) can be seen to be present in
the EBM specimen (Figure 4b), while a large number of twins exist in the SLM specimen
(Figure 4c–e).
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region in (c), and (e) HRTEM image of a twin in the SLM sample.

As seen from Figure 5, the α grains in the EBM specimen are lamellar (Figure 5a,b). The
typical lamellar (or massive) α + β microstructures of EBM specimens are also uncovered
by the corresponding SADPs for the (HCP) α-Ti (Figure 5b inset) and β-Ti (Figure 5c inset).
Some dislocations in the α-Ti phase (or in-between β-Ti lamellae) can also be seen to be
present in the EBM specimen (Figure 5b–d).
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3.1.3. X-ray Diffraction (XRD) Analysis

Figure 6 shows the XRD patterns for the SLM- and EBM-manufactured Ti-6Al-4V
alloys as well as the ISF alloy. As seen from Figure 6, the main phases of the three specimens
are the same, consisting of α phase and a small amount of β phase. The peak intensity for
the β phase in the ISF sample is higher than that of the AM-manufactured samples which
is indicated in Figure 6a by the green circle, suggesting a relatively high volume fraction
of β phase, while there is almost no clue for the β phase in the SLM counterpart on the
XRD pattern, which revealed a mixture of primary α and martensitic α′ phase. The lattice
parameters of the supersaturated martensitic α′ phase are slightly different from those of
the α phase, resulting in peak broadening of all the α reflections in the SLM-manufactured
Ti-6Al-4V alloy (Figure 6b). This could be judged by a full width at half maximum (FWHM)
higher than 0.2◦ in 2θ [13,50]. In these patterns, the FWHM of α/α′ reflections rises nearly
up to 0.8◦ in 2θ as a result of martensitic transformation.
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3.2. Electrochemical Analysis
3.2.1. Potentiodynamic Polarization

Figure 7 shows the potentiodynamic polarization curves for the SLM- and EBM-
manufactured Ti-6Al-4V alloy samples and ISF alloy sample in the 3.5 wt.% NaCl solution.
Before the polarization tests, a sufficiently long time was maintained to achieve a relatively
stable open circuit potential (OCP). All the samples in the NaCl solution were sponta-
neously passivated with a wide passivation region and a low passivation current density,
indicating that all three samples have fairly good corrosion resistance. As can be seen,
each polarization curve consists of both cathodic and anodic branches, and there are some
differences among the three anodic polarization curves. This suggests that the oxidation
reaction occurred on their surface is different. As shown in Figure 7, the transpassive
potential Eb values, which represent a critical potential for the passive film to dissolve
and break down, are nearly the same for all three types of Ti-6Al-4V alloy samples. This
reveals that the passive film formed on the alloy surface is similarly stable. However,
the passivation current density ipp showed obvious differences. The passivation current
density obtained was the smallest for the ISF alloy (ipp,A = 0.20 µA/cm2), and largest for
the SLM-manufactured Ti-6Al-4V alloy (ipp,C = 0.53 µA/cm2), while the passivation current
density for the EBM-manufactured Ti-6Al-4V alloy lay in-between these values, i.e., ipp,B

= 0.42 µA/cm2. In general, a lower passivation current density reflects a more sensitive
surface to passivation in a given solution and a lower corrosion rate of the alloy [8]. Thus,
it can be concluded that the ISF Ti-6Al-4V alloy exhibits the best corrosion resistance, while
the corrosion resistance of the SLM- and EBM-manufactured Ti-6Al-4V alloy is lower in the
3.5 wt.% NaCl solution.
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3.2.2. Electrochemical Impedance Spectroscopy (EIS)

The EIS measurements are shown in the form of Nyquist and Bode plots in Figure 8a–c.
The passivity of the samples can be evaluated via the polarization resistance: a high Rp indicates
a higher corrosion resistance. Figure 8a shows the AC impedance of Nyquist curves for the three
samples. The capacitive arc radius of the curvature of the SLM-manufactured sample is the
smallest, which suggests that the SLM-manufactured specimen has the lowest charge transfer
resistance [51] and thus an inferior corrosion resistance under the test potential (a potential
amplitude of 5 mV). Figure 8b,c refers to the Bode plots for the SLM- and EBM-manufactured
Ti-6Al-4V alloy samples and ISF alloy sample in a 3.5 wt.% NaCl solution.
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Table 2 lists the fitting results of the EIS measurements. It is clear that the Rp (= Rct + Rf)
value is the maximum for the ISF alloy, and the minimum for the SLM-manufactured Ti-
6Al-4V alloy (with more detailed analysis to be given later). This again suggests that the
ISF alloy has the highest corrosion resistance, while the SLM-manufactured alloy has the
lowest corrosion resistance among the three types of samples in the 3.5% NaCl solution.

Table 2. Fitting parameters of EIS for the SLM- and EBM-manufactured and ISF Ti-6Al-4V alloy
samples in the 3.5 wt.% NaCl solution.

Samples Rs
(Ω·cm2)

Rf
(kΩ·cm2)

CPE1
(F·cm−2) n1

Rct
(MΩ·cm2)

CPE2
(F·cm−2) n2 χ2 × 10−4

SLM 12.3 ± 0.1 14.0 ± 0.9 59.02 ± 0.41 0.99 0.69 ± 0.04 14.87 ± 0.16 0.78 6.51
EBM 11.5 ± 0.2 18.8 ± 0.6 96.61 ± 0.93 0.98 0.89 ± 0.08 20.29 ± 0.25 0.82 6.03
ISF 10.9 ± 0.7 48.3 ± 1.1 113.91 ± 1.80 0.92 2.08 ± 0.16 41.27 ± 0.39 0.94 2.84

Furthermore, the results of the electrical circuit fitting along with the chi-square
(χ2) values were obtained and tabulated in Table 2, where the χ2 reflected the quality
of fitting results. A low chi-square value indicates a good fitting quality between the
experimental and the simulated data. The n1 values indicating a capacitive behavior of
the passive film formed on the surface are 0.92, 0.98 and 0.99, for the ISF, EBM- and SLM-
manufactured samples. The electrolyte solution resistance (Rs) values are fairly similar as
well for three samples in the NaCl solution considering the fitting errors. Film resistance
(Rf) reflects the resistance of the film formed on the alloy surface during passivation. There
are some differences in the Rf values among the three samples tested in the NaCl solution,
i.e., 48.3 kΩ·cm2, 18.8 kΩ·cm2 and 14.0 kΩ·cm2 for the ISF, EBM- and SLM-manufactured
samples. This corresponds well to the current density in the passive region in Figure 7.
In general, charge transfer resistance (Rct) is related to the rate of dissolution reaction of
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metals and it is the resistance of charge transfer through double layers [7]. The Rct value
for the SLM-manufactured Ti-6Al-4V is also much (nearly three times) smaller than that
for the ISF Ti-6Al-4V. As a result, the polarization resistance (Rp = Rct + Rf) is highest
for the ISF alloy, and lowest for the SLM-manufactured alloy. The corrosion resistance of
the EBM-manufactured sample lies in-between those of the ISF and SLM-manufactured
samples. This is also corroborated by the Bode impedance curves in Figure 8b,c. These
findings agree well with the previous results obtained in the potentiodynamic polarization
tests, as shown in Figure 7.

The secondary electron SEM images of the ISF, EBM- and SLM-manufactured Ti-6Al-
4V samples after electrochemical measurements are shown in Figure 9. It is seen that some
pores (or hollow holes) were present on the surface of the EBM- and SLM-manufactured
Ti-6Al-4V samples after the electrochemical corrosion tests, with a magnified image shown
in Figure 9d. The corrosion pits in the three tested T-6Al-4V alloy samples increased in the
following sequence: ISF alloy, EBM- and SLM-manufactured Ti-6Al-4V alloy. This suggests
that the passive film formed on the SLM-manufactured alloy exhibits the worst stability and
the passive film formed on the ISF Ti-6Al-4V alloy is most stable against the electrochemical
corrosion in the 3.5 wt.% NaCl solution, which is in good agreement with the Rp values for
the ISF alloy, EBM- and SLM-manufactured Ti-6Al-4V alloy in the EIS tests.

Materials 2022, 15, x FOR PEER REVIEW 11 of 15 
 

 

through double layers [7]. The Rct value for the SLM-manufactured Ti-6Al-4V is also much 
(nearly three times) smaller than that for the ISF Ti-6Al-4V. As a result, the polarization re-
sistance (Rp = Rct + Rf) is highest for the ISF alloy, and lowest for the SLM-manufactured alloy. 
The corrosion resistance of the EBM-manufactured sample lies in-between those of the ISF 
and SLM-manufactured samples. This is also corroborated by the Bode impedance curves in 
Figure 8b,c. These findings agree well with the previous results obtained in the potentiody-
namic polarization tests, as shown in Figure 7. 

The secondary electron SEM images of the ISF, EBM- and SLM-manufactured Ti-6Al-
4V samples after electrochemical measurements are shown in Figure 9. It is seen that some 
pores (or hollow holes) were present on the surface of the EBM- and SLM-manufactured Ti-
6Al-4V samples after the electrochemical corrosion tests, with a magnified image shown in 
Figure 9d. The corrosion pits in the three tested T-6Al-4V alloy samples increased in the 
following sequence: ISF alloy, EBM- and SLM-manufactured Ti-6Al-4V alloy. This suggests 
that the passive film formed on the SLM-manufactured alloy exhibits the worst stability and 
the passive film formed on the ISF Ti-6Al-4V alloy is most stable against the electrochemical 
corrosion in the 3.5 wt.% NaCl solution, which is in good agreement with the Rp values for 
the ISF alloy, EBM- and SLM-manufactured Ti-6Al-4V alloy in the EIS tests. 
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and (c) ISF alloy after the potentiodynamic polarization in a 3.5 wt.% NaCl solution, and (d) a
magnified view of a hollow hole from (b).
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4. Discussion

In terms of the corrosion resistance, the material defects always have a significant
effect, such as phase boundaries, grain boundaries and twin boundaries that are observed
above. The XRD results (Figure 6) and metallographic observations (Figure 3) demonstrate
that the ISF sample and the AM-manufactured alloy samples have different microstruc-
tures. The morphology and volume fraction of the α, β and α′ phases are different, which
subsequently lead to different corrosion-resistant capacities of the three types of Ti-6Al-4V
samples [4]. The relatively weak corrosion resistance in the SLM-manufactured alloy might
be affected by a high density of thin needle-shaped acicular microstructures, compared
with the EBM-manufactured and ISF samples containing the lamellar and equiaxed mi-
crostructures, respectively, as shown in Figure 3. Similar results have also been reported
in [52,53]. The thermodynamic stability of phase boundaries between adjacent α and
β phases is different. The chemical potential gradient is thus formed in the two-phase
microstructure due to different compositions in the two phases. In the needle-shaped
martensitic microstructure, there is a comparatively high volume fraction of interphase
boundaries. Therefore, more microgalvanic cells are susceptible to formation, which pro-
motes the occurrence of corrosion, as observed in the SLM-manufactured Ti-6Al-4V alloy.
In contrast, the ISF alloy possesses an equiaxed microstructure where β phase randomly
surrounds the α phase. The density of the microgalvanic cells is relatively low due to the
low volume fraction of the interphase boundaries. Consequently, its corrosion resistance is
expected to be higher than that of the AM-manufactured Ti-6Al-4V alloy samples.

On the other hand, in the Ti-6Al-4V alloy the β phase is known to contain more V
element which plays an important part in improving its resistance to dissolution [54], as the
oxide film of Ti alloy could be more stable on the β phase than on the α phase. Referring to
the XRD pattern intensities (Figure 6), the volume fraction of β phase is evidently higher in
the ISF sample than in the SLM- and EBM-manufactured Ti-6Al-4V samples. This difference
in the volume fraction of β phase could also lead to some differences in the electrochemical
corrosion behavior. As reported by other researchers [51], the higher fraction of β phase,
which showed a network-like distribution along the α grain boundaries, could prevent
further corrosion of the α phase matrix. Considering the different volume fractions of
β phase in the three current types of samples, it is reasonable to conclude that the ISF
Ti-6Al-4V alloy possesses the best corrosion resistance, while the corrosion resistance of the
EBM- and SLM-manufactured Ti-6Al-4V alloy is relatively lower.

Given that the corrosion resistance between the SLM- and EBM-manufactured Ti-
6Al-4V alloy samples is somewhat different, the internal defects could also be a critical
factor. Electrochemical corrosion performance has relevance with the high density twins
and other defects [55], simply because of the presence of high strain energy which low-
ers the electrochemical potential in these regions. This effect can speed up the anodic
dissolution and consequently increase the corrosion rate. From the TEM observations,
SLM-manufactured sample shows a large number of martensitic twins (Figure 4c–e), which
would weaken its corrosion resistance, while twinning in the EBM-manufactured sample
can hardly be observed. From this point of view, the slightly weaker corrosion resistance in
the SLM-manufactured Ti-6Al-4V alloy in comparison with the EBM-manufactured alloy
could also be understood.

5. Conclusions

In the present study, the corrosion behavior of Ti-6Al-4V alloy manufactured via
two AM technologies (SLM and EBM) and conventional ISF method was evaluated via
electrochemical corrosion tests in a 3.5% NaCl solution, focusing on the influence of mi-
crostructures including the content of β phase and defects. The following conclusions
could be drawn:

1. The three fabrication methods led to different microstructures although all contained
α + β phases to a varying extent. The SLM-manufactured alloy consisted mainly of fine
acicular α’ martensite with a large number of twins and some prior β columnar grains,
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while the EBM-manufactured alloy was composed of columnar α + β structures
with rod-shaped prior β grains in the building direction and fine α platelets. The
microstructure of the ISF alloy exhibited a typical duplex α + β equiaxial shaped
morphology. Furthermore, some small pores were observed in both SLM- and EBM-
manufactured samples.

2. The equiaxed α + β microstructure of ISF sample demonstrated a better corrosion
resistance than the acicular martensitic α′ + β and lamellar α + β microstructures
of AM samples manufactured via SLM and EBM, respectively. This was attributed
to the special benefit of the equiaxed α grains along with the randomly distributed
β phase, where the fraction of phase interface was lower than that of the lamellar
α + β microstructure of the EBM-manufactured alloy, leading to fewer microgalvanic
cells. Additionally, the higher amount of β phase present in the ISF sample can also
improve the corrosion resistance.
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