Silanized Graphene Oxide-Supported Pd Nanoparticles and Silicone Rubber for Enhanced Hydrogen Elimination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Methyl Vinyl Silicone Oil
2.3. Preparation of Pd/SGO
2.4. Preparation of the Getter
2.5. Quantification of Vinyl Content
2.6. Quantification of Molecular Weight
2.7. Absorption Test in Pure H2
3. Results and Discussion
3.1. Synthesis and Characterization of SGO
3.2. Characterization of SR-Pd/SGO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.; Szpunar, J.A. Hydrogen Storage Performance in Pd/Graphene Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 25933–25940. [Google Scholar] [CrossRef]
- Xing, T.; Xu, Y.; Wu, J.; Wang, Y.; Yan, L. Preparation and Characterization of a Novel Vinyl Polysiloxane Getter for Hydrogen Elimination. Materials 2021, 14, 1853. [Google Scholar] [CrossRef]
- Courtney, R.L.; Harrah, L.A. Organic hydrogen getters. J. Mater. Sci. 1977, 12, 175–186. [Google Scholar] [CrossRef]
- Ortiz-Acosta, D.; Moore, T.; Safarik, D.J.; Hubbard, K.M.; Janicke, M. 3D-Printed Silicone Materials with Hydrogen Getter Capability. Adv. Funct. Mater. 2018, 28, 1707285. [Google Scholar] [CrossRef]
- Trujillo, R.E.; Courtney, R.L. Organic hydrogen getters. II. Hydrogenation rates of solid alkynes on palladium-calcium carbonate catalysts. J. Mater. Sci. 1977, 12, 937–945. [Google Scholar] [CrossRef]
- Sangalang, E.; Sharma, H.N.; Saw, C.K.; Gollott, R.; Matt, S.; Wilson, T.; McLean, W.; Maxwell, R.S.; Dinh, L.N. Hydrogen Uptake Kinetics of 1,4-Bis(phenylethynyl)benzene (DEB) Rubberized Coating on Silicone Foam Substrate. ACS Appl. Mater. Interfaces 2020, 12, 3993–4001. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Y.; Fu, H.; Ye, M.; Tang, G.; Pan, J.; Xia, X. Polymer Framework with Continuous Pores for Hydrogen Getters: Molding and a Boost in Getter Rate. ACS Appl. Polym. Mater. 2020, 2, 3243–3250. [Google Scholar] [CrossRef]
- Poh, H.L.; Šaněk, F.; Sofer, Z.; Pumera, M. High-pressure hydrogenation of graphene: Towards graphane. Nanoscale 2012, 4, 7006–7011. [Google Scholar] [CrossRef]
- Adams, B.D.; Chen, A. The role of palladium in a hydrogen economy. Mater. Today 2011, 14, 282–289. [Google Scholar] [CrossRef]
- Pu, X.; Zhang, H.-B.; Li, X.; Gui, C.; Yu, Z.-Z. Thermally conductive and electrically insulating epoxy nanocomposites with silica-coated graphene. RSC Adv. 2014, 4, 15297–15303. [Google Scholar] [CrossRef]
- Wang, J.; Fei, G.; Pan, Y.; Zhang, K.; Hao, S.; Zheng, Z.; Xia, H. Simultaneous reduction and surface functionalization of graphene oxide by cystamine dihydrochloride for rubber composites. Compos. Part A Appl. Sci. Manuf. 2019, 122, 18–26. [Google Scholar] [CrossRef]
- Shao, J.; Qiu, J.; Chen, W.; Wang, H.; Zhang, K.; Wu, J.; Yan, L. Self-assembled monolayers modified and further silanized graphene nanosheets reinforced silicone rubber with highly mechanical performance. Compos. Commun. 2021, 24, 100666. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Yeom, M.S.; Shin, J.W.; Kim, H.; Cui, Y.; Kysar, J.W.; Hone, J.; Jung, Y.; Jeon, S.; et al. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat. Commun. 2013, 4, 2114. [Google Scholar] [CrossRef]
- Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sinha, T.K.; Tao, L.; Li, H.; Zong, C.; Kim, J.K. Synergistic reinforcement of silanized silica-graphene oxide hybrid in natural rubber for tire-tread fabrication: A latex based facile approach. Compos. Part B Eng. 2019, 161, 667–676. [Google Scholar] [CrossRef]
- Kang, H.; Tang, Y.; Yao, L.; Yang, F.; Fang, Q.; Hui, D. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing. Compos. Part B Eng. 2017, 112, 1–7. [Google Scholar] [CrossRef]
- Wall, M. Raman Spectroscopy Optimizes Graphene Characterization. Adv. Mater. Process. 2012, 170, 35–38. [Google Scholar]
- Agrawal, P.R.; Kumar, R.; Teotia, S.; Kumari, S.; Mondal, D.P.; Dhakate, S.R. Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Compos. Part B Eng. 2019, 160, 131–139. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, L.; Feng, W.; Guo, B.; Liu, F.; Jia, D. Rational Design of Graphene Surface Chemistry for High-Performance Rubber/Graphene Composites. Macromolecules 2014, 47, 8663–8673. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wang, J.; Szpunar, J.A. X-ray chemical imaging and the electronic structure of a single nanoplatelet Ni/graphene composite. Chem. Commun. 2014, 50, 2282–2285. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhang, S.-H.; Zou, Y.-F.; Ma, W.-S.; Huang, G.-J.; Li, M.-D. Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chin. J. Polym. Sci. 2019, 37, 189–196. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, S.Y.; Ma, Q.Y. Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black. J. Appl. Polym. Sci. 2003, 89, 1548–1554. [Google Scholar] [CrossRef]
Sample | Silicone Oil (mg) | Titrated Solution (mL) | Vinyl Content (mmol/g) | Theoretical Vinyl Content (mmol/g) |
---|---|---|---|---|
1 | 47 | 2.33 | 11.809 | 13.894 |
2 | 47 | 2.29 | 11.894 | 13.894 |
3 | 44 | 2.60 | 12.000 | 13.886 |
blank sample | 0 | 7.88 | - | - |
Sample | Element Content (%) | |||
---|---|---|---|---|
C | O | Si | N | |
GO | 72.8 | 27.1 | - | - |
SGO | 12.9 | 56.7 | 30.2 | 0.3 |
Sample | Hydrogen Absorption (/g SR) | Improved Capacity (Compared to G3) | Hydrogen Absorption (/mg Catalyst) | Improved Capacity (Compared to G3) |
---|---|---|---|---|
G1 (SR-3%Pd/SGO) | 98.4 mL/g | −4.84% | 32.8 mL/mg | 58.45% |
G2 (SR-Pd/C) | 103.4 mL/g | 0% | 20.7 mL/mg | 0% |
G3 (SR-8%Pd/SGO) | 118.4 mL/g | 14.51% | 29.6 mL/mg | 43.00% |
G4 (SR-10%Pd/SGO) | 127.5 mL/g | 23.31% | 25.5 mL/mg | 23.19% |
G5 (SR-12%Pd/SGO) | 150.6 mL/g | 45.65% | 25.1 mL/mg | 21.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xing, T.; Deng, Y.; Zhang, K.; Wu, Y.; Yan, L. Silanized Graphene Oxide-Supported Pd Nanoparticles and Silicone Rubber for Enhanced Hydrogen Elimination. Materials 2022, 15, 4578. https://doi.org/10.3390/ma15134578
Wang Y, Xing T, Deng Y, Zhang K, Wu Y, Yan L. Silanized Graphene Oxide-Supported Pd Nanoparticles and Silicone Rubber for Enhanced Hydrogen Elimination. Materials. 2022; 15(13):4578. https://doi.org/10.3390/ma15134578
Chicago/Turabian StyleWang, Yu, Tao Xing, Yongqi Deng, Kefu Zhang, Yihan Wu, and Lifeng Yan. 2022. "Silanized Graphene Oxide-Supported Pd Nanoparticles and Silicone Rubber for Enhanced Hydrogen Elimination" Materials 15, no. 13: 4578. https://doi.org/10.3390/ma15134578
APA StyleWang, Y., Xing, T., Deng, Y., Zhang, K., Wu, Y., & Yan, L. (2022). Silanized Graphene Oxide-Supported Pd Nanoparticles and Silicone Rubber for Enhanced Hydrogen Elimination. Materials, 15(13), 4578. https://doi.org/10.3390/ma15134578