Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Octagonal Donuts Micro Texturing Geometry Design A
3.2. Perpendicular Ellipses Micro Texturing Geometry Design B
3.3. Crater Array Micro Texturing Geometry Design C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, D.; Jain, V.K.; Ramkumar, J. Micro texturing on metallic surfaces: State of the art. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 1–24. [Google Scholar] [CrossRef]
- Obilor, A.F.; Pacella, M.; Wilson, A.; Silberschmidt, V.V. Micro-texturing of polymer surfaces using lasers: A review. Int. J. Adv. Manuf. Technol. 2022, 120, 103–135. [Google Scholar] [CrossRef]
- Hu, G.; Song, Y.; Guan, Y. Tailoring metallic surface properties induced by laser surface processing for industrial applications. Nanotechnol. Precis. Eng. 2019, 2, 29–34. [Google Scholar] [CrossRef]
- Quintanilla-Correa, D.I.; Peña-Parás, L.; Maldonado-Cortés, D.; Rodriguez-Villalobos, M.C.; Hernández-Rodríguez, M.A.L. State of the art of surface texturing for biotribology applications. Int. J. Adv. Manuf. Technol. 2021, XIII, 143–150. [Google Scholar] [CrossRef]
- Delgado-Ruíz, R.A.; Calvo-Guirado, J.L.; Moreno, P.; Guardia, J.; Gomez-Moreno, G.; Mate-Sánchez, J.E.; Ramirez-Fernández, P.; Chiva, F. Femtosecond laser microstructuring of zirconia dental implants. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 96, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.; Zouani, O.F.; Plawinski, L.; Botelho do Rego, A.M.; Almeida, A.; Vilar, R.; Durrieu, M.C. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine 2015, 10, 725–739. [Google Scholar] [CrossRef]
- De la Cruz Lorenzo, M.; Portillo, M.; Albaladejo, A.; García, A.; Vázquez de Aldana, J.R.; Moreno, P. Effect of ultrashort laser microstructuring of enamel and dentin surfaces on bond strengths in orthodontics and conservative dentistry. Photon Lasers Med. 2012, 1, 171–182. [Google Scholar]
- Hu, G.; Guan, K.; Lu, L.; Zhang, J.; Lu, N.; Guan, Y. Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications. Engineering 2018, 4, 822–830. [Google Scholar] [CrossRef]
- Ortiz, R.; Aurrekoetxea-Rodríguez, I.; Rommel, M.; Quintana, I.; Vivanco, M.d.; Toca-Herrera, J.L. Laser Surface Microstructuring of a Bio-Resorbable Polymer to Anchor Stem Cells, Control Adipocyte Morphology, and Promote Osteogenesis. Polymers 2018, 10, 1337. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Grenho, L.; Fernandes, M.H.; Daskalova, A.; Trifonov, A.; Buchvarov, I.; Monteiro, F.J. Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram. Int. 2020, 46, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Shivakoti, I.; Kibria, G.; Cep, R.; Pradhan, B.B.; Sharma, A. Laser Surface Texturing for Biomedical Applications: A Review. Coatings 2021, 11, 124. [Google Scholar] [CrossRef]
- Schille, J. Fast, precise, and reliable 3D laser microstructuring. SPIE Newsroom 2010. [Google Scholar] [CrossRef]
- Rupasov, A.E.; Danilov, P.A.; Kudryashov, S.I. Femtosecond-laser microstructuring in transparent materials. J. Phys. Conf. Ser. 2020, 1692, 012011. [Google Scholar] [CrossRef]
- Samoila, C.; Ursutiu, D.; Tavkhelidze, A.; Jangidze, L.; Taliashvili, Z.; Skhiladze, G.; Tierean, M. Nanograting layers of Si. Nanotechnology 2020, 31, 035301. [Google Scholar] [CrossRef]
- Van der Straeten, K.; Burkhardt, I.; Olowinsky, A.; Gillner, A. Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers. Phys. Procedia 2016, 83, 1137–1144. [Google Scholar] [CrossRef]
- Nguyen, A.T.T.; Brandt, M.; Orifici, A.C.; Feih, S. Hierarchical Surface Features for Improved Bonding and Fracture Toughness of Metal-Metal and Metal-Composite Bonded Joints. Int. J. Adhes. Adhes. 2016, 66, 81–92. [Google Scholar] [CrossRef]
- Moldovan, E.; Tierean, M.H.; Stanciu, E.M. Overview of Joining Dissimilar Materials: Metals and Polymers. Brașov Transilv. Univ. 2017, 10, 39–46. [Google Scholar]
- Costa, H.L.; Schille, J.; Rosenkranz, A. Tailored surface textures to increase friction—A review. Friction 2022, 10, 1285–1304. [Google Scholar] [CrossRef]
- Gajrani, K.K.; Sankar, M.R. State of the art on micro to nano textured cutting tools. Mater. Today Proc. 2017, 4, 3776–3785. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Li, L.; Wang, J.; Gao, H.; Wang, G. Cutting performance of micro-textured polycrystalline diamond tool in dry cutting. J. Manuf. Process. 2017, 27, 1–7. [Google Scholar] [CrossRef]
- Sugihara, T.; Nishimoto, Y.; Enomoto, T. Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of Inconel 718. Precis. Eng. 2017, 48, 75–82. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, F.; Zhang, N.; Liu, Q.; Jiang, F. Study on the Cutting Performance of Micro Textured Tools on Cutting Ti-6Al-4V Titanium Alloy. Micromachines 2020, 11, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Cui, H.; Zhang, W.; Li, W.; Jiang, S.; Li, L. Si and Cu ablation with a 46.9-nm laser focused by a toroidal mirror. Opt. Express 2015, 23, 14126–14134. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, E.R.; Concheso Doria, C.; Ocaña, J.L.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Roata, I.C.; Tierean, M.H. Wettability and Surface Roughness Analysis of Laser Surface Texturing of AISI 430 Stainless Steel. Materials 2022, 15, 2955. [Google Scholar] [CrossRef]
- Pou-Álvarez, P.; Riveiro, A.; Nóvoa, X.R.; Fernández-Arias, M.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Lusquiños, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coat. Technol. 2021, 427, 12780. [Google Scholar] [CrossRef]
- Moldovan, E.R.; Concheso Doria, C.; Ocaña Moreno, J.L.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Tierean, M.H. Geometry Characterization of AISI 430 Stainless Steel Microstructuring Using Laser. Arch. Metall. Mater. 2022, 67, 645–652. [Google Scholar]
- Cui, H.; Zhao, Y.; Khan, M.U.; Zhao, D.; Fan, Z. Study of Thermal Effect in the Interaction of Nanosecond Capillary Discharge Extreme Ultraviolet Laser with Copper. Appl. Sci. 2020, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Prakoso, A.T.; Basri, H.; van der Heide, E. Computational Contact Pressure Prediction of CoCrMo, SS 316L and Ti6Al4V Femoral Head against UHMWPE Acetabular Cup under Gait Cycle. J. Funct. Biomater. 2022, 13, 64. [Google Scholar] [CrossRef]
- Rauh, S.; Wöbbeking, K.; Li, M.; Schade, W.; Hübner, E.G. From Femtosecond to Nanosecond Laser Microstructuring of Conical Aluminum Surfaces by Reactive Gas Assisted Laser Ablation. Chem. Phys. Chem. 2020, 21, 1644–1652. [Google Scholar] [CrossRef]
- Rodríguez-Vidal, E.; Sanz, C.; Soriano, C.; Leunda, J.; Verhaeghe, G. Effect of metal micro-structuring on the mechanical behavior of polymer–metal laser T-joints. J. Mater. Process. Technol. 2016, 229, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Vidal, E.; Sanz, C.; Lambarri, J.; Quintana, I. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt. Laser Technol. 2018, 104, 73–82. [Google Scholar] [CrossRef]
- Stanciu, E.M.; Păvălache, A.C.; Dumitru, G.M.; Dontu, O.G.; Besnea, D.; Vasile, I.M. Mechanism of keyhole formation in laser welding. Rom. Rev. Precis. Mech. Opt. Mechatron. 2010, 38, 171–176. [Google Scholar]
- Feng, Y.; Gao, X.; Zhang, Y.; Peng, C.; Gui, X.; Sun, Y.; Xiao, X. Simulation and experiment for dynamics of laser welding keyhole and molten pool at different penetration status. Int. J. Adv. Manuf. Technol. 2021, 112, 2301–2312. [Google Scholar] [CrossRef]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Stat. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef] [Green Version]
Chemical Element | C | Cr | N | Mn | Si | P | S |
---|---|---|---|---|---|---|---|
Concentration (%) | ≤0.08 | 16.00–18.00 | ≤0.045 | ≤1.00 | ≤1.00 | ≤0.040 | ≤0.015 |
Sample | Frequency [kHz] | Speed [mm/s] | No. of Repetition |
---|---|---|---|
A3 | 30 | 300 | 10 |
A13 | 40 | 400 | 10 |
Element | Iron | Chromium | Carbon | ||||
---|---|---|---|---|---|---|---|
Point | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
1 | 70.58 | 42.78 | 11.85 | 7.72 | 17.57 | 49.5 | |
2 | 72.24 | 47.16 | 13.47 | 9.44 | 14.29 | 43.39 | |
3 | 65.55 | 35.72 | 11.82 | 6.92 | 22.64 | 57.36 | |
4 | 70.54 | 44.69 | 13.90 | 9.46 | 15.56 | 45.85 | |
Detector EDX error % | 2(2.01) | 0.4(2.83) | 3.4(19.4) |
Sample | Frequency [kHz] | Speed [mm/s] | No. of Repetition |
---|---|---|---|
B3 | 30 | 300 | 10 |
B13 | 40 | 400 | 10 |
Element | Iron | Chromium | Carbon | Oxygen | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Point | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | ||
1 | 75.22 | 54.18 | 14.43 | 11.16 | 10.35 | 34.66 | - | - | ||
2 | 57.79 | 28.61 | 12.12 | 6.45 | 22.56 | 51.93 | 7.53 | 13.01 | ||
3 | 58.98 | 29.16 | 10.70 | 5.68 | 22.41 | 51.51 | 7.91 | 13.65 | ||
4 | 76.52 | 57.35 | 14.62 | 11.76 | 8.86 | 30.88 | - | - | ||
Detector EDX error % | 1.68(2.6) | 0.34(2.95) | 7.98(16.52) | 1.18(34.37) |
Sample | Frequency [kHz] | Speed [mm/s] | No. of Repetition |
---|---|---|---|
C3 | 30 | 300 | 10 |
C11 | 40 | 400 | 10 |
Element | Iron | Chromium | Carbon | Oxygen | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Point | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | ||
1 | 76.42 | 56.67 | 14.33 | 11.41 | 9.26 | 31.92 | - | - | ||
2 | 78.41 | 62.50 | 14.92 | 12.77 | 6.67 | 24.73 | - | - | ||
3 | 72.10 | 47.98 | 13.61 | 9.73 | 11.79 | 36.47 | 2.50 | 5.82 | ||
4 | 59.96 | 30.50 | 11.32 | 6.19 | 20.91 | 49.45 | 7.81 | 13.87 | ||
5 | 77.56 | 60.92 | 15.27 | 12.88 | 7.17 | 26.20 | - | - | ||
Detector EDX error % | 1.68(2.6) | 0.34(2.95) | 7.98(16.52) | 1.18(34.37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, E.R.; Concheso Doria, C.; Ocaña, J.L.; Istrate, B.; Cimpoesu, N.; Baltes, L.S.; Stanciu, E.M.; Croitoru, C.; Pascu, A.; Munteanu, C.; et al. Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel. Materials 2022, 15, 4580. https://doi.org/10.3390/ma15134580
Moldovan ER, Concheso Doria C, Ocaña JL, Istrate B, Cimpoesu N, Baltes LS, Stanciu EM, Croitoru C, Pascu A, Munteanu C, et al. Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel. Materials. 2022; 15(13):4580. https://doi.org/10.3390/ma15134580
Chicago/Turabian StyleMoldovan, Edit Roxana, Carlos Concheso Doria, José Luis Ocaña, Bogdan Istrate, Nicanor Cimpoesu, Liana Sanda Baltes, Elena Manuela Stanciu, Catalin Croitoru, Alexandru Pascu, Corneliu Munteanu, and et al. 2022. "Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel" Materials 15, no. 13: 4580. https://doi.org/10.3390/ma15134580
APA StyleMoldovan, E. R., Concheso Doria, C., Ocaña, J. L., Istrate, B., Cimpoesu, N., Baltes, L. S., Stanciu, E. M., Croitoru, C., Pascu, A., Munteanu, C., & Tierean, M. H. (2022). Morphological Analysis of Laser Surface Texturing Effect on AISI 430 Stainless Steel. Materials, 15(13), 4580. https://doi.org/10.3390/ma15134580