Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bioceramic
2.2.1. Bioceramic Preparation
2.2.2. Bioceramic Characterization
2.3. Peptide
2.3.1. Peptide Synthesis
2.3.2. Peptide Oxidation
2.3.3. Peptide Characterization
2.4. Functionalized Bioceramic
2.4.1. Functionalization
2.4.2. Characterization of the Functionalized Scaffold
2.5. Biological Assays
2.5.1. Cell Culture
2.5.2. Proliferation Assay
2.5.3. Quantitative Real-Time Polymerase Chain Reaction
2.5.4. Alizarin Staining
2.5.5. Statistical Analysis
3. Results
3.1. Bioceramic Characterization
3.1.1. X-ray Powder Diffraction
3.1.2. TG-DTA
3.1.3. UV-Vis Spectroscopy
3.1.4. Raman Spectroscopy
3.2. Bioceramic Functionalization with BMP_aldehyde
3.3. Raman Spectroscopy
3.4. IR Spectroscopy
3.5. SEM
3.6. BMP Functionalization of MnGC Supports h-Osteoblast Proliferation
3.7. Glass-Ceramics Functionalized with BMP Drive h-Osteoblast Differentiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. In Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; pp. 317–374. ISBN 978-94-024-1221-5. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Soil Components and Human Health; Springer: Dordrecht, The Netherlands, 2018; ISBN 978-94-024-1221-5. [Google Scholar]
- Aschner, M.; Erikson, K. Manganese. Adv. Nutr. 2017, 8, 520–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.H. Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements. In Present Knowledge in Nutrition; Erdman, J.W., Macdonald, I.A., Zeisel, S.H., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 586–607. ISBN 978-0-470-95917-6. [Google Scholar]
- Aschner, J.L.; Aschner, M. Nutritional Aspects of Manganese Homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C. The Role of Nutrients in Bone Health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006, 46, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese Metabolism in Humans. Postprints Univ. Potsdam. Math. Nat. Reihe 2019, 711, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrioni, B.R.; Norris, E.; Li, S.; Naruphontjirakul, P.; Jones, J.R.; de Magalhães Pereira, M. Osteogenic Potential of Sol–Gel Bioactive Glasses Containing Manganese. J. Mater. Sci. Mater. Med. 2019, 30, 86. [Google Scholar] [CrossRef] [PubMed]
- Lüthen, F.; Bulnheim, U.; Müller, P.D.; Rychly, J.; Jesswein, H.; Nebe, J.G.B. Influence of Manganese Ions on Cellular Behavior of Human Osteoblasts in Vitro. Biomol. Eng. 2007, 24, 531–536. [Google Scholar] [CrossRef]
- Kapoor, S.; Brazete, D.; Pereira, I.C.; Bhatia, G.; Kaur, M.; Santos, L.F.; Banerjee, D.; Goel, A.; Ferreira, J.M.F. Impact of Transition Metal Ions on the Structure and Bioactivity of Alkali-Free Bioactive Glasses. J. Non-Cryst. Solids 2019, 506, 98–108. [Google Scholar] [CrossRef]
- Rau, J.V.; Fadeeva, I.V.; Fomin, A.S.; Barbaro, K.; Galvano, E.; Ryzhov, A.P.; Murzakhanov, F.; Gafurov, M.; Orlinskii, S.; Antoniac, I.; et al. Sic Parvis Magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties. ACS Biomater. Sci. Eng. 2019, 5, 6632–6644. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Kalita, V.I.; Komlev, D.I.; Radiuk, A.A.; Fomin, A.S.; Davidova, G.A.; Fursova, N.K.; Murzakhanov, F.F.; Gafurov, M.R.; Fosca, M.; et al. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. Materials 2020, 13, 4411. [Google Scholar] [CrossRef]
- Li, J.; Deng, C.; Liang, W.; Kang, F.; Bai, Y.; Ma, B.; Wu, C.; Dong, S. Mn-Containing Bioceramics Inhibit Osteoclastogenesis and Promote Osteoporotic Bone Regeneration via Scavenging ROS. Bioact. Mater. 2021, 6, 3839–3850. [Google Scholar] [CrossRef]
- Miola, M.; Brovarone, C.V.; Maina, G.; Rossi, F.; Bergandi, L.; Ghigo, D.; Saracino, S.; Maggiora, M.; Canuto, R.A.; Muzio, G.; et al. In Vitro Study of Manganese-Doped Bioactive Glasses for Bone Regeneration. Mater. Sci. Eng. C 2014, 38, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Barrioni, B.R.; Oliveira, A.C.; de Fátima Leite, M.; de Magalhães Pereira, M. Sol–Gel-Derived Manganese-Releasing Bioactive Glass as a Therapeutic Approach for Bone Tissue Engineering. J. Mater. Sci. 2017, 52, 8904–8927. [Google Scholar] [CrossRef]
- Hosseini, S.; Farnoush, H. Characterization and in Vitro Bioactivity of Electrophoretically Deposited Mn-Modified Bioglass-Alginate Nanostructured Composite Coatings. Mater. Res. Express 2018, 6, 025404. [Google Scholar] [CrossRef]
- Nawaz, Q.; Rehman, M.A.U.; Burkovski, A.; Schmidt, J.; Beltrán, A.M.; Shahid, A.; Alber, N.K.; Peukert, W.; Boccaccini, A.R. Synthesis and Characterization of Manganese Containing Mesoporous Bioactive Glass Nanoparticles for Biomedical Applications. J. Mater. Sci. Mater. Med. 2018, 29, 64. [Google Scholar] [CrossRef] [PubMed]
- Cañaveral, S.; Morales, D.; Vargas, A.F. Synthesis and Characterization of a 58S Bioglass Modified with Manganese by a Sol-Gel Route. Mater. Lett. 2019, 255, 126575. [Google Scholar] [CrossRef]
- Curcio, M.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Rau, J.V. Pulsed Laser Deposited Bioactive RKKP-Mn Glass-Ceramic Coatings on Titanium. Surf. Coat. Technol. 2019, 357, 122–128. [Google Scholar] [CrossRef]
- Nawaz, Q.; Ur Rehman, M.A.; Roether, J.A.; Yufei, L.; Grünewald, A.; Detsch, R.; Boccaccini, A.R. Bioactive Glass Based Scaffolds Incorporating Gelatin/Manganese Doped Mesoporous Bioactive Glass Nanoparticle Coating. Ceram. Int. 2019, 45, 14608–14613. [Google Scholar] [CrossRef]
- Westhauser, F.; Wilkesmann, S.; Nawaz, Q.; Schmitz, S.I.; Moghaddam, A.; Boccaccini, A.R. Osteogenic Properties of Manganese-doped Mesoporous Bioactive Glass Nanoparticles. J. Biomed. Mater. Res. 2020, 108, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Rau, J.V.; De Stefanis, A.; Barbaro, K.; Fosca, M.; Yankova, V.G.; Matassa, R.; Nottola, S.A.; Nawaz, Q.; Ali, M.S.; Peukert, W.; et al. Adipogenic, Chondrogenic, Osteogenic, and Antimicrobial Features of Glass Ceramic Material Supplemented with Manganese. J. Non-Cryst. Solids 2021, 559, 120709. [Google Scholar] [CrossRef]
- Barrioni, B.R.; Naruphontjirakul, P.; Norris, E.; Li, S.; Kelly, N.L.; Hanna, J.V.; Stevens, M.M.; Jones, J.R.; de Magalhães Pereira, M. Effects of Manganese Incorporation on the Morphology, Structure and Cytotoxicity of Spherical Bioactive Glass Nanoparticles. J. Colloid Interface Sci. 2019, 547, 382–392. [Google Scholar] [CrossRef]
- Vadera, N.; Ashokan, A.; Gowd, G.S.; Sajesh, K.M.; Chauhan, R.P.; Jayakumar, R.; Nair, S.V.; Koyakutty, M. Manganese Doped Nano-Bioactive Glass for Magnetic Resonance Imaging. Mater. Lett. 2015, 160, 335–338. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Nawaz, Q.; Boccaccini, A.R. Silicate-Based Nanoceramics in Regenerative Medicine. In Nanostructured Biomaterials for Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 255–273. ISBN 978-0-08-102594-9. [Google Scholar]
- Liu, Y.; Lin, R.; Ma, L.; Zhuang, H.; Feng, C.; Chang, J.; Wu, C. Mesoporous Bioactive Glass for Synergistic Therapy of Tumor and Regeneration of Bone Tissue. Appl. Mater. Today 2020, 19, 100578. [Google Scholar] [CrossRef]
- Tripathi, H.; Pandey, G.C.; Dubey, A.; Shaw, S.K.; Prasad, N.K.; Singh, S.P.; Rath, C. Superparamagnetic Manganese Ferrite and Strontium Bioactive Glass Nanocomposites: Enhanced Biocompatibility and Antimicrobial Properties for Hyperthermia Application. Adv. Eng. Mater. 2021, 23, 2000275. [Google Scholar] [CrossRef]
- Yu, Y.; Ding, T.; Xue, Y.; Sun, J. Osteoinduction and Long-Term Osseointegration Promoted by Combined Effects of Nitrogen and Manganese Elements in High Nitrogen Nickel-Free Stainless Steel. J. Mater. Chem. B 2016, 4, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Schiltz, C.; Prouillet, C.; Marty, C.; Merciris, D.; Collet, C.; de Vernejoul, M.-C.; Geoffroy, V. Bone Loss Induced by Runx2 Over-Expression in Mice Is Blunted by Osteoblastic over-Expression of TIMP-1. J. Cell. Physiol. 2010, 222, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Carbonare, L.D.; Donatelli, L.; Bertoldo, F.; Zanatta, M.; Lo Cascio, V. Gene Expression Analysis in Osteoblastic Differentiation from Peripheral Blood Mesenchymal Stem Cells. Bone 2008, 43, 1084–1092. [Google Scholar] [CrossRef]
- Jikko, A.; Harris, S.E.; Chen, D.; Mendrick, D.L.; Damsky, C.H. Collagen Integrin Receptors Regulate Early Osteoblast Differentiation Induced by BMP-2. J. Bone Miner. Res. 1999, 14, 1075–1083. [Google Scholar] [CrossRef]
- Seiffert, D. Detection of Vitronectin in Mineralized Bone Matrix. J. Histochem. Cytochem. 1996, 44, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Salasznyk, R.M.; Williams, W.A.; Boskey, A.; Batorsky, A.; Plopper, G.E. Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. J. Biomed. Biotechnol. 2004, 2004, 24–34. [Google Scholar] [CrossRef]
- Bullock, G.; Atkinson, J.; Gentile, P.; Hatton, P.; Miller, C. Osteogenic Peptides and Attachment Methods Determine Tissue Regeneration in Modified Bone Graft Substitutes. J. Funct. Biomater. 2021, 12, 22. [Google Scholar] [CrossRef]
- Sawyer, A.A.; Hennessy, K.M.; Bellis, S.L. The Effect of Adsorbed Serum Proteins, RGD and Proteoglycan-Binding Peptides on the Adhesion of Mesenchymal Stem Cells to Hydroxyapatite. Biomaterials 2007, 28, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Battista, E.; Causa, F.; Lettera, V.; Panzetta, V.; Guarnieri, D.; Fusco, S.; Gentile, F.; Netti, P.A. Ligand Engagement on Material Surfaces Is Discriminated by Cell Mechanosensoring. Biomaterials 2015, 45, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Zamuner, A.; Battocchio, C.; Cassari, L.; Todesco, M.; Graziani, V.; Iucci, G.; Marsotto, M.; Tortora, L.; Secchi, V.; et al. Bio-Functionalized Chitosan for Bone Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 5916. [Google Scholar] [CrossRef] [PubMed]
- Secchi, V.; Franchi, S.; Ciccarelli, D.; Dettin, M.; Zamuner, A.; Serio, A.; Iucci, G.; Battocchio, C. Biofunctionalization of TiO2 Surfaces with Self-Assembling Layers of Oligopeptides Covalently Grafted to Chitosan. ACS Biomater. Sci. Eng. 2019, 5, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Rampazzo, E.; Dettin, M.; Maule, F.; Scabello, A.; Calvanese, L.; D’Auria, G.; Falcigno, L.; Porcù, E.; Zamuner, A.; Della Puppa, A.; et al. A Synthetic BMP-2 Mimicking Peptide Induces Glioblastoma Stem Cell Differentiation. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2282–2292. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Zamuner, A.; Cassari, L.; D’Auria, G.; Falcigno, L.; Franchi, S.; Contini, G.; Marsotto, M.; Battocchio, C.; Iucci, G.; et al. Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering. Nanomaterials 2021, 11, 2784. [Google Scholar] [CrossRef]
- Ohashi, Y.; Finger, L.W. The Role of Octahedral Cations in Pyroxenoid Crystal Chemistry; I, Bustamite, Wollastonite, and the Pectolite-Schizolite-Serandite Series. Am. Mineral. 1978, 63, 274–288. [Google Scholar]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Crystal Structures of Natural Ternary Apatites; Solid Solution in the Ca5(PO4)3 X(X = F, OH, Cl) System. Am. Mineral. 1990, 75, 295–304. [Google Scholar]
- Boyero Macstre, J.; Fernández López, E.; Gallardo-Amores, J.M.; Ruano Casero, R.; Sánchez Escribano, V.; Pérez Bernal, E. Influence of Tile Synthesis Parameters on the Structural and Textural Properties of Precipitated Manganese Oxides. Int. J. Inorg. Mater. 2001, 3, 889–899. [Google Scholar] [CrossRef]
- Pattanayak, J.; Sitakara Rao, V.; Maiti, H.S. Preparation and Thermal Stability of Manganese Oxides Obtained by Precipitation from Aqueous Manganese Sulphate Solution. Thermochim. Acta 1989, 153, 193–204. [Google Scholar] [CrossRef]
- Krishna Mohan, N.; Rami Reddy, M.; Jayasankar, C.K.; Veeraiah, N. Spectroscopic and Dielectric Studies on MnO Doped PbO–Nb2O5–P2O5 Glass System. J. Alloy. Compd. 2008, 458, 66–76. [Google Scholar] [CrossRef]
- Hameed, A.; Balakrishna, A.; Srinivas, B.; Chandrasekhar, M.; Shareefuddin, Md.; Narasimha Chary, M. Influence of Manganese Ions on Physical and Spectroscopic Properties of Mixed Alkali-Alkaline Earth Oxide Borate Glasses. Optik 2021, 246, 167810. [Google Scholar] [CrossRef]
- Milella, F.; Gallardo-Amores, J.M.; Baldi, M.; Busca, G. A Study of Mn-Ti Oxide Powders and Their Behaviour in Propane Oxidation Catalysis. J. Mater. Chem. 1998, 8, 2525–2531. [Google Scholar] [CrossRef]
- Bykov, V.N.; Osipov, A.A.; Anfilogov, V.N. Raman Spectra and the Structure of Melts in the Na2O-P2O5-SiOSystem. Glass Phys. Chem. 2001, 27, 204–208. [Google Scholar] [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Tutti, F. High-Temperature Raman Spectra and Thermal Expansion of Wollastonite. J. Am. Ceram. Soc. 2005, 80, 2237–2247. [Google Scholar] [CrossRef]
- Leroy, G.; Leroy, N.; Penel, G.; Rey, C.; Lafforgue, P.; Bres, E. Polarized Micro-Raman Study of Fluorapatite Single Crystals. Appl. Spectrosc. 2000, 54, 1521–1527. [Google Scholar] [CrossRef]
- Bose, V.C.; Biju, V. Optical, Electrical and Magnetic Properties of Nanostructured Mn3O4 Synthesized through a Facile Chemical Route. Phys. E Low Dimens. Syst. Nanostruct. 2015, 66, 24–32. [Google Scholar] [CrossRef]
- Radinger, H.; Connor, P.; Stark, R.; Jaegermann, W.; Kaiser, B. Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by X-ray Photoelectron and Operando Raman Spectroscopy. ChemCatChem 2021, 13, 1175–1185. [Google Scholar] [CrossRef]
- Tu, A. Raman Spectroscopy in Biology: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1982. [Google Scholar]
- Di Foggia, M.; Ottani, S.; Torreggiani, A.; Zamuner, A.; Dettin, M.; Sanchez-Cortes, S.; Cesini, D.; Tinti, A. Surface Enhanced Raman Scattering and Quantum-Mechanical Calculations on Self-Assembling Oligopeptides. J. Raman Spectrosc. 2018, 49, 982–996. [Google Scholar] [CrossRef]
- Kurouski, D.; Postiglione, T.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I.K. Amide I Vibrational Mode Suppression in Surface (SERS) and Tip (TERS) Enhanced Raman Spectra of Protein Specimens. Analyst 2013, 138, 1665. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, M.; Caetano, F.A.; Pashee, F.; Ferguson, S.S.G.; Lagugné-Labarthet, F. Tip-Enhanced Raman Spectroscopy of Amyloid β at Neuronal Spines. Analyst 2017, 142, 4415–4421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Hegab, H.E.; Lvov, Y.; Dale Snow, L.; Palmer, J. Immobilization of Cellulase on a Silica Gel Substrate Modified Using a 3-APTES Self-Assembled Monolayer. SpringerPlus 2016, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berktas, I.; Ghafar, A.N.; Fontana, P.; Caputcu, A.; Menceloglu, Y.; Okan, B.S. Facile Synthesis of Graphene from Waste Tire/Silica Hybrid Additives and Optimization Study for the Fabrication of Thermally Enhanced Cement Grouts. Molecules 2020, 25, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Kimura, T.; Furutani, Y. Distortion of the Amide-I and -II Bands of an α-Helical Membrane Protein, Pharaonis Halorhodopsin, Depends on Thickness of Gold Films Utilized for Surface-Enhanced Infrared Absorption Spectroscopy. Chem. Phys. 2013, 419, 8–16. [Google Scholar] [CrossRef]
- Socrates, G. Infrared Characteristic Group Frequencies: Tables and Charts, 2nd ed.; Wiley: Chichester, UK; New York, NY, USA, 1994; ISBN 978-0-471-94230-6. [Google Scholar]
- Kawane, T.; Qin, X.; Jiang, Q.; Miyazaki, T.; Komori, H.; Yoshida, C.A.; dos Santos Matsuura-Kawata, V.K.; Sakane, C.; Matsuo, Y.; Nagai, K.; et al. Runx2 Is Required for the Proliferation of Osteoblast Progenitors and Induces Proliferation by Regulating Fgfr2 and Fgfr3. Sci. Rep. 2018, 8, 13551. [Google Scholar] [CrossRef]
- El-Amin, S.F.; Lu, H.H.; Khan, Y.; Burems, J.; Mitchell, J.; Tuan, R.S.; Laurencin, C.T. Extracellular Matrix Production by Human Osteoblasts Cultured on Biodegradable Polymers Applicable for Tissue Engineering. Biomaterials 2003, 24, 1213–1221. [Google Scholar] [CrossRef]
- Hanna, H.; Mir, L.M.; Andre, F.M. In Vitro Osteoblastic Differentiation of Mesenchymal Stem Cells Generates Cell Layers with Distinct Properties. Stem Cell Res. Ther. 2018, 9, 203. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Biomarkers of Vascular Calcification in Serum. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 98, pp. 91–147. ISBN 978-0-12-821558-6. [Google Scholar]
- Damia, C.; Marchat, D.; Lemoine, C.; Douard, N.; Chaleix, V.; Sol, V.; Larochette, N.; Logeart-Avramoglou, D.; Brie, J.; Champion, E. Functionalization of Phosphocalcic Bioceramics for Bone Repair Applications. Mater. Sci. Eng. C 2019, 95, 343–354. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, W.; Qiu, K.; Chen, L.; Wang, W.; Nie, W.; Mo, X.; He, C. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2015, 7, 15777–15789. [Google Scholar] [CrossRef]
- Oliver-Cervelló, L.; Martin-Gómez, H.; Reyes, L.; Noureddine, F.; Ada Cavalcanti-Adam, E.; Ginebra, M.; Mas-Moruno, C. An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Adv. Healthc. Mater. 2021, 10, 2001757. [Google Scholar] [CrossRef]
- Zamuner, A.; Brun, P.; Ciccimarra, R.; Ravanetti, F.; Veschini, L.; Elsayed, H.; Sivolella, S.; Iucci, G.; Porzionato, A.; Silvio, L.D.; et al. Biofunctionalization of Bioactive Ceramic Scaffolds to Increase the Cell Response for Bone Regeneration. Biomed. Mater. 2021, 16, 055007. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Scorzeto, M.; Vassanelli, S.; Castagliuolo, I.; Palù, G.; Ghezzo, F.; Messina, G.M.L.; Iucci, G.; Battaglia, V.; Sivolella, S.; et al. Mechanisms Underlying the Attachment and Spreading of Human Osteoblasts: From Transient Interactions to Focal Adhesions on Vitronectin-Grafted Bioactive Surfaces. Acta Biomater. 2013, 9, 6105–6115. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence | |
---|---|---|
GAPDH | Fw: 5′-agtgccagcctcgtcccgta-3′ | Rv: 5′-caggcgcccaatacggccaa-3′ |
RUNX2 | Fw: 5′-cagtgacaccatgtcagcaa-3′ | Rv: 5′-gctcacgtcgctcattttg-3′ |
VTN | Fw: 5′-ggaggacatcttcgagcttct-3′ | Rv: 5′-gctaatgaactggggctgtc-3′ |
SPARC | Fw: 5-cgcagacctgacatccagta-3 | Rv: 5-ggctgtcccaatcagaagg-3 |
Wavelength (nm) 120 °C | Wavelength (nm) 700 °C | Wavelength (nm) 1100 °C | Assignments |
---|---|---|---|
516 | 6A1g (S) → 4T1g (G) transition of Mn2+ ion in octahedral position [45] | ||
485 | 486 | 5Eg → 5T2g transition of Mn3+ ions in octahedral position [45] | |
469 | 473 | 6A1g (S) → 4T1g (G) transition of Mn2+ ion [46] | |
305 | 305 | 294 | Mn3O4 [47] |
265 | MnO (O2− → Mn2+ charge-transfer transition) [45] |
Frequency (cm−1) 700 °C | Frequency (cm−1) 1100 °C | Assignments [48] |
---|---|---|
1044 | W [49] (SiO), F [50] (Eg: νasPO4) | |
1023 | W [49] (SiO) | |
1012 | W [49] (SiO) | |
997 | W [49] (SiO) | |
967 | W [49] (SiO), F [50] (E2g, Ag: νsPO4) | |
954 | νsPO4 | |
890 | W [49] | |
777 | combination mode or P-O-P defect band | |
666 | Mn2O3 [51,52], Ca-F2 | |
633 | 638 | W [49], MnO tetraedric |
591 | F [50] (Ag: δPO4) | |
582 | 581 | W [49], F [50] (E2g: δPO4), ρSiO |
518 | ||
511 | W [49] | |
431 | 429 | F [50] (E1g: δPO4) |
412 | W [49] | |
391 | W [49], Mn3+-O in Mn3O4 [51,52] | |
371 | W [49] | |
337 | W [49], Mn3O4 [51,52] | |
325 | W [49], F [50] (Ca-F2) | |
308 | F [50] (E2g1 lattice mode, Ca-F) | |
299 | W [49], F (Ca-PO4) | |
230 | W [49] | |
166 | 168 | F [50] (E2g4 lattice mode) |
140 | F [50] (Ag2 lattice mode) | |
131 | F [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassari, L.; Brun, P.; Di Foggia, M.; Taddei, P.; Zamuner, A.; Pasquato, A.; De Stefanis, A.; Valentini, V.; Saceleanu, V.M.; Rau, J.V.; et al. Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. Materials 2022, 15, 4647. https://doi.org/10.3390/ma15134647
Cassari L, Brun P, Di Foggia M, Taddei P, Zamuner A, Pasquato A, De Stefanis A, Valentini V, Saceleanu VM, Rau JV, et al. Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. Materials. 2022; 15(13):4647. https://doi.org/10.3390/ma15134647
Chicago/Turabian StyleCassari, Leonardo, Paola Brun, Michele Di Foggia, Paola Taddei, Annj Zamuner, Antonella Pasquato, Adriana De Stefanis, Veronica Valentini, Vicentiu Mircea Saceleanu, Julietta V. Rau, and et al. 2022. "Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition" Materials 15, no. 13: 4647. https://doi.org/10.3390/ma15134647
APA StyleCassari, L., Brun, P., Di Foggia, M., Taddei, P., Zamuner, A., Pasquato, A., De Stefanis, A., Valentini, V., Saceleanu, V. M., Rau, J. V., & Dettin, M. (2022). Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. Materials, 15(13), 4647. https://doi.org/10.3390/ma15134647