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Abstract: Noninvasive, continuous glucose detection can provide some insights into daily fluctuations
in blood glucose levels, which can help us balance diet, exercise, and medication. Since current
commercially available glucose sensors can barely provide real-time glucose monitoring and usually
imply different invasive sampling, there is an extraordinary need to develop new harmless methods
for detecting glucose in non-invasive body fluids. Therefore, it is crucial to design (bio)sensors that
can detect very low levels of glucose (down to tens of µM) normally found in sweat or tears. Apart
from the selection of materials with high catalytic activity for glucose oxidation, it is also important
to pay considerable attention to the electrode functionalization process, as it significantly contributes
to the overall detection efficiency. In this study, the (ZnO tetrapods) ZnO TPs-based electrodes were
functionalized with Nafion and chitosan polymers to compare their glucose detection efficiency.
Cyclic voltammetry (CV) measurements have shown that chitosan-modified ZnO TPs require a lower
applied potential for glucose oxidation, which may be due to the larger size of chitosan micelles
(compared to Nafion micelles), and thus easier penetration of glucose through the chitosan membrane.
However, despite this, both ZnO TPs modified with chitosan and Nafion membranes, provided quite
similar glucose detection parameters (sensitivities, 7.5 µA mM−1 cm−1 and 19.2 µA mM−1 cm−1,
and limits of detection, 24.4 µM and 22.2 µM, respectively). Our results show that both electrodes
have a high potential for accurate real-time sweat/tears glucose detection.

Keywords: glucose; chitosan; Nafion; ZnO tetrapods; cyclic voltammetry; chronoamperometry

1. Introduction

Real-time glucose detection is a hot topic at the moment, since continuous glucose
monitoring can preserve more than 420 million people over the world from severe conse-
quences caused by diabetes, no matter the type [1]. In addition, continuous noninvasive
glucose detection (e.g., indirect detection in sweat, tears, or saliva) has the advantage over
conventional glucometers that require blood sampling by painful and frequent finger-
pricking [2–4]. At this stage, the question of a correlation between a person’s blood and
sweat/tears/saliva glucose levels may arise, but thanks to recent findings, one can say
that such a correlation can be found for every human’s metabolism, or that the device for
real-time glucose monitoring can, at least, warn the user of critical glucose levels and the
occurrence of hyperglycemia and hypoglycemia [5,6]. Glucose levels in non-invasive body
fluids (e.g., sweat) are known to be in the range of 17–100 µM; therefore, transducers capa-
ble of detecting such a small amount of glucose content are required [7,8]. In this regard,
transducers based on nanoscaled materials can be used, since their properties (electronic,
optical, chemical, etc.) get changed even with the slightest disturbances in surroundings
and, thus, can be used as a sensor response [9,10].
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Among all nanoscaled materials, semiconductors are considered to be the most appli-
cable for (bio)sensors due to their diversity, relatively low cost, and advanced properties
(e.g., optical, electrical, chemical) [11,12]. Transducers made of semiconductors have been
used in almost all types of (bio)sensing applications including optical [13,14], electrochemi-
cal [15], piezoelectric [16], electronic [17], etc. Out of all nanoscaled semiconductors, zinc
oxide (ZnO) is one of the most important due to its biocompatibility, low toxicity, and
shape diversity (thin films, spheres, rods, tetrapods, flowers, etc.) [18–20]. For example,
thin ZnO films prepared by (ALD) atomic layer deposition have proven themselves in
photoluminescence-based (PL-based) detection of Grapevine virus A-type proteins [21],
while ZnO nanorods appeared promising for electrochemical glucose detection with a de-
tection limit (LOD ~60 µM) suitable for glucose detection in non-invasive body fluids [22].
However, it is worth noting that the electrochemical glucose (or other redox species) detec-
tion is also highly dependent on the transducer, and it is essential to use one with a higher
surface-to-volume ratio, and better conductivity (lower resistivity) [23,24]. In this case,
according to Sulciute et al., ZnO tetrapods have an advantage over both ZnO nanospheres
and ZnO nanorods because they provide a percolation path with fewer barriers, resulting
in lower voltage drop [25], and possess highest active surface enabling adsorption of higher
amount of bioreceptors for specific interaction with analytes. In addition, the enzymatic
glucose (bio)sensor performance on ZnO-based transducers also depends on how the
functionalization of ZnO surface was carried out [20].

The functionalization strategy of different transducers (including ZnO) usually re-
quires several consequent steps to be performed. At the initial step, ZnO is treated with
various cross-linking agents (e.g., glutaraldehyde) [1,26], at the second-glucose oxidase
(GOx) deposition [27], and at the final-deposition of a polymer layer [28–30]. The last
one plays an essential role, as it simultaneously performs several important functions:
(i) prevents of GOx from leaking out, (ii) permits charge transfer through it, and (iii) re-
duces interference by ionic substances [31]. These polymers can be either synthetic or
organic. Nafion is the most widely used synthetic polymer [32,33], and chitosan is the most
commonly used among biopolymers [34–36]. Given that they have different physicochemi-
cal properties, they will affect the efficiency of the electrochemical glucose detection process
in different ways. Therefore, it is important to investigate the glucose detection parameters
on ZnO TPs using two different functionalization strategies based on Nafion and chitosan.
This would shed some light on which polymer is better suited for such applications, this
would improve different detection performances.

In this study, ZnO TPs were used for electrochemical glucose detection using two different
strategies of ZnO TPs functionalization with Nafion and chitosan. Samples with Nafion
were denoted as ZnO TPs/Nafion, while samples with chitosan were denoted as ZnO
TPs/chitosan. Besides, chemical, structural properties of the fabricated electrodes were
investigated by means of Fourier-transform infrared (FTIR), Raman, XRD spectroscopies
and scanning electron microscopy (SEM). In addition, the real-time amperometric determi-
nation of glucose was performed, and the main detection parameters were calculated and
compared to determine which polymer had the best effect on the detection process.

2. Materials and Methods

Morphology/structure of the ZnO TPs was studied by scanning electron microscopy
and energy dispersive spectroscopy (SEM and EDS) (JEOL, Tokyo, Japan, JSM7001F) The
structural state of samples was analyzed by means of X-ray diffraction (XRD) (PANalytical,
Malvern, UK, X’pert3pro MPD diffractometer) working with a Cu lamp (λ = 1.5418 Å).
Raman spectrum was measured by means of a Renishaw micro-Raman spectrometer with a
confocal microscope. Electrochemical measurements (cycling voltammetry and chronoam-
perometric glucose detection) were performed using GAMRY 620 potentiostat (Warminster,
PA, USA). Jasco FT/IR 4700 Fourier Transform Infrared Spectrometer (Oklahoma City, OK,
USA) was used in order to obtain the Fourier-transform infrared (FTIR) spectra.
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Nafion, Chitosan, Glutaraldehyde (GA), glucose, and glucose oxidase were purchased
in Merck KgaA (Darmstadt, Germany).

ZnO tetrapods (ZnO TPs) were fabricated by the environmentally friendly, catalyst-
free oxidative-metal-vapor-transport method. The method includes thermal evaporation of
Zn powder at 1000 ◦C for 1 h in the air in a ceramic crucible, followed by ZnO nucleation
and ZnO TPs growth [1]. Obtained ZnO TPs powder was white, indicating the formation
of ZnO from metallic Zn in presence of atmospheric O2.

The functionalization of ZnO TPs with Nafion was performed in accordance with our
previous study [1]. In brief, the prepared ZnO TPs (3 mg) sample was mixed with Nafion
(1 mL of 2% EtOH solution). Then, the droplet (8 µL) of this mixture was placed on the
ITO glass (working electrode) and dried for 1 h at 65 ◦C. Once cooled, the electrode was
cross-linked by GA (30 min, RT). After that, GOx was added (8 µL of 20 mg/mL, overnight
at 4 ◦C) to produce a selective layer against glucose. Finally, the electrode was coated with
the additional layer of Nafion polymer (5 µL of 2% Nafion in EtOH) and stored for no more
than 1 day at 4 ◦C before use.

The chitosan-functionalized ZnO TPs electrodes were prepared in accordance with
Ref. [37] (with slight modifications). Then, 8 µL of 3 mg/mL ZnO TPs in PBS solution was
deposited on the ITO glass and dried for 1 h at 65 ◦C. The electrode then was cross-linked
by GA (30 min, RT). After that, GOx was added (8 µL of 20 mg/mL, overnight at 4 ◦C) to
produce a selective layer against glucose. Finally, the electrode was coated with the layer of
chitosan biopolymer (5 µL of 0.5 wt% chitosan in 1% acetic acid) and stored for no more
than 1 day at 4 ◦C before use.

3. Results and Discussion
3.1. Structural Properties of ZnO TPs, ZnO TPs/Chitosan, and ZnO TPs/Nafion Samples

After the successful synthesis of ZnO TPs, their morphology and structural properties
was studied using SEM and XRD. Figure 1a,b represents SEM images of as-synthesized
ZnO TPs consisting of 4 pods extending from one nucleus with an average pod length of
about 8 ± 2 µm, and a diameter estimated at about 400 ± 150 nm. It can be seen that ZnO
TPs are equally elongated into space and form massive networks with the required parame-
ters. [38]. In order to study the phase composition of ZnO TPs, XDR measurement has been
performed (Figure 1c). The peaks at 2θ = 32.57◦ (001), 2θ = 35.3◦ (002), 2θ = 37.37◦ (101),
2θ = 49.27◦ (102), 2θ = 59◦ (110), 2θ = 66.71◦ (200), 2θ = 69.45◦ (201), 2θ = 72.5◦ (004), and
2θ = 76.1◦ (202) confirm ZnO wurtzite structure. The lattice parameters were calculated
as a = 3.25 Å, c = 5.21 Å. It should be emphasized that no additional peaks representing
impurity phases were found, indicating the high purity of the prepared ZnO TPs. Further-
more, EDS mapping of the ZnO TPs/chitosan and ZnO TPs/Nafion samples (Figure 2a,b)
show the content of zinc (Figure 2a,b (green maps)) and oxygen (Figure 2a,b (red maps))
in ZnO TPs, while the carbon (Figure 2a,b (dark blue maps)) content can be attributed
to the chitosan and Nafion polymeric membranes. In addition, this mapping indicates
homogeneous dispersion of Zn and O.

Raman spectroscopy is a very useful and efficient technique for determining the
chemical composition of materials. In the present study, Raman spectroscopy was used
to confirm ZnO TPs wurtzite structure as well as to compare spectra of ZnO TPs and
ZnO TPs/chitosan, and ZnO TPs/Nafion samples. Figure 3a,b show Raman spectra of the
above-mentioned samples, where the lower (light green) curve in both graphs represents
the Raman spectrum on ZnO TPs with several (Ehigh

2 − Elow
2 , A1(TO), Ehigh

2 ) peaks that
correspond to ZnO wurtzite structure [39]. The middle (red) curve in Figure 2b represents
the Raman spectrum of Nafion with several vibration peaks (950, 1020, 1216 and 1290 cm−1)
that correspond to previously proposed Nafion spectra [40]. Peaks at 950 cm−1 indicate the
C-O-C symmetric stretching, while peaks at 1226, 1290 cm−1 are contributed by C-F2 and
C-C degenerate stretches, respectively [40]. The Raman spectrum of the ZnO TPs/Nafion
composite sample shows some artifacts of both materials, but with modifications, including
the appearance of an intense peak at 2807 cm−1, which may correspond to C-H stretching.
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The bands at 1654 cm−1 and 1591 cm−1 correspond to ν(C=O) and δ(NH2) modes
which appear due to partial acetylation of NH2 groups in the chitosan polymer [41]. The
peak at 2870 cm−1 is similar to the one in the Ref. [41], and may correspond to the C-H
stretching [42]. In contrast to ZnO TPs/Nafion where both materials contributed, ZnO
TPs/chitosan Raman spectrum does not include any artifacts of the chitosan spectrum and
only includes the Ehigh

2 ZnO peak.
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Figure 3. Raman spectra of ZnO TPs/Nafion (blue curve in figure (a)), and ZnO TPs/chitosan (blue
curve in figure (b)) samples. Here, the light blue spectra in (a,b) are attributed to the ZnO TPs, the
red curve in figure (a) is the Raman spectrum of Nafion, while the red curve in figure (b) is attributed
to the chitosan polymer.

Fourier-transform infrared (FTIR) measurements were carried out to analyze the
interactions between the ZnO TPs/chitosan and ZnO TPs/Nafion. Figure 4 represents
FTIR spectra of the chitosan- and Nafion-treated ZnO TPs electrodes. The spectra of both
membranes show very similar characteristic peaks all over the wavenumbers diapason
including small the peak at 806 cm−1 (-CF2-CF2 stretch), while the peak at 970 cm−1 can be
associated with C-O-C vibration [43]. The intense peak at 1146 cm−1 is contributed by the
symmetric stretching of –CF2 groups, while peaks observed at 1058 cm−1 and 1207 cm−1

can be attributed to the symmetric and asymmetric stretching vibrations of SO−3 groups,
respectively [43]. Peaks between 2923 and 2854 cm−1 can be associated with C-H symmetric
and asymmetric stretching, respectively [44]. The peak at 1625 cm−1 indicates the presence
of residual N-acetyl groups (C=O stretching of amide I) in the chitosan membrane, while
the peak at 1547 cm−1 (ZnO TPs/Nafion curve) remained undetermined [44]. The broad
peak between 3030 and 3700 cm−1 indicates the development of the hydrogen-bonding
network [43,45].
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3.2. Glucose Detection on ZnO TPs/Chitosan, and ZnO TPs/Nafion Samples

The direct electrochemistry of GOx at ZnO TPs/chitosan (Figure 5a) and ZnO TPs/Nafion
(Figure 5b) has been studied by cyclic voltammetry in PBS (pH ~ 7.4) solution contained
0.3 mM of glucose. These measurements enabled to estimate the H2O2 oxidation and
oxygen reduction potentials that were further applied to chronoamperometric glucose
detection. One may observe that the H2O2 oxidation and oxygen reduction potentials
of the ZnO TPs/chitosan electrode were 0.076 V and−0.185 V, respectively, and were
significantly lower than those of the ZnO TPs/Nafion electrode (0.244 V and −0.435 V for
H2O2 oxidation and oxygen reduction, respectively). The differences in redox potentials and
peak currents of the ZnO TPs/chitosan and ZnO TPs/Nafion electrodes could be explained
by altered mass transfers through the different micellar structures of the polymers. The
detailed mechanism will be proposed in the next paragraph.
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Figure 5. CV curves of ZnO TPs/chitosan (a) and ZnO TPs/Nafion (b) measured in PBS solution
consisting of 0.3 mM of glucose. Glucose detection performances on ZnO TPs/chitosan (c) and ZnO
TPs/Nafion electrodes (d). Measurements were carried out in electrochemical cell at applied potential
−0.185 V for the ZnO TPs/chitosan electrode, and at −0.435 V for the ZnO TPs/Nafion electrode.

The glucose detection on ZnO TPs/chitosan and ZnO TPs/Nafion electrodes were
measured by chronoamperometry measurements (Figure 5c,d). The chronoamperome-
try curves were taken in the cathodic mode (negative potentials), which makes it pos-
sible to eliminate interference caused by other species [1]. The stairs-like behavior of
the chronoamperometry curves indicated the typical response of the GOx-treated elec-
trodes to different concentrations of glucose that were sequentially added to the elec-
trochemical cell. Based on these measurements, we were able to estimate important
parameters regarding glucose detection on chitosan- and Nafion-treated ZnO TPs elec-
trodes. The slopes of the plotted calibration curves (inserts Figure 5a,b) have the phys-
ical meaning of the sensitivities toward glucose, the values of the sensitivities for ZnO
TPs/chitosan and ZnO TPs/Nafion electrodes (SZnO TPs/chitosan=17.5 ± 1.6 µA mM−1 cm−1
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and SZnO TPs/Nafion = 19.2 ± 1.3 µA mM−1 cm−1) slightly differ, indicating that the selec-
tion of the polymer (when other conditions and parameters are equal) does not play a
significant role in the efficiency of glucose detection. The limits of detection (LOD) were cal-
culated using Equation (1) [1] and were equal to 24.4 ± 2.1 µM and 22.2 ± 1.7 µM for ZnO
TPs/chitosan and ZnO TPs/Nafion electrodes, respectively. The limits of quantification
(LOQ) were calculated using Equation (2) and were equal to 217 ± 21 µM and 192 ± 17 µM
for ZnO TPs/chitosan and ZnO TPs/Nafion electrodes, respectively.

LOD = 3.3·
√

n·σ/b, (1)

LOQ = 10σ/b, (2)

where σ is the standard deviations of the negative control, n is the number of tests, and b is
the slope of the curve from in the inset Figure 5c,d. It can be concluded that the electrodes
treated with chitosan showed a lower efficiency of glucose detection since all the essential
detection parameters were worse. In comparison, the LOD of the ZnO TPs/chitosan
electrode was about 9% higher than that of the ZnO TPs/Nafion electrode, while the
respective sensitivity was about 8% lower. The measured LOD and sensitivity of ZnO TPs
electrodes modified by chitosan and Nafion point out that our electrodes are more suitable
for the glucose detection in non-invasive body fluids (where glucose content is down to
tens µM), while, for example, chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline
(PAni) electrodes reported in [46] are intended for use in blood glucose measurement,
since their sensitivity lies in the mM range. Moreover, the fabrication process of chitosan
(CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) electrodes is much more complex
than in the case of ZnO TPs/chitosan and ZnO TPs/Nafion electrodes.

3.3. Comparison of Chitosan and Nafion Semi-Permeable Membranes

Semipermeable membranes such as chitosan and Nafion play an important role in
the production of electrodes for the electrochemical detection of analytes. Several key
functions have been attributed to them, including mass transfer, enzyme trapping, and
preventing their leakage [47]. It is known that hydrophilic and hydrophobic domains have
naturally micellar polymer membranes which permit transport and pre-concentration of
cations through the membrane structure [48]. For example, the Nafion micelle membrane
is intensively used in the electrode biofunctionalization, but the Nafion-based membrane
usually suffers from quite limited time stability, which results in the reduced lifetime and
activity of the immobilized enzyme [49]. Moreover, Nafion usually referred to as a “forever
chemical”, is neither fully destroyed in the environment nor biocompatible. On the other
hand, chitosan semi-permeable membranes are made from insect shells and crustaceans,
so they have excellent biocompatibility and biodegradability [50]. It is also well known
for its low cost (if compared to Nafion), chemical inertness, high mechanical stability, and
non-toxicity, which makes it attractive for biosensor application. Chitosan is stable and
insoluble in water solutions, and similarly to the Nafion polymer, it forms micelles as the
result of hydrophobic and hydrophilic segment separation [49]. In this regard, chitosan
could substitute the Nafion polymer membranes in enzymatic (bio)sensors applications
and other related applications.

Owing to the fact that in this study, no significant improvement of (bio)sensor response
was observed between ZnO TPs/chitosan and ZnO TPs/Nafion electrodes, as well as quite
similar sensitivities and LODs, one may assume that the selection of the semi-permeable
membrane does not play an important role in overall detection performance. Despite
these similarities, there are also significant changes in CV measurements as different redox
potentials. It was the oxygen reduction and H2O2 oxidation reaction on the chitosan-treated
electrode that occurred at the lower potentials than for the Nafion-treated electrode, which
may be explained by the different micellar structures of the semi-permeable membranes.
Given the fact that electrochemical flux is highly dependent on the membrane’s micelles
sizes, and the molecular weight of the analyte molecule that penetrates the membrane, it is
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very important to select membranes which could pass large (bio)molecules [51]. Taking into
account that the glucose molecule is large enough to cause restructuring and plugging of
micellar structure, that would affect glucose flux through the membrane. One may assume
that the large glucose molecule would require a higher applied potential to seep through
the smaller micelles, while bigger micelles would not interfere with glucose flux [49].
Thus, the lower potential of the H2O2 oxidation on the ZnO TPs/chitosan electrode can be
explained by the chitosan membrane with bigger micelles than those of the ZnO TPs/Nafion
membrane (d1 > d2 in Figure 6). This assumption is in good agreement with the previously
reported data where the change in micelles size resulted in the changed ionic flux through
the membrane [49,51].
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4. Conclusions

In this study, ZnO TPs/chitosan and ZnO TPs/Nafion electrodes were fabricated
and used for real-time glucose detection in PBS. ZnO TPs were synthesized by the envi-
ronmentally friendly, catalyst-free oxidative-metal-vapor-transport method. Successful
functionalization of ZnO TPs was carried out using Nafion and chitosan polymers with
different micellar structures. The pods’ length of as-fabricated ZnO TPs was in the range
6–10 µm, while the average pod’s diameter was about 400 nm. The XRD measurement
pointed out the high purity of the fabricated ZnO TPs powder, since no peaks that cor-
respond to any impurities were observed. FTIR and Raman spectroscopy measurements
confirm the deposition of chitosan and Nafion membranes over the ZnO TPs, which means
that ZnO TPs/Nafion and ZnO TPs/chitosan samples were successfully fabricated.

The CV measurement showed that the chitosan-modified ZnO TPs electrode required
the application of a lower potential for glucose oxidation (than for the ZnO TPs/Nafion
electrode) due to larger micelles, which allow glucose to pass through more easily. More-
over, when other conditions and parameters are equal, the selection of polymer membrane
for electrode functionalization does not play a significant role. The low LODs (24.4 µM
and 22.2 µM, respectively) and LOQs (217 µM and 192 µM, respectively) of the ZnO
TP/chitosan and ZnO TP/Nafion electrodes demonstrate the promise of glucose detection
in non-invasive body fluids (e.g., sweat, tears).
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doktoranckie w zakresie nanotechnologii” no. POWR.03.02.00–00-I032/16.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Myndrul, V.; Coy, E.; Babayevska, N.; Zahorodna, V.; Balitskyi, V.; Baginskiy, I.; Gogotsi, O.; Bechelany, M.; Giardi, M.T.;

Iatsunskyi, I. MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic
electrochemical glucose sensor. Biosens. Bioelectron. 2022, 207, 114141. [CrossRef] [PubMed]

2. Sun, M.; Pei, X.; Xin, T.; Liu, J.; Ma, C.; Cao, M.; Zhou, M. A Flexible Microfluidic Chip-Based Universal Fully Integrated
Nanoelectronic System with Point-of-Care Raw Sweat, Tears, or Saliva Glucose Monitoring for Potential Noninvasive Glucose
Management. Anal. Chem. 2022, 94, 1890–1900. [CrossRef] [PubMed]

3. Zheng, L.; Liu, Y.; Zhang, C. A sample-to-answer, wearable cloth-based electrochemical sensor (WCECS) for point-of-care
detection of glucose in sweat. Sens. Actuators B Chem. 2021, 343, 130131. [CrossRef]

4. Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Ma, H.; Wang, C.; Zhang, M.; Wang, X.; Li, S.; Chen, M. Alloyed AuPt nanoframes loaded on
h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectrochemical biosensor for accurate monitoring glucose in
human tears. Biosens. Bioelectron. 2021, 192, 113490. [CrossRef]

5. Sempionatto, J.R.; Moon, J.-M.; Wang, J. Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data
Processing for Predicting Blood Glucose Concentrations. ACS Sens. 2021, 6, 1875–1883. [CrossRef]

6. Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation Between Sweat Glucose and Blood Glucose in Subjects with
Diabetes. Diabetes Technol. Ther. 2012, 14, 398–402. [CrossRef]

7. Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A graphene-based
electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11,
566–572. [CrossRef]

8. Nyein, H.Y.Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.; Lin, Y.; et al.
Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv.
2019, 5, eaaw9906. [CrossRef]

9. Rim, Y.S.; Chen, H.; Zhu, B.; Bae, S.-H.; Zhu, S.; Li, P.J.; Wang, I.C.; Yang, Y. Interface Engineering of Metal Oxide Semiconductors
for Biosensing Applications. Adv. Mater. Interfaces 2017, 4, 1700020. [CrossRef]

10. Pullano, S.; Critello, C.; Mahbub, I.; Tasneem, N.; Shamsir, S.; Islam, S.; Greco, M.; Fiorillo, A. EGFET-Based Sensors for
Bioanalytical Applications: A Review. Sensors 2018, 18, 4042. [CrossRef]

11. Borghei, Y.-S.; Hosseinkhani, S. “Semiconductor quantum dots” in biomedical opportunities. J. Lumin. 2022, 243, 118626. [CrossRef]
12. Zhang, M.; Adkins, M.; Wang, Z. Recent Progress on Semiconductor-Interface Facing Clinical Biosensing. Sensors 2021, 21, 3467.

[CrossRef] [PubMed]
13. Myndrul, V.; Coy, E.; Bechelany, M.; Iatsunskyi, I. Photoluminescence label-free immunosensor for the detection of Aflatoxin B1

using polyacrylonitrile/zinc oxide nanofibers. Mater. Sci. Eng. C 2021, 118, 111401. [CrossRef] [PubMed]
14. Tamashevski, A.; Harmaza, Y.; Slobozhanina, E.; Viter, R.; Iatsunskyi, I. Photoluminescent Detection of Human T-Lymphoblastic

Cells by ZnO Nanorods. Molecules 2020, 25, 3168. [CrossRef] [PubMed]
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