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Abstract: This paper deals with the problem of the influence of surface topography on the results
of thermal diffusivity measurements when determined using the instantaneous surface heat source
method, also called the pulse method. The analysis was based on numerical tests carried out using
Comsol Multiphysics software. The results of experimental investigations on the actual material
structure using an electron microscope, an optical microscope and a profilometer were used to
develop a numerical model. The influence of the non-uniformity of the surface of the tested sample
on the determined values of half-time of the thermal response of the sample’s rough surface to the
impulse forcing on the opposing flat surface was determined by developing the data for simulated
measurements. The effect of the position of the response data reading area on the obtained simulation
results was also analyzed. The obtained results can be used to improve the accuracy of experimental
heat transfer studies performed on thin-film engineering structures depending on the uniformity and
parallelism of the material applied to engineering structures. The difference in half-life determination
error results for various analyzed models can be as high as 16.7%, depending on the surface from
which the responses of the heating impulse are read. With an equivalent model in which 10% of
the material volume corresponds to the rough part as a single inclusion, hemisphere, the error in
determining thermal diffusivity was equal to 3.8%. An increase in the number of inclusions with
smaller weight reduces an error in the determination of thermal diffusivity, as presented in the paper.

Keywords: COMSOL Multiphysics; numerical modeling; heat transfer; rough structures; profilometry

1. Introduction

The process of coating the surface of an object or substrate with a very thin layer is
referred to as coating. The layer can be a type of thin polymer sheet, paint, or varnish
used for protective/decorative purposes. Most industrial products go through the coating
process not only to prevent corrosion, but also to make them more attractive. The coating
consists of the development of a thin layer that can be varnished or polymeric on a fabric
or substrate, etc. [1].

Novas et al. [2] described the characteristics of the contributions made by scientists
around the world in the field of solar coatings between 1957 and 2019. Photovoltaic systems
depend greatly on the physical and chemical properties of their materials, the wavelength
of the captured light, its intensity and angle of incidence, surface or texture characteristics,
and the presence or absence of superficial coatings. In addition to these factors, tempera-
ture, pressure, machinability, durability, price, and lifetime cost are important in material
selection.

To prevent dangerous failures, Cui et al. [3] developed a thin-film thermocouple
temperature sensor to measure the temperature of the rolling elements of the bearing in
real time while the train is running, bearing in mind the characteristics of the rapid change
in the temperature of the bearings.

He et al. [4] investigated the coating technology of the DLC film for the orbiting screw
of scroll compressors in air conditioning systems in order to reduce the friction coefficient
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and improve film adhesion to the substrate, wear resistance, and compressor efficiency.
The friction coefficient of the DLC film is much lower than that of an anodic oxide film, as a
result of which the DLC film has a good wear-reducing effect and excellent self-lubricating
properties.

Mohammed et al. [5] investigated ZnS thin layers prepared by deposition in a chemical
bath. They investigated the structural properties of films deposited and annealed at a
temperature of 300 ◦C. This research found that relatively small grains were randomly
formed and the deposited film had a heterogeneous surface with some cracks. Additionally,
it was observed that the annealed samples had higher content of Zn than S, and the white
color of the deposited thin layers did not change after annealing.

Poddighe et al. [6] addressed the problem of producing hydrophobic thin films from
the liquid phase. Interest in the production of hydrophobic surfaces is constantly grow-
ing due to their wide application in several industries. Thin liquid-phase layers can be
deposited on a variety of surfaces using a wide variety of techniques, and the design of
the precursor solution offers the possibility to fine-tune the hydrophobic properties of
the coating layers. The general trend is to design multi-functional films that have differ-
ent properties in addition to being hydrophobic. The control of surface wettability is a
key technological issue in several areas, such as microelectronics, separation membranes,
car windows, self-cleaning surfaces, motion indicators, and biotechnology [7–12]. The
leading technologies used for hydrophobic/hydrophilic thin film deposition and surface
modification include chemical vapor deposition [13], laser ablation [14,15], and plasma
treatment [16]. Superhydrophobic surfaces have a variety of uses in self-cleaning, anti-icing
and anti-stick applications. Haj Ibrahim et al. [17] investigated the effect of surface topogra-
phy on hydrophobic coatings both numerically and experimentally. Profilometry was used
to create a numerical representation of the surface.

In addition to physical deposition techniques, the wet chemistry route, in particular sol–
gel processing [18], has also met with great interest in the production of highly controlled
hydrophobic-hydrophilic systems. Li et al. [19] proposed and improved an easy and
cost-effective method involving acid etching and stearic acid self-assembly to successfully
produce Al-based superhydrophobic fin tube heat exchangers. The 3D topography analysis
showed suitable micro-nanostructures, whereas XPS and FTIR spectra showed chain self-
assembly, essential for the realization of a superhydrophobic surface.

For temperature measurement, Dong et al. [20] produced a weak thin AlN layer
with numerous defects. It was found that the thin film diffraction peak (002) increased
monotonously with an increasing annealing temperature and an annealing time. This
phenomenon is attributed to the evolution of defects in the AlN film network. Therefore,
the relationship between defects and annealing can be expressed by the shift (002) of
the diffraction peak, which can be used for temperature measurement. In addition, an
algorithm for temperature interpretation was established, and software for temperature
interpretation using MATLAB was also built. The temperature interpretation is realized
by the software with a relative error of less than 7%. This study is of great importance
in promoting the accurate measurement of the temperature at the surface of the high-
temperature component. An accurate measurement of the surface temperature of a turbine
blade and the control of its temperature distribution is an important basis for diagnosing
turbine blade failure. The methods of measuring the surface temperature of turbine blades
mainly include thin-film thermocouples [21–23], temperature indicating paint [24], infrared
radiation [25–27], and irradiation crystals [28–30]. Based on the advantages of irradiating
crystals, the authors [20] proposed an easy and cheap method of temperature measurement
using a thin-film crystal. It was noted that the crystal quality could be strengthened after
annealing [31–33], indicating that the AlN thin layer is a promising material for temperature
measurement.

On the other hand, the thickness of the coating dramatically affects the functionality of
the coatings. Accordingly, techniques used to determine thickness are of great importance
for research and technology related to coatings. The use of thin films has become ubiquitous
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in many areas of the science and industry sectors. Coatings are widely used to obtain a
synergistic effect between the characteristics of the substrate and the coating material. They
can improve the physical, chemical, and aesthetic properties and lower the cost of the final
product. For all these reasons, thickness measurement in composite materials is mandatory,
both for obtaining the desired properties in the final component, and in order to keep costs
under control [34,35].

The aim of this work is to address the problem of heat transfer in unevenly shaped sam-
ples based on previously published experimental studies in a temperature-sensitive paint
(TSP) material [36]. It also deals with ongoing research on pressure-sensitive paint (PSP),
which is dedicated to wind tunnel testing [37,38]. Due to the unproblematic application of
this paint on surfaces, it is also used for industrial and scientific measurements [39–41]. The
use of paint, particularly in wind tunnels, involves measurements that are quick-changing
but with not much variation in the temperature measurement range; therefore, the authors
of article [36] presented the thermophysical properties of the paint used in experimental
studies in this field. However, during the measurements, the authors observed a large
influence of the roughness of the prepared test samples on the measurement of thermal dif-
fusivity determined using the classical method [42–44], as well as when using the modified
method [45–47], especially of the sputtered or applied surface opposite to the flat substrate,
similarly to Refs. [36,48–50].

In the case of heat transfer studies based on the determination of the global surface
temperature distribution, it is necessary to observe, in the analysis, the thermal properties
of all layers [36], as well as the very topography of the surface opposite to the area of
influence of the laser pulse. Therefore, the thermal properties of the layers should be
known as accurately as possible, as should the surface topography itself. TSP, similar to
PSP, consists of molecular sensors embedded in a binder, usually polymer-based, which can
affect the production of samples with a small cross-sectional dimension that automatically
implies the problem of obtaining perfectly flat sample surfaces for experimental testing.

The determination of surface topography is particularly important when studying
thin-film structures and the physical properties of materials whose property depends on
the thickness of the sample (in particular, if the thickness is a square function, as is the case
of determining thermal diffusivity by the laser flash method (LFA—Laser Flash Analysis),
where the thickness is to the second power). Therefore, the determination of the thermal
diffusivity of materials aerosolized on surfaces is not straightforward and is subject to
high methodological error. By using an optical profilometer, it is possible to determine the
topography and, at a later stage, to include it in numerical simulations to determine the
accuracy of the thermal diffusivity parameter.

The use of numerical calculations by means of commercial software is increasingly
popular, especially in mechanical engineering [51,52]. Comsol Multiphysics software is
very frequently used for calculations in the area of heat transfer, as well as for the multi-
physics simulation platform [53,54]. Recently it has also been particularly popular for heat
transfer calculations in thin-film structures [55–62]. The influence of waviness is of great
importance in calculations of heat transfer phenomena in thin films and in complex flow
models used in, among other things, aviation technology, e.g., rocket nozzles [63], and in
heat conduction itself in microchannel flows [64], which is a frequently tackled problem of
modern mechanical engineering.

This study attempts to investigate the thermophysical properties of the Temperature
Sensitive Paint (TSP) coating applied by spraying with an airbrush using numerical tests
of substitute models. The error in determining the half-life was determined, and directly
translates into the error in determining the thermal diffusivity of the coating.

2. Subject of Numerical Research

In the research presented here, a numerical analysis of heat transfer was carried
out in models corresponding approximately to the structure of paint sprayed on a flat
surface using UniTemp temperature-sensitive paint, manufactured by Innovative Scientific



Materials 2022, 15, 4755 4 of 15

Solutions Incorporated (ISSI, Dayton, OH, USA). The thickness of the prepared model and
the surface topography were determined to be massive and 90:10 (flat part of the sample:
upper part—irregularities on the sample), which was simulated as inclusions in the form
of hemispheres. Because of the problem of surface accuracy, the surfaces of this layer were
checked using an optical profilometer (Figure 1a,b) and an electron microscope (Figure 1e,f).
For testing purposes (for numerical calculations), a unit layer and maximum thickness
deviations of approximately 10% were modeled (one variant of up to 20% was also made
for checking). To illustrate the maximum deviation from parallelism of the sample, the
roughness of the sputtered material is shown (Figure 1c,d). After a visual analysis, several
geometric models were prepared. They are presented later in this article. The samples were
modeled in such a manner that on one side there was a flat surface (in line with real-world
testing), while on the opposite side, the surface was non-parallel, which corresponds to the
replacement model of structure non-uniformity in real-world testing [36].
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image, (c) typical profile (red line cross-section), (d) diagram of a normalized dimensional spec-
tral analysis result, (e,f) SEM images of TSP layer fragment separation for microscopic structure
inspection.

For the empirical studies, several samples were made with very different surfaces. In
one batch of test samples for real-world testing, the coating thickness was not uniform and
varied from 27 to 32 micrometers (Figure 1e,f). The inclusions stood out significantly, as can
be seen in the electron microscope images. The densities and dimensions of the geometric
TSP carriers were determined from the representative coating thickness. In a further batch
of samples, the surface roughness of the TSP layer was examined and characterized by 2D
and 3D surface scanning, using an FRT MicroProf 100 (FRT GmbH, Bergisch-Gladbach,
Germany) optical profilometer. The morphology of the 3D surface is shown in Figure 2a.
Figure 2b shows the results of the surface mapping. The surface profile along the red line
in Figure 1c is shown in Figure 1d. The spectrum average is 45 µm, while 80% of the data
points are within ±15 µm of this value.
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Figure 2. Heat transfer model for laser radiation coordinate system and initial conditions: (a) semi-
transparent sample, (b) temperature rise on back surface and determination of half-life, where:
g—effective sample thickness, x—Cartesian coordinate of a one-dimensional sample.

Because the original material was applied to a flat substrate, one surface of the material
created for the simulation is flat (the effect of the laser pulse causing the temperature rise
will be simulated on this surface). A numerical simulation of impulsive forcing, applied to
the determination of thermal diffusivity, such as in [65], will make it possible to assess the
applicability of the finite element method to the influence of the parallelism of the surface
of the material under investigation.

3. Methodology for Determining Thermal Diffusivity

The thermal diffusivity parameter, or thermal diffusivity coefficient, characterizes
the behavior of a physical object under conditions of undetermined heat transfer and is a
parameter determined experimentally in solid-state physics using an indirect method to
specify thermal conductivity. Its value, through thermomechanical coupling, determines
the magnitude of the loads to which a structure subjected to rapidly changing temperature
may be exposed [66]. This parameter is difficult to determine for thin films due to the
limitations of standard measurement methods, particularly for nonparallel sample surfaces.
In physical terms, diffusivity is the ratio between the heat-transport properties and the heat
storage capacity of a medium.

One of the most common methods for the determination of this parameter is the
pulsed surface forcing method, which is based on the solution of a second-order Fourier
differential equation with appropriate boundary and initial conditions in the sample, on
which a laser pulse is applied to the front surface and the thermal response on the surface
opposite to the thermal forcing is examined [42].

Despite the increasing number of modern laser techniques and non-contact tempera-
ture measurements in high-accuracy diffusometers [65], it is still quite important to prepare
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samples with flat parallel surfaces for testing. In accordance with the test methodology, the
samples have parallel surfaces (Figure 2), and the measurement of the temperature rise is
measured surface-to-surface from the side opposite to the laser forcing. Currently, there
is no methodology for developing test results in software if there are uneven inclusions.
Hence, unless it is possible to prepare flat test specimens, an estimate of the measurement
error of such materials should be introduced. Therefore, this paper specifies the percentage
error in the determination of the thermal diffusivity value of a material with known ther-
mophysical parameters based on the example of previous experimental studies using the
commercial software Comsol Multiphysics by determining the half-life.

In Parker’s pulse method, there is a simple relationship between sample thickness
and half-life defined by Relation (1). For the purpose of this work, the half-life will be
determined in accordance with the methodology shown in Figure 2.

The thermal diffusivity in Parker’s method is determined from the following depen-
dence [42]:

a =
1.38·l2

π2·t0.5
(1)

where l is the sample thickness, t0.5 is the time after which half of the maximum excess
temperature on the sample’s rear surface has been reached.

4. Numerical Model

Several geometrical models of the samples were prepared for the numerical tests. All
models were designed in such a manner that the elements occurring above the parallel
surfaces represent 10% of the total sample mass. Assuming that the material is homoge-
neous, and that the experimental tests were carried out for axially symmetrical samples, for
the purposes of numerical calculations, the sample has a unit dimension in each direction.
The model was assumed to have isothermal edges on the outer sides, and the laser pulse
was simulated by releasing energy onto the bottom surface. As in the experimental study,
the samples were covered with flake graphite to improve the absorption of the laser flash
energy on the shot side as well as on the opposite side to improve the registration of the
infrared thermal response on the readout side of the response in the numerical simulation.
The reading took place under ideal conditions in which no additional well-conductive
layers were required.

A few sample elements corresponding to 10% of the mass of the whole sample were
prepared. The tested models are shown in Figure 3a–e. The geometric dimensions are given
in Table 1.
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Figure 3. Exemplary geometrical models in the calculation program Comsol: (a) 1 hemisphere,
(b) 3 hemispheres, (c) 5 hemispheres, (d) cube, (e) part of hemisphere.

Table 1. Geometric dimensions of numerical models in relation to unit value.

No Type of
Inclusion

Number of
Hemispheres

Radius of
Hemisphere [mm]

Hemisphere Share in
Total Mass [%]

1 spherical 0 0 0
2 spherical 1 0.3655 10
3 spherical 2 0.2901 10
4 spherical 3 0.2535 10
5 spherical 4 0.2300 10
6 spherical 5 0.2137 10
7 spherical 1 0.4605 20
8 spherical part 1 0.48 10
9 cube 1 0.4642—cube edge 10

Geometric models were created in the manner previously described, and with test
parameter settings as below:

The subdomain settings were as follows:

− General equation of heat transfer used in the model in Comsol Multiphysics:

ρcp
∂T
∂t

+∇(−k∇T) = 0 (2)

− Thermophysical properties of the tested material (Table 2):

Table 2. Thermophysical properties of the tested material.

No Thermophysical
Parameter Symbol Value Unit

1 Thermal conductivity k 0.3 W/m K
2 Density ρ 1500 kg/m3

3 Heat capacity at constant
pressure c 1100 J/kg K

4 Temperature T(t0) 273.15 k1
5 Inward heat flux 0 100,000 (<0.01) W/m2

− Element settings for temperature: Lagrange–Quadratic.

The boundary settings were as follows:
All planes were aligned symmetrically except for the bottom plane, where a laser

pulse of less than 10 ms with an inward heat flux of 105 W/m2 was simulated (Figure 4).
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5. Findings of Numerical Research

Numerical tests were carried out for seven different models (Table 1) with pre-
determined boundary and starting conditions. In the numerical test procedure, the bottom
surface corresponds to a sample aerosolized onto a flat metal plate, so it is flat, and the laser
pulse was simulated on it. The temperature waveform from the nonparallel top surface
was read at 0.0001 s intervals in the first temperature rise range (up to 0.02 s) and then the
reading frequency was reduced to 0.0005 s.

With the models prepared in this way, half-life was checked for each model and for
the parallel surfaces of the model (without the sphere part), as well as for the sphere itself.
In addition, results were also given for a model with 20 per cent volume in the hemisphere
element (Figure 6a,b). The obtained half-life results are included against the figures for each
model. A comparison of extreme temperature increments at two points, i.e., at the parallel
surface and at the highest point on the hemisphere, is also presented, in combination
with the temperature change at the surface affected by the thermal forcing (Figure 6c). An
exemplary model of the temperature distribution in the sample is also presented (Figure 6d).
Next, the values for all the models tested are presented in a graphical form (Figure 6e) as a
function of the number of hemispheres depicted as black dots on the graph. The red dots
correspond to the time value t0.5 for the sample with 20% inclusion volume for both the
sphere and the base and similarly the green color to the time value t0.5 for the sample with
10% share volume.
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Figure 6. Distribution of temperature rise on the rear surface of the samples: (a) flat surface (without
sphere), (b) spherical surface, (c) temperature distribution in selected characteristic points in the
model, (d) example of temperature distribution in the sample after a laser shot, (e) half-life for
different variants tested numerically.

The value of the half-life for the flat-parallel sample is 13.2 ms, while each deviation
from parallelism introduces an error and, depending on the number of inclusions, this
parameter changes. The values of these changes are shown in the table below (Table 3).
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Table 3. Half-life and error of its determination for different configurations of the tested material.

Number of Hemispheres Place of Measurement t0.5 [ms] Error [%]

0 Whole back surface 13.2 0

1 Whole back surface 13.7 3.8

2 Whole back surface 13.6 3.0

3 Whole back surface 13.4 1.5

4 Whole back surface 13.3 0.8

5 Whole back surface 13.26 0.5

1 From the surface of the
hemisphere 10% 14.9 12.9

1 From the surface of the
hemisphere 20% 14.5 9.8

1 From the surface around a
parallel sphere 10% 12.1 8.3

1 From the surface around a
parallel sphere 20% 11.0 16.7

1 Whole rear surface 20% 13.7 3.8

1 Whole back surface (inclusion
cube) 12.8 3.0

1 Whole back surface (part of
sphere—10%) 13.5 2.3

6. Discussion

The presented procedure complements the determination of thermal diffusivity error
for rough or uneven samples in the broad procedure of pulsed thermal testing, which
further develops Parker’s method. In Parker’s method, various additional real effects
accompanying the study of the heat conduction phenomenon are taken into account, except
the influence of surface non-uniformity. Therefore, the methodology presented in this
paper makes it possible to estimate the error of the determination of the thermal diffusivity
parameter. With the additional technique of imaging the topography with, e.g., an optical
profilometer, it is possible to determine an uneven volume in the sample to determine the
spread of the error in the determination of the correct value.

The combination of numerical modeling and the finite element method with exper-
imental tests and the use of a profilometer will allow a more accurate determination of
thermal diffusivity values especially for materials that are problematic to manufacture
with regard to the recommendations of the test methodology. Numerical measurements
including surface non-uniformity can contribute to increasing the accuracy of thermal
diffusivity measurements by pulse forcing methods. With this approach, it will be possible
to determine the thermal properties of a material not only for perfectly manufactured
samples, but for a whole range of materials that are difficult to apply in such a way as to
produce perfectly flat opposite surfaces, such as paints. In previous research [36], the au-
thors presented results assuming the parallelism of the samples [36], providing information
on roughness and, as a complement to this, the potential for error due to surface irregularity.
The method presented here shows the effect of bumps in the form of hemispheres whose
volume corresponds to 10% (or 20%) of the volume of the sample roughness made for
empirical testing. Any form of surface roughness can be used during testing once the
geometric model has been implemented in the numerical calculations.

The obtained results illustrate the difference between the thermal diffusivity of the
investigated material and the effective thermal diffusivity (TD), i.e., on the basis of the TD
obtained from processing the measurement data of the material structure study when the
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structure geometry differs from the model one, the obtained results have to be interpreted
as effective.

This research also provides a quantitative result. The differences in the determined
diffusivity value of the resultant structure can be interpreted as actual accuracy data. The
differences in the determination methodology, which involves using surface topography
test data to specify the volumetric contribution of surface structures and, on this basis,
determining the deviation of the test result from the true value, can be used in real-world
testing.

The methodology for determining differences, which involves using the data of surface
topography to specify the volume contribution of surface structures and, on this basis,
determining the deviations of the test outcome from the true value, can be exploited in
real testing. In this way, it is possible to determine the value of the corrections to the
measurement results. In scientific works conducted based on numerical calculations of thin
layers, authors have tried to simplify numerical models due to the extremely large number
of computational points, which does not always translate into improvement of the obtained
results, as presented in the work of Yin S et al. [67]. The obtained results are correlated with
the author’s own research [36], and represent a quantitative correction for empirical data.
Therefore, this paper focuses on the introduction of simplified computational models to
illustrate the phenomenon of heat transfer itself and the determination of calculation errors
in determining the half-life resulting from surface roughness.

In addition, the author tried to prove that the error in determining thermal diffusivity
(indirectly by determining the half-life) is less than 3% when the entire volume in the
non-uniform sample is replaced with the average thickness. It should be borne in mind that
it is not possible to produce perfectly flat surfaces, and the roughness does not have to be
uniform in accordance with the Gaussian distribution during the production of thin layers,
as presented, inter alia, in the work of Z Ebrahiminejad et al. [68]. The author hopes that
the methodology presented by him will be used to make computational corrections to the
thermophysical parameter, thermal diffusivity, during the implementation of experimental
research on similar subjects.

7. Conclusions

This paper presents the results of a study on the thermophysical properties of TSP
coating applied by airbrush spraying using numerical replacement model studies. The
error in determining half-life was determined, which translates directly into the error in
determining the thermal diffusivity of the material. The numerical studies of the TSP
paint were complemented by the results for TSP structures obtained by the paint casting
method, which initiated the analysis of the issue. This analysis has contributed to a better
understanding and determination of the thermal diffusivity of a material with a non-
uniform TSP shell geometry and, at the same time, can be a methodology for testing any
other material with non-planar topography. The difference in half-life determination error
results for the different analyzed models can be as high as 16.7%, depending on the surface
from which the responses are read on the surface opposite the impulse forcing surface.
When reading the temperature from the entire rear surface, the error with the analyzed
models was equal to 3.8% for the replacement model, where 10% of the volume was in one
hemisphere. However, the greater the number of inclusions and the closer the surface is to
the ideal sample, the smaller is the error will be. Thus, it was confirmed that this method
is particularly suitable for materials that are layered on top of other materials, with the
simultaneous problem of maintaining the opposite surfaces in parallel, which is crucial
in determining the exact heat transfer parameters. The presented methodology as well as
the test results themselves may be helpful in improving the accuracy of heat transfer tests
using TSP, PSP, or other methods.
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No. 451/RN/2020, founded by the Polish Air Force University for 2021.
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