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Abstract: The railway wheel is the key component of high-speed railway train. To assure the safety
in service, higher requirements are put forward in this study for the composition, microstructure
uniformity, and comprehensive properties of wheel materials. In this paper, the high throughput
quantitative distribution characterization methods of composition, microstructure, inclusions and
Vickers hardness of high-speed railway wheel materials based on the spark source original position
analysis technique, high throughput scanning electron microscope (SEM) combined with image batch
processing technology, and automatic two-dimensional quantitative distribution analysis technique
of inclusions and micro hardness have been studied. The distribution trend of the content of nine
elements, size and quantity of sulfides and oxides, ferrite area fraction, and Vickers hardness from
the wheel tread surface to the radial depth of about 50 mm below the surface has been discussed. The
influence of inclusions distribution on the element segregation and the effect of rim-chilling process
with different water spraying angle on the distribution of microstructure and micro hardness have
been investigated. It was found that unsynchronized cooling on both sides of the rim altered the
phase behavior of ferrite and pearlite and obvious inhomogeneity distribution of ferrite appeared,
which led to the asymmetrical Vickers hardness in areas near or away from the flange. Based on the
quantitative characterization of area fraction and micro hardness on the same location of wheel rim, a
statistical mapping relationship between ferrite area fraction and Vickers hardness was established.

Keywords: tread; quantitative distribution; ferrite; inclusion; hardness; rim-chilling process

1. Introduction

The railway wheel is the key component of high-speed railway train and has been used
in a demanding environment with high normal contact forces and significant tangential
forces. The resulting stresses often exceed the yield stress of the as-manufactured wheel
material, leading to plastic flow, wear, and fatigue damage [1–3]. Therefore, higher re-
quirements have been put forward for the composition, microstructure and comprehensive
properties of wheel materials to assure the safety in service [4]. Non-metallic inclusions
are often the main cause of wheel fracture or fatigue failure [5–8] and the stress concen-
tration around the inclusion easily leads to the formation of micro cracks and holes with
the results of the deformation of the matrix and the formation and development of large
cracks. Steels used for high-speed railway wheel are often designed with ultra-low oxygen
content (≤15 ppm) and moderate sulfur content (≤150 ppm) to diminish the influence of
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non-metallic inclusions on catastrophic failures. The microstructure of medium carbon
wheel steel is mostly composed of lamellar pearlite and a small amount of proeutectoid
ferrite [9]. The composition and microstructure of high-speed wheels have great influence
on the hardness and impact toughness of high-speed wheels. The addition of elements
C, Si, Mn and other microalloying elements plays an important role in the final optimiza-
tion of microstructure and properties [10–15]. The element segregation or non-uniform
microstructure distribution in the key area from the wheel tread surface to the radial depth
of about 50 mm will seriously affect the quality and performance of railway wheel [16–19].
Therefore, it is necessary to comprehensively characterize the composition, microstructure
and properties distribution of the key parts of the wheel rim, and to explore the effect
of heat treatment process on the distribution of microstructure and micro hardness. It
will be helpful for the parameter optimization of heat treatment process and improve the
performance of wheel rim.

At present, there are few studies on the composition distribution of elements, the
quantitative distribution of inclusions and microstructure in the key area of railway wheel
rim. The characterization of segregation degree for the full surface of large size high-speed
train wheel was carried out based on the original position analytical statistical distribution
technique [20]. But the elemental quantitative distribution on the key area of wheel rim
has not been discussed and the influence of microstructure on the elemental distribution
has not been investigated. In fact, the different microstructure such as ferrite, pearlite
and bainite and their volume fraction distribution have great influence on fatigue crack
resistance in the wheel steel. It was found that fatigue micro-cracks mostly initiated close to
interface regions between soft and hard phases. The bainitic phase could obviously retard
fatigue crack propagation of steel, whereas the ferrite contrarily exhibited deteriorated
crack resistance [21]. Tian et al. [22] investigated the hardness on rim sides and found that
the quenching process parameters had great influence on the hardness distribution. But
the relationship between the microstructure homogeneity and hardness distribution has
not been discussed. Therefore, the influence of heat treatment process, the compositions
and microstructure distribution on the properties of key area of wheel rim need to be
further studied and explored. In this paper, the high throughput quantitative distribution
characterization method of composition, microstructure and hardness of high-speed railway
wheel materials have been studied. the high throughput scanning electron microscope was
used to automatically acquire the microstructure images of a large size area of the rim tread
for the first time. Combined with the image batch processing method, the quantitative
distribution map of ferrite area fraction on the key area of wheel was obtained. At the
same time, the scanning electron microscope (SEM) combined with high performance
energy spectrum technology were used and the original position quantitative statistical
distribution characterization of the inclusions near the tread area of the wheel rim has
been performed. The statistical mapping correlations of composition, microstructure and
micro hardness on the same location of wheel rim were investigated, and the effects of
wheel rim-chilling process on the ferrite distribution and Vickers hardness distribution
were also discussed.

2. Materials and Methods
2.1. Composition and Process of Experimental Samples

Two samples were cut from the rim region of high-speed railway wheel. One sample
was used for the content determination the of Cr, Mo, V, Cu, Al, Mn, Si, P, C, and S by spark
discharge atomic emission spectrometric method (Spark-AES) [23] and another sample was
used for the determination of oxygen element by pulse heating inert gas fusion-infra-red
absorption method. The average content of main elements and the standard deviation of the
results for three measurements are shown in Table 1. Composite deoxidation process was
adopted with total oxygen content less than 0.002%. Stage quenching method was applied
for heat treatment as described in literature [1] and water spray cooling was adopted only
for tread area of wheel rim.
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Table 1. The content of main elements in high-speed railway wheel by Spark-AES (wt %).

Sample C Si Mn P S Cr Cu Mo V Al Fe

D2 0.520 0.304 0.720 0.006 0.011 0.167 0.039 0.008 0.087 0.009 98.129
SD 0.0041 0.0022 0.0044 0.0005 0.0010 0.0019 0.0035 0.0009 0.0015 0.0008 0.0208

2.2. Quantitative Distribution Characterization of Compositions and Inclusions in Rim Region

Metal original position analyzer (OPA 200, NCS Testing Technology Co., Ltd., Beijing,
China) was used to analyze the elemental distribution on wheel rim. The surface of samples
was ground on the resin paper with the size of 46 meshes. The scanning mode is linear
at a continuous scanning speed of 1 mm/s along X-axis. Step model is used along Y-axis
with an interval of 2 mm. The parameters of OPA are as fol-lows: Exciting frequency:
500 Hz; exciting capacitance: 7.0 µF; exciting resistance:6.0 Ω; spark gap: 2.0 mm; purity
of argon: 99.999%; flux of argon: 80 mL/s; material for electrode: tungsten electrode with
45 corner angle and the diameter of 3 mm [24]. Through high-speed data acquisition and
analysis of the spectral signals generated by spark discharge and continuous scanning
excitation, the content and distribution information of elements at different positions in
the sample surface can be obtained. According to the element content of the sample to be
tested, a series of micro-alloyed steel standard samples named with gsb-03-2453-2008 were
chosen as the quantitative calibration samples to obtain the content calibration curve as
shown in Figure 1. It was found that the regression calibration curves of most elements
had good linear correlation, and the determination coefficient was about 0.99. Therefore,
these calibration curves have been used for quantitative analysis of elemental distribution
of wheel samples.
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Figure 1. Calibration curve of content for different elements. (a) C, (b) Mn, and (c) Si.

The sample analysis area is shown in Figure 2a, and the size of the analysis area is
88 × 38 mm2.

The inclusions along the rolling direction of the wheel have been analyzed. The
inclusion sampling and testing area at the wheel rim is shown in Figure 2b. The sample
with the size of 15 × 25 × 10 mm3 was cut from the wheel rim. After the process of
grinding, fine grinding, polishing and absolute ethanol cleaning of the surface, the sample
was analyzed by SEM (Vega3, Tescan Co. Czech, Brno, Czech Republic) combined with the
particle identification and analysis module of energy dispersive spectrometer (EDS) (Aztec,
Oxford, UK). The analysis area was 12 × 20 mm2. Aluminum foil was pasted to the edge of
the sample to calibrate the gray scale of the electron microscope image. By adjusting the
appropriate brightness and contrast and setting the suitable brightness threshold value for
inclusion recognition, inclusion particles have been identified. Then the composition of
inclusions was determined by EDS analysis automatically.
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2.3. Quantitative Distribution Characterization of Microstructure and Hardness on the Wheel Rim

The block sample with the size of 38 × 50 mm2 along the area marked with the yellow
box as shown in Figure 2a was cut from the wheel rim. The polished sample was eroded
by alcohol solution containing 3% of nitric acid (volume fraction) with the etching time
of 10 s and then the microstructure of the eroded sample surface was examined by high
throughput field emission scanning electron microscope (Navigator OPA, NCS Testing
Technology Co., Ltd., Beijing, China). The microstructure images from the area presented
in Figure 2a marked with the blue box were automatically and continuously acquired
and the test area was 30 × 10 mm2. With the help of image batch processing module,
the quantitative statistical distribution characterization of ferrite area fraction from the
acquisition images with the number of 6256 was obtained.

A hardness map of area marked in Figure 2a with the yellow box was conducted by
automatic micro hardness tester (Q10 A+, Qness. Co., Salzburg, Austria) after the process
of rough grinding, fine grinding, polishing and absolute ethanol cleaning. The test load
was 0.5 kg with the loading time of 15 s and the transverse and longitudinal scanning
spacing was 1 mm. The test area was 35 × 45 mm2.

3. Results
3.1. Elemental Distribution in Rim Area of Railway Wheel

The quantitative distribution results of components are shown in Figure 3. The
maximum degree of segregation is the ratio of the element content at the location to the
average content of the whole tested area. The statistical results are shown in Table 2.
Statistical segregation degree of the elements was calculated by the formula as follows:

S = (C2 − C1)/2C0 (1)

where C0 is the median value of the content, C1 and C2 are the upper and lower limits of
the 95% content confidence interval respectively. The greater the statistical segregation
value, the more serious the segregation is. It was found that there was serious segregation
of S and Al elements and many dotted red areas with higher content appeared in the two-
dimensional distribution map as shown in Figure 3. Therefore, the statistical segregation
degree of S and Al exceeded 0.1 and the values of maximum segregation degree were also
larger than other elements. It was found that the segregation trend of S and Mn presented
on the two-dimensional distribution map was also very similar as shown in Figure 3e,g.
The content of Mn in the wheel increased from 0.705% to 0.815% within the radial depth
of 12−34 mm below the tread surface, and the content of S increased by 0.006% from the
tread surface to the 30 mm radial depth below the tread. The distribution of C, Si, Cr, and
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V elements was relatively homogeneous and the values of the statistical segregation degree
for these elements were all less than 0.05.
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Table 2. Statistical distribution analysis results of each element.

Element Average
Content%

Maximum
Segregation Degree Position (X, Y) * Statistical

Segregation Degree

C 0.527 1.072 (22.59, 4.05) 0.0283
Si 0.305 1.032 (36.37, 5.95) 0.0166

Mn 0.728 1.133 (28.16, 4.05) 0.0556
S 0.010 1.527 (59.84, 10.01) 0.2926

Cr 0.166 1.067 (80.67, 25.97) 0.0247
Cu 0.040 1.080 (45.76, 5.95) 0.0409
V 0.084 1.083 (28.16, 4.05) 0.0316
Al 0.008 4.189 (54.56, 25.97) 0.3900

* Location of maximum segregation.

3.2. Distribution of Inclusions near Tread Area in Rim Center

Figure 4 shows the typical inclusion morphologies and the compositions was deter-
mined by EDS from of the regions marked with red circle. It indicates that there were
four main type of inclusions such as oxides, elongated sulfides, spherical sulfides and
oxysulfides (oxide-sulfide complex inclusions) existed in the wheel rim. As a result of the
application of inclusion modification process, the oxysulfides mainly appeared in the form
of sulfides enveloping oxides as shown in Figure 4c. The oxides enveloped by the sulfides
were mostly alumina and spinel inclusions. The number of inclusions was counted by
the particle detection module included in the energy spectrum analysis software. A small
amount of silicon and titanium inclusions were also found and the area fraction and size
distribution of different types of inclusions are shown in Figure 5. The two-dimensional
size distribution of different inclusions is shown in Figure 6. The inclusions at the wheel
rim were mainly single ellipsoidal or elongated sulfides (MnS), and their area fraction
and quantity were much higher than those of oxides. The length of some elongated MnS
inclusions was more than 50 µm and the volume fraction was the largest in all types of
inclusions of the wheel. Most of the ellipsoidal sulfide particles are less than 5 µm in size.
The oxide inclusions were mainly aluminum oxide with irregular polygon shape with the
size of 3−5µm and the number of oxides larger than 10 µm was very small. There was
no oxides and complex inclusions with size larger than 15 µm found in the rim area. At
a depth of 10 to 20 mm below the tread surface, the length of elongated MnS inclusions
increased significantly, and the number of large spherical sulphides also increased slightly
as shown in Figure 6. The size of oxides and their complex inclusions also increases to a
certain extent at the depth of 10 to 20 mm below the tread than that near the tread surface.
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3.3. Ferrite Structure and Micro Hardness Distribution in the Central Area of Rim

The microstructure in the wheel rim was composed of a lamellar pearlite with a small
amount pre-eutectoid ferrite (dark region in secondary electron (SE) image of Figure 7)
mainly distributed along the prior austenite grain boundary. The quantitative process-
ing method of microstructure images acquired from high throughput SEM was studied.
According to the gray difference of the two-phase structure in the wheel, the effective
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extraction and segmentation of ferrite structure were obtained after noise reduction, con-
trast adjustment, threshold segmentation, feature stripping and debris removal as shown
in Figure 7. The image processing template was generated and was used to process all
microstructure images acquired in bulk to realize the segmentation and recognition of
ferrite structure. After further confirmation and correction manually, the area fraction
of ferrite on different positions of rim was obtained. The two-dimensional distribution
of ferrite area fraction in the central area of rim is shown in Figure 8. It was found that
area fraction of ferrite was gradually increasing from trend surface to the inside area. In
the radial depth of 5 mm below the tread surface, the ferrite area fraction was about 10%,
but in the radial depth of 35 mm away from the tread, the ferrite area fraction increased
to more than 20%. The distribution of circumferential ferrite was asymmetrical and the
ferrite area fraction near the flange was significantly higher than that on the other side.
The two-dimensional distribution of micro hardness below the tread surface in the rim
center area is shown in Figure 9. The hardness distribution trend was just opposite to the
ferrite area fraction distribution. The Vickers hardness value varied in range from 260 HV
to 290 HV, with the trend of increasing hardness toward the tread surface and toward the
right-hand (field) side of the wheel rim.
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Figure 7. Batch processing flow of wheel microstructure image. (a) Original image from SEM;
(b) image denoising; (c) contrast adjustment of the feature image; (d) image segmentation through
gray threshold; (e) feature recognition of microstructure; (f) small holes removed from the recognized
features; (g) processing template of single image generated; (h) image batch processing by the
generated template; (i) manual correction for some images incorrectly identified; (j) ferrite area
fraction obtained on different region of wheel rim.

Fatigue failure can easily occur at very high number of cycles when the ferrite content
is higher. This also indicates that the influence of ferrite on the VHCF behavior becomes
greater when the ferrite content is higher. Hui et al. [25] showed that fatigue crack easily
initiates at ferrite or ferrite/pearlite boundary and propagates preferentially along that
boundary in medium-carbon microalloyed steels with ferrite content of 40−50%. For
medium-high caron pearlitic wheels. However, the ferrite content in the rim is relatively
lower (generally less than 20%). Thus, it may imply that the ferrite has no considerable
effect on the very high cycle fatigue behavior in wheel steels.

The relationship between conventional fatigue limit and Vickers hardness for the wheel
steels is consistent with the results for most medium and low strength steels (hardness
less than 400 HV) reported by Murakami et al. [26]. When the rotating bending fatigue
or uniaxial fatigue behavior of smooth specimens is determined by the micro-structural
factor, there is a good linear correlation between fatigue strength and Vickers hardness of
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steel matrix: σw = (1.6 ± 0.1) HV. So, the fatigue strength can be predicted by the presented
equation if the Vickers hardness of steel matrix has been obtained [7].
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4. Discussion
4.1. Influence of Inclusions Distribution on the Element Segregation

The size distribution of long strip sulfides has a great impact on the segregation degree
of sulfur elements. From the radial depth of 10 mm to 20 mm below the tread surface, the
number of strip sulfides with a length of more than 15 microns has increased significantly
which resulted the increase of average length of elongated MnS sulfides as shown in
Figure 10b. With the increasing distance below the tread surface, content fluctuation of S
element became more and more obvious. In the location of line 2 as shown in Figure 7c,
the varied range of S content was mainly between 0.009% and 0.012% with the statistic
segregation of 0.142. However, when the radial depth increased to 20 mm as shown in line
2 of Figure 7, the content range of S elements was significantly expanded and the maximum
content value exceeded 0.016%, which resulted in a larger segregation degree of S element.
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In the radical depth of 20 mm below the tread surface, the value of S segregation degree
was increased to 0.240, which is much higher than in the radical depth of 10 mm. So, it
can be concluded that with the length increase of elongated MnS sulfides, the segregation
degree of S element increased.
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Figure 10. Correlation between strip sulfide distribution and content distribution of S. (a) Analytical
area; (b) variation of average length of sulfides from the depth of 4 mm to 23 mm below the tread
surface; (c) content distribution of S in the depth of 10 mm below the tread surface; (d) content
distribution of S in the depth of 20 mm below the tread surface.

The tested wheel material had a moderate sulfur content with the average content
of 0.011%. Indeed, inclusions behave as stress raisers, due to the elastic-plastic strain
incompatibilities with the steel matrix and are preferential sites for damage initiation [27,28].
The size and shape of the inclusions are the main parameters that will influence the very-
high-cycle fatigue (VHCF) property. By increasing sulfur content, the fracture toughness
of wheel material can be improved by inclusion modification techniques through sulfides
(MnS) enveloping oxides, which reduces effectively the stress concentration generated by
the oxides [15]. The size of these oxides enveloped by sulfides ranged mainly from 1 to 5 µm
and inclusions larger than 10 µm were rarely observed. For VHCF, the fatigue strength
is inversely proportional to the inclusion size and the heterogeneous distribution of the
inclusion will increase the risk of VHCF. Through the modified deoxidation technology
the size of near-globular inclusions of this railway wheel decreased to less than 10 µm so
that the formation probability of inclusion cluster is significantly reduced and the VHCF
behavior can be improved [29].

4.2. The Relationship between Quenching Process, Microstructure and Hardness Distribution
of Wheel

The wheel cooling process was carried out by stage quenching [1]. The tread was
quenched by water spraying. It was found that there were gradient distributions of different
temperature fields from the tread to the inside area (Figure 11). The closer the tread area
was, the faster the cooling rate was, which resulted in the much lower temperature of the
near tread than that of the area near wheel spoke. However, different spray angles would
also lead to differences in temperature field distribution. When the angle of water flow was
just perpendicular to the tread, as shown in Figure 11c, the temperatures of the upper and
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lower surfaces of the wheel were basically similar, so the temperature of point A and B
was basically similar, and the temperature of points C and D was not different, as shown
in Figure 11e. However, the water flow angle cannot be completely perpendicular to the
tread, and there will be an inclined angle, as shown in Figure 11d. Therefore, the water
flow away from the wheel flange will contact the tread for a longer time. The cooling
rate in this area was faster than that at the rim end, resulting in the inconsistency of the
temperature drop curve between the wheel flange and the other side, as shown in Figure 11f.
Therefore, the temperature field distribution after 300 s of continuous water spraying was
also quite different from that of vertical tread water spraying, as shown in Figure 11d,h.
The unsynchronized cooling on both sides of the rim alters the phase behavior of ferrite
and pearlite. The ferrite grain size after continuous cooling transformation becomes finer
as austenite grain size is refined. Therefor, the ferrite near the tread was fine, and presents
a network distribution along the original grains with lower area fraction [30]. The ferrite
near the tread was fine, and presents a network distribution along the original grains. The
grains were also relatively uniform and fine, so the ferrite area fraction was low. But the
area far away from the tread stays at a higher temperature for a long time, resulting in the
coarseness of the ferrite structure, as shown in Figure 12. The distribution trend of ferrite
area fraction and micro vickers hardness along the line 1 of Figure 8 from 5 mm to 35 mm
away from the tread is shown in Figure 13a. It can be seen that the linear distribution trend
of ferrite structure area fraction and vickers hardness was completely opposite. Based
the quantitative characterization of area fraction and micro hardness on the same location
of wheel rim, a statistical mapping relationship between ferrite area fraction and Vickers
hardness was investigated. Through binary linear fitting of the two groups of parameters,
it can be found that there is a good negative correlation between ferrite iron area fraction
and micro vickers hardness, and its linear correlation coefficient exceeds 0.97, It shows
that the ferrite structure near the tread has an important influence on the wheel hardness.
Moreover, the rapid quenching made the wheel tread area harder than the wheel rim centre
and thus more resistant to wear and crack initiation.
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Figure 11. Temperature distribution in different regions of wheel rim under water spray quenching
process of tread. (a) Wheel quenching process; (b) location of temperature measuring points; (c) spray-
ing water process at a vertical angle to tread; (d) spraying water process at an oblique angle to tread;
(e) cooling curve at a vertical angle; (f) cooling curve at an oblique angle; (g) calculated temperature
field distribution at a vertical angle; (h) determined temperature distribution at an oblique angle.



Materials 2022, 15, 4762 12 of 15Materials 2022, 15, x FOR PEER REVIEW 12 of 15 
 

 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 12. Microstructure morphology at different positions from tread, (a) 5 mm, (b) 15 mm, (c) 25 
mm, and (d) 35 mm. 
Figure 12. Microstructure morphology at different positions from tread, (a) 5 mm, (b) 15 mm,
(c) 25 mm, and (d) 35 mm.



Materials 2022, 15, 4762 13 of 15Materials 2022, 15, x FOR PEER REVIEW 13 of 15 
 

 

  
(a) (b) 

Figure 13. Mapping correlation between ferrite area fraction and micro Vickers hardness. (a) Distri-
bution in different depth away from tread for area fraction of ferrite and vickers hardness; (b) Hard-
ness variation with the change of area fraction of ferrite. 

5. Conclusions 
In this paper, high throughput quantitative distribution characterization methods for 

the composition, microstructure, inclusions, and micro hardness of high-speed wheel ma-
terials have been studied. The quantitative distribution analysis of ten elements in the rim 
area was carried out. The distribution trend of the content of nine elements, size and quan-
tity of sulfides and oxides, ferrite area fraction and Vickers hardness from the wheel tread 
surface to the radial depth of about 50 mm has been discussed. The following conclusions 
are obtained: 

(1) There was serious segregation of S and Al elements on the region of wheel rim 
with the statistical segregation degree of S and Al exceeded 0.1. The segregation trend of 
S and Mn presented on the two-dimensional distribution map was also very similar. The 
distribution of C, Si, Cr, and V elements was relatively homogeneous and the values of 
the statistical segregation degree for these elements were all less than 0.05. 

(2) The size distribution of long strip sulfides has a great impact on the segregation 
degree of sulfur elements. With the length increase of elongated MnS sulfides, the segre-
gation degree of S element increased. Inclusion modification techniques through sulfides 
(MnS) enveloping reduced effectively the stress concentration generated by the oxides 
and the size of these oxides enveloped by sulfides ranged mainly from 1 to 5 μm and 
inclusions larger than 10 μm were rarely observed. 

(3) Asymmetrical graded distribution of ferrite area fraction and micro hardness ap-
peared from the tread surface to the radical depth of 35–50 mm below the surface as a 
result of the unsynchronized cooling on both sides of the rim. Due to the influence of tread 
water spray cooling process, the phase behavior of ferrite was altered. In the radial depth 
of 5 mm below the tread surface, the ferrite area fraction was about 10%, but in the radial 
depth of 35 mm away from the tread, the ferrite area fraction in-creased to more than 20%. 
The distribution of ferrite structure at the rim has a great impact on the hardness distribu-
tion. The micro hardness reduced linearly with radical depth below the tread surface the 
increase of ferrite area fraction. The Vickers hardness value varied in range from 260 HV 
to 290 HV, with the trend of increasing hardness toward the tread sur-face and toward 
the right-hand (field) side of the wheel rim. 

Author Contributions: D.L.: methodology, investigation, formal analysis, writing—original draft 
preparation; H.W.: conceptualization, methodology, writing—review and editing; X.S.: methodol-
ogy, validation, project administration; S.L.: investigation, validation, formal analysis; H.F.: formal 

Figure 13. Mapping correlation between ferrite area fraction and micro Vickers hardness. (a) Distribu-
tion in different depth away from tread for area fraction of ferrite and vickers hardness; (b) Hardness
variation with the change of area fraction of ferrite.

5. Conclusions

In this paper, high throughput quantitative distribution characterization methods
for the composition, microstructure, inclusions, and micro hardness of high-speed wheel
materials have been studied. The quantitative distribution analysis of ten elements in
the rim area was carried out. The distribution trend of the content of nine elements, size
and quantity of sulfides and oxides, ferrite area fraction and Vickers hardness from the
wheel tread surface to the radial depth of about 50 mm has been discussed. The following
conclusions are obtained:

(1) There was serious segregation of S and Al elements on the region of wheel rim with
the statistical segregation degree of S and Al exceeded 0.1. The segregation trend of S
and Mn presented on the two-dimensional distribution map was also very similar.
The distribution of C, Si, Cr, and V elements was relatively homogeneous and the
values of the statistical segregation degree for these elements were all less than 0.05.

(2) The size distribution of long strip sulfides has a great impact on the segregation degree
of sulfur elements. With the length increase of elongated MnS sulfides, the segregation
degree of S element increased. Inclusion modification techniques through sulfides
(MnS) enveloping reduced effectively the stress concentration generated by the oxides
and the size of these oxides enveloped by sulfides ranged mainly from 1 to 5 µm and
inclusions larger than 10 µm were rarely observed.

(3) Asymmetrical graded distribution of ferrite area fraction and micro hardness appeared
from the tread surface to the radical depth of 35−50 mm below the surface as a result
of the unsynchronized cooling on both sides of the rim. Due to the influence of tread
water spray cooling process, the phase behavior of ferrite was altered. In the radial
depth of 5 mm below the tread surface, the ferrite area fraction was about 10%, but in
the radial depth of 35 mm away from the tread, the ferrite area fraction in-creased to
more than 20%. The distribution of ferrite structure at the rim has a great impact on
the hardness distribution. The micro hardness reduced linearly with radical depth
below the tread surface the increase of ferrite area fraction. The Vickers hardness
value varied in range from 260 HV to 290 HV, with the trend of increasing hardness
toward the tread sur-face and toward the right-hand (field) side of the wheel rim.

Author Contributions: D.L.: methodology, investigation, formal analysis, writing—original draft
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