Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Production and Characterisation of Carbon Nanofibers
3.2. Dispersion of Carbon Nanofibers in Mortar
3.3. Influence of CNF Concentration on Electrical Resistivity
3.4. Influence of CNF Concentration on the Piezoresistive Response under Compressive Loading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, B.; Yu, X.; Kwon, E. A Self-Sensing Carbon Nanotube/Cement Composite for Traffic Monitoring. Nanotechnology 2009, 20, 445501. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Xiang, Y.; Ni, Y.Q.; Thakur, V.K.; Wang, X.; Han, B.; Ou, J. In-Situ Synthesizing Carbon Nanotubes on Cement to Develop Self-Sensing Cementitious Composites for Smart High-Speed Rail Infrastructures. Nano Today 2022, 43, 101438. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J. Effects of Salt Freeze-Thaw Cycles and Cyclic Loading on the Piezoresistive Properties of Carbon Nanofibers Mortar. Constr. Build. Mater. 2018, 177, 192–201. [Google Scholar] [CrossRef]
- Galao, O.; Baeza, F.J.; Zornoza, E.; Garcés, P. Strain and Damage Sensing Properties on Multifunctional Cement Composites with CNF Admixture. Cem. Concr. Compos. 2014, 46, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Ahn, D.; You, I.; Yoo, D.Y.; Kang, Y.S. Wireless Cement-Based Sensor for Self-Monitoring of Railway Concrete Infrastructures. Autom. Constr. 2020, 119, 103323. [Google Scholar] [CrossRef]
- Fu, X.; Chung, D.D.L. Self-Monitoring of Fatigue Damage in Carbon Fiber Reinforced Cement. Cem. Concr. Res. 1996, 26, 15–20. [Google Scholar] [CrossRef]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Govind; Chandra, A.; Mathur, R.B.; Dhawan, S.K. Multiwalled Carbon Nanotube/Cement Composites with Exceptional Electromagnetic Interference Shielding Properties. Carbon N. Y. 2013, 56, 86–96. [Google Scholar] [CrossRef]
- Siad, H.; Lachemi, M.; Sahmaran, M.; Mesbah, H.A.; Hossain, K.A. Advanced Engineered Cementitious Composites with Combined Self-Sensing and Self-Healing Functionalities. Constr. Build. Mater. 2018, 176, 313–322. [Google Scholar] [CrossRef]
- Ding, S.; Dong, S.; Ashour, A.; Han, B. Development of Sensing Concrete: Principles, Properties and Its Applications. J. Appl. Physics. 2019, 24, 241101. [Google Scholar] [CrossRef] [Green Version]
- Abedi, M.; Fangueiro, R.; Gomes Correia, A. A Review of Intrinsic Self-Sensing Cementitious Composites and Prospects for Their Application in Transport Infrastructures. Constr. Build. Mater. 2021, 310, 125139. [Google Scholar] [CrossRef]
- Marcos-Meson, V.; Michel, A.; Solgaard, A.; Fischer, G.; Edvardsen, C.; Skovhus, T.L. Corrosion Resistance of Steel Fibre Reinforced Concrete–A Literature Review. Cem. Concr. Res. 2018, 103, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, I.; Ribeiro de Souza, L.; Litina, C.; Al-Tabbaa, A. Investigation of the Dispersion of Multi-Layer Graphene Nanoplatelets in Cement Composites Using Different Superplasticiser Treatments. Constr. Build. Mater. 2021, 293, 123543. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Zhu, X.; Sheng, D.; Shah, S.P. Multifunctional Cementitious Composites with Integrated Self-Sensing and Hydrophobic Capacities toward Smart Structural Health Monitoring. Cem. Concr. Compos. 2021, 118, 103962. [Google Scholar] [CrossRef]
- Han, B.; Yu, X.; Zhang, K.; Kwon, E.; Ou, J. Sensing Properties of CNT-Filled Cement-Based Stress Sensors. J. Civ. Struct. Heal. Monit. 2011, 1, 17–24. [Google Scholar] [CrossRef]
- Song, C.; Choi, S. Moisture-Dependent Piezoresistive Responses of CNT-Embedded Cementitious Composites. Compos. Struct. 2017, 170, 103–110. [Google Scholar] [CrossRef]
- Yoo, D.Y.; You, I.; Zi, G.; Lee, S.J. Effects of Carbon Nanomaterial Type and Amount on Self-Sensing Capacity of Cement Paste. Measurement 2019, 134, 750–761. [Google Scholar] [CrossRef]
- Abedi, M.; Fangueiro, R.; Correia, A.G. Effects of Multiscale Carbon-Based Conductive Fillers on the Performances of a Self-Sensing Cementitious Geocomposite. J. Build. Eng. 2021, 43, 103171. [Google Scholar] [CrossRef]
- Abedi, M.; Fangueiro, R.; Correia, A.G. Ultra-Sensitive Affordable Cementitious Composite with High Mechanical and Microstructural Performances by Hybrid CNT/GNP. Materials 2020, 13, 3484. [Google Scholar] [CrossRef]
- Ding, S.; Ruan, Y.; Yu, X.; Han, B.; Ni, Y.Q. Self-Monitoring of Smart Concrete Column Incorporating CNT/NCB Composite Fillers Modified Cementitious Sensors. Constr. Build. Mater. 2019, 201, 127–137. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Mendoza Reales, O.A.; Dias Toledo Filho, R. A Review on the Chemical, Mechanical and Microstructural Characterization of Carbon Nanotubes-Cement Based Composites. Constr. Build. Mater. 2017, 154, 697–710. [Google Scholar] [CrossRef]
- Yoo, D.Y.; You, I.; Lee, S.J. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors 2017, 17, 1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, X.; Wang, R. The Influence of Rheological Parameters of Cement Paste on the Dispersion of Carbon Nanofibers and Self-Sensing Performance. Constr. Build. Mater. 2017, 134, 673–683. [Google Scholar] [CrossRef]
- Gao, D.; Sturm, M.; Mo, Y.L. Electrical Resistance of Carbon-Nanofiber Concrete. Smart Mater. Struct. 2009, 18, 095039. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Wang, W. Ohmic Heating Curing of Electrically Conductive Carbon Nanofiber/Cement-Based Composites to Avoid Frost Damage under Severely Low Temperature. Compos. Part A Appl. Sci. Manuf. 2018, 115, 236–246. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J.; Ren, M.; Lu, A. Multi-Functional Properties of Carbon Nanofiber Reinforced Reactive Powder Concrete. Constr. Build. Mater. 2018, 187, 699–707. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Aza, C.A. Self Sensing Carbon Nanotube (CNT) and Nanofiber (CNF) Cementitious Composites for Real Time Damage Assessment in Smart Structures. Cem. Concr. Compos. 2014, 53, 162–169. [Google Scholar] [CrossRef]
- Dalla, P.T.; Dassios, K.G.; Tragazikis, I.K.; Exarchos, D.A.; Matikas, T.E. Carbon Nanotubes and Nanofibers as Strain and Damage Sensors for Smart Cement. Mater. Today Commun. 2016, 8, 196–204. [Google Scholar] [CrossRef]
- Dinesh, A.; Abirami, B.; Moulica, G. Carbon Nanofiber Embedded Cement Composites: Properties and Promises as Sensor—A Review. Mater. Today Proc. 2021, 44, 4166–4172. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, A.; Wadhwa, S.; Sinha, S. Say Hello to Carbon Nanotubes. In Introduction to Carbon Nanomaterials; Current and Future Developments in Nanomaterials and Carbon Nanotubes; Narang, J., Pundir, C., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2018; Volume 1, pp. 1–79. [Google Scholar] [CrossRef]
- Pirard, S.L.; Douven, S.; Pirard, J.-P. Large-Scale Industrial Manufacturing of Carbon Nanotubes in a Continuous Inclined Mobile-Bed Rotating Reactor via the Catalytic Chemical Vapor Deposition Process. Front. Chem. Sci. Eng. 2017, 11, 280–289. [Google Scholar] [CrossRef]
- Fecht, H.-J.; Brühne, K.; Gluche, P. Carbon-Based Nanomaterials and Hybrids: Synthesis, Properties, and Commercial Applications. Carbon-Based Nanomater. Hybrids 2016. [Google Scholar] [CrossRef] [Green Version]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Low-Temperature Synthesis of High-Purity Single-Walled Carbon Nanotubes from Alcohol. Chem. Phys. Lett. 2002, 360, 229–234. [Google Scholar] [CrossRef]
- Buasiri, T.; Habermehl-Cwirzen, K.; Krzeminski, L.; Cwirzen, A. Piezoresistive Load Sensing and Percolation Phenomena in Portland Cement Composite Modified with In-Situ Synthesized Carbon Nanofibers. Nanomaterials 2019, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Ghaharpour, F.; Bahari, A.; Abbasi, M.; Ashkaran, A.A. Parametric Investigation of CNT Deposition on Cement by CVD Process. Constr. Build. Mater. 2016, 113, 523–535. [Google Scholar] [CrossRef]
- Ludvig, P.; Calixto, J.M.; Ladeira, L.O.; Gaspar, I.C.P. Using Converter Dust to Produce Low Cost Cementitious Composites by in Situ Carbon Nanotube and Nanofiber Synthesis. Materials 2011, 4, 575–584. [Google Scholar] [CrossRef] [Green Version]
- de Souza, T.C.; Pinto, G.; Cruz, V.S.; Moura, M.; Ladeira, L.O.; Calixto, J.M. Evaluation of the Rheological Behavior, Hydration Process, and Mechanical Strength of Portland Cement Pastes Produced with Carbon Nanotubes Synthesized Directly on Clinker. Constr. Build. Mater. 2020, 248, 118686. [Google Scholar] [CrossRef]
- Dunens, O.M.; Mackenzie, K.J.; Harris, A.T. Synthesis of Multiwalled Carbon Nanotubes on Fly Ash Derived Catalysts. Environ. Sci. Technol. 2009, 43, 7889–7894. [Google Scholar] [CrossRef]
- Zhan, M.; Pan, G.; Zhou, F.; Mi, R.; Shah, S.P. In Situ-Grown Carbon Nanotubes Enhanced Cement-Based Materials with Multifunctionality. Cem. Concr. Compos. 2020, 108, 103518. [Google Scholar] [CrossRef]
- de Souza, L.R. Síntese e Caracterização de Nanofibras Magnéticas de Carbono Suportadas Por Óxido Em Cálcio; Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Jourdain, V.; Bichara, C. Current Understanding of the Growth of Carbon Nanotubes in Catalytic Chemical Vapour Deposition. Carbon 2013, 25, 2–39. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M. Investigations on Scalable Fabrication Procedures for Self-Sensing Carbon Nanotube Cement-Matrix Composites for SHM Applications. Cem. Concr. Compos. 2016, 65, 200–213. [Google Scholar] [CrossRef]
- Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon Nanotube Growth by PECVD: A Review. Plasma Sources Sci. Technol. 2003, 12, 205–216. [Google Scholar] [CrossRef]
- Arepalli, S.; Freiman, S.; Hooker, S.; Migler, K. Measurement Issues in Single-Wall Carbon Nanotubes; Special Publication (NIST SP); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852726 (accessed on 11 May 2022).
- Arepalli, S.; Nikolaev, P.; Gorelik, O.; Hadjiev, V.G.; Holmes, W.; Files, B.; Yowell, L. Protocol for the Characterization of Single-Wall Carbon Nanotube Material Quality. Carbon N. Y. 2004, 42, 1783–1791. [Google Scholar] [CrossRef]
- Sato, K.; Saito, R.; Oyama, Y.; Jiang, J.; Cançado, L.G.; Pimenta, M.A.; Jorio, A.; Samsonidze, G.G.; Dresselhaus, G.; Dresselhaus, M.S. D-Band Raman Intensity of Graphitic Materials as a Function of Laser Energy and Crystallite Size. Chem. Phys. Lett. 2006, 427, 117–121. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon N. Y. 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Alijani, H.; Beyki, M.H.; Shariatinia, Z.; Bayat, M.; Shemirani, F. A New Approach for One Step Synthesis of Magnetic Carbon Nanotubes/Diatomite Earth Composite by Chemical Vapor Deposition Method: Application for Removal of Lead Ions. Chem. Eng. J. 2014, 253, 456–463. [Google Scholar] [CrossRef]
- Jiao, Q.; Hao, L.; Shao, Q.; Zhao, Y. In Situ Synthesis of Iron-Filled Nitrogen-Doped Carbon Nanotubes and Their Magnetic Properties. Carbon N. Y. 2013, 61, 647–649. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, I.S.; Lee, H.K. Improved Piezoresistive Sensitivity and Stability of CNT/Cement Mortar Composites with Low Water-Binder Ratio. Compos. Struct. 2014, 116, 713–719. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced Effect of Carbon Nanotube on Mechanical and Electrical Properties of Cement Composites by Incorporation of Silica Fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Smart Cement Modified with Iron Oxide Nanoparticles to Enhance the Piezoresistive Behavior and Compressive Strength for Oil Well Applications. Smart Mater. Struct. 2015, 24, 125020. [Google Scholar] [CrossRef]
- Kharton, V.V.; Tsipis, E.V.; Kolotygin, V.A.; Avdeev, M.; Viskup, A.P.; Waerenborgh, J.C.; Frade, J.R. Mixed Conductivity and Stability of CaFe2O4−δ. J. Electrochem. Soc. 2008, 155, P13. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, X.; Corr, D.J.; Konsta-Gdoutos, M.S.; Shah, S.P. Characterization of the Interfacial Transition Zone of CNF-Reinforced Cementitious Composites. Cem. Concr. Compos. 2019, 99, 130–139. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Wang, Q.; Yang, X.; Gao, X.; Shi, F. Electrical and Piezoresistive Properties of Carbon Nanofiber Cement Mortar under Different Temperatures and Water Contents. Constr. Build. Mater. 2020, 265, 120740. [Google Scholar] [CrossRef]
Specimen | w/c | s/c | CNF (% bwoc) | CNF@ CaO (% bwoc) | Superplasticiser (% bwoc) |
---|---|---|---|---|---|
Control | 0.6 | 3 | - | - | 0.3 |
CNF 0.4 | 0.6 | 3 | 0.4 | 1.6 | 0.3 |
CNF 1.2 | 0.6 | 3 | 1.2 | 4.8 | 0.3 |
CNF 2 | 0.6 | 3 | 2.0 | 8.0 | 0.3 |
CNF 1.2(A) | 0.6 | 3 | 1.2 | - | 0.3 |
CTRL-CaO | 0.6 | 3 | - | 1.9 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, L.R.; Pimentel, M.; Milone, G.; Tristão, J.C.; Al-Tabbaa, A. Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar. Materials 2022, 15, 4951. https://doi.org/10.3390/ma15144951
de Souza LR, Pimentel M, Milone G, Tristão JC, Al-Tabbaa A. Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar. Materials. 2022; 15(14):4951. https://doi.org/10.3390/ma15144951
Chicago/Turabian Stylede Souza, Lívia Ribeiro, Matheus Pimentel, Gabriele Milone, Juliana Cristina Tristão, and Abir Al-Tabbaa. 2022. "Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar" Materials 15, no. 14: 4951. https://doi.org/10.3390/ma15144951
APA Stylede Souza, L. R., Pimentel, M., Milone, G., Tristão, J. C., & Al-Tabbaa, A. (2022). Carbon Nanofibers Grown in CaO for Self-Sensing in Mortar. Materials, 15(14), 4951. https://doi.org/10.3390/ma15144951