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Abstract: Refractory complex concentrated alloys (RCCAs) have drawn increasing attention recently
owing to their balanced mechanical properties, including excellent creep resistance, ductility, and
oxidation resistance. The mechanical and thermal properties of RCCAs are directly linked with the
elastic constants. However, it is time consuming and expensive to obtain the elastic constants of
RCCAs with conventional trial-and-error experiments. The elastic constants of RCCAs are predicted
using a combination of density functional theory simulation data and machine learning (ML) algo-
rithms in this study. The elastic constants of several RCCAs are predicted using the random forest
regressor, gradient boosting regressor (GBR), and XGBoost regression models. Based on performance
metrics R-squared, mean average error and root mean square error, the GBR model was found to be
most promising in predicting the elastic constant of RCCAs among the three ML models. Additionally,
GBR model accuracy was verified using the other four RHEAs dataset which was never seen by the
GBR model, and reasonable agreements between ML prediction and available results were found.
The present findings show that the GBR model can be used to predict the elastic constant of new
RHEAs more accurately without performing any expensive computational and experimental work.

Keywords: complex concentrated alloys; elastic constants; random forest regressor; gradient boosting
regressor; XGBoost regression

1. Introduction

RCCAs are refractory complex concentrated alloys with complicated compositions [1].
Unlike the more restricted refractory high-entropy alloys (RHEAs), RCCAs may include less
than four main elements in the composition, have multiple phases, and have small entropy
configurations. Compared to typical superalloys, RCCAs have recently attracted increasing
interest as a potential choice for high-temperature structural application materials. This is
because the appealing qualities of RCCAs which include outstanding high-temperature
strength, ductility, high melting temperature, and oxidation resistance [2–6]. The mechani-
cal and thermodynamic properties of alloys are directly linked to their elastic constants.
For example, an elastic strain of materials under different stresses depends on the elastic
constant [7]. The elastic constants are also linked to essential characteristics, including bulk
modulus, shear modulus, Young’s modulus, Poisson’s ratio, and Debye temperatures. The
Voigt–Reuss–Hill (VRH) averaging approximations can be used to estimate them [8].

Several theoretical density functional theory (DFT) studies [9–14] and experimental
work [15–17] are performed to obtain the elastic characteristics of RHEAs. However, un-
derstanding of elastic constants of body-centered cubic (BCC) of RCCAs is still restricted
because of a lack of high-efficiency data generation methods. It is very time consuming,
expensive, and complicated to synthesize and measure the elastic constants of alloys ex-
perimentally. Additionally, computational methods need many CPU hours, making them
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relatively expensive for large supercells. In the literature, resonant ultrasound spectroscopy is
also reported as a decent choice to measure the elastic constants of materials. However, this
experimental technique has its own limitations [18]. Therefore, to accelerate the designing of
RCCAs with desired properties, it is essential to adopt a time-saving and low-cost method
that can efficiently explore the elastic properties of novel RCCAs. Machine learning (ML) is a
reasonably easy and cost-effective tool for quickly identifying hidden patterns in a dataset.
The recent trend of applying ML models in designing HEAs is promising in determining the
phase formation [19–25] and predicting mechanical properties [26–28]. ML is also applied
in the biomedical field to design metallic implants [29–31]. Wen et al. [32] used the ML
approach to identify an AlCoCrCuFeNi HEA system with high hardness. Meanwhile, they
also experimentally synthesized the alloy to validate their hardness prediction. Klimenko
et al. [33] predicted the strength of AlCrNbTiVZr RHEA using a support vector ML model
with experimental validation. Using a random forest model, the Kwak group [34] predicted
various mechanical properties, such as tensile strength, nanoindentation hardness, and elon-
gation of γ- TiAl alloys. Based on the studies broadly available in the literature, it is clear that
the ML approach is an economical and reliable strategy to predict the properties of materials
and predict the elastic constant. Consequently, utilizing a newly produced dataset, three ML
models are employed in this study to estimate the elastic constants of RCCAs. Then, the
predicted elastic constants of RCCAs are compared with the available reports from the first
principles and experimental methods. This research demonstrates the application of the ML
as a high-throughput screening tool for designing RCCAs.

2. Data Generation and ML Models
2.1. Calculation of CALPHAD and Data Generation via DFT

The database contains binary, ternary, quaternary, and quinary RCCAs having BCC
structures with refractory elements of Cr, Hf, Ta, Ti, Mo, Nb, W, Re, Zr, and V. The thermo-
calc-2019 package with ThermoCalc’s high-entropy alloy database [35] is employed to
identify the RCCAs with stable BCC phases. The predicted phases by the Thermo-Calc
package are under the experimental reports [36–39]. The database for RCCAs with stable
BCC phases was created by computing the elastic constants of alloys using special quasi-
random structure (SQS) model [40] and the MedeA 2.22 software, Materials Design, Inc., San
Diego, CA, USA [41]. The possible alloy supercell structures include AB, A3B, ABC, A2BC,
ABCD, and ABCDE, where each A, B, C, D, and E represents one of the above refractory
elements. The diagrams of different SQS structures of RCCAs used in the dataset are shown
in Figure 1. The number of atoms of AB, A3B, ABC, A2BC, ABCD, and ABCDE supercell
structures is 8, 16, 36, 32, 64, and 125, respectively. To calculate the elastic constants, i.e.,
C11, C12, and C44 of RCCAs, the Vienna Ab initio simulation package (VASP) [42] was used,
and the first-principles DFT [43,44] simulations were carried out. The generalized gradient
approximation (GGA) was utilized as an exchange-correlation function to simulate many-
body electronic interactions, as implemented in the Perdew–Burke–Ernzerhof (PBE) [45].
The electron-ion interactions were detailed using the projector augmented wave (PAW)
model [46]. In all calculations, a 500 eV energy cutoff was employed for the plane-wave
basis. The requirements for energy and force convergences in relaxation processes are set
to be 10−5 eV/atom and 10−5 eV/Å, correspondingly. A smearing parameter of 0.2 eV was
used in the Methfessel–Paxton method [47]. The stability of RCCAs was checked by the
formation energy, E f = E(RCCA)−∑i niµi, where E(RCCA) is the energy of RCCA, ni is
the number of atoms of species i, and µi is the chemical potential of species i. The elastic
constants of 370 RCCAs are computed from the DFT calculations. By utilizing strain matrix
e, altering the Bravais lattice vectors R = (a, b, c) to R′ = (a′, b′, c′), a deformation of the unit
cell is generated, and the elastic constants are obtained,

R′ = R

1 + exx
1
2 exy

1
2 exz

1
2 eyx 1 + eyy

1
2 eyz

1
2 ezx

1
2 ezy 1 + ezz

 (1)
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Due to the deformation, total crystal energy will change. The Le Page and Saxe [48]
symmetry-general approach is used for calculating elastic constants from total energy
calculations,

U =
Etotal − E0

V0
=

1
2 ∑6

i=1 ∑6
j=1 Cijeiej (2)

where E0, V0, and Cij represent the total energy of unstrained lattice, volume of the undis-
torted cell, and elements of the elastic constants matrix, respectively. The unit cell’s
symmetry can lessen the number of independent elastic constants, and it is only 3 for the
cubic system, i.e., C11, C12, and C44.

2.2. Descriptor Selection

Selecting the meaningful physical descriptors is a critical component of an ML algo-
rithm, and the optimal choice usually depends on the target variable under investigation.
It is essential to select the descriptors whose value can be predicted with any DFT compu-
tations to save computational costs. Initially, ten numeric descriptors of RCCAs and one
categorical data (name of alloys) are chosen for ML models, and numeric descriptors are
calculated using the Python program. The mechanical and thermal characteristics of the
alloy’s elemental constituents are used to calculate these descriptors. The RCCAs descrip-
tors are entropy of mixing (∆Smix) [49], enthalpy of mixing (∆Hmix) [50], the temperature
of melting, average atomic radius (r), average electronegativity (χ) and a dimensionless
parameter omega (Ω). The Ω is defined as ∆Smix divided by the ∆Hmix and multiplied by
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alloys’ average melting temperature (MT) [51]. Material properties cannot be characterized
by averaging the constituent properties. Thus, it is imperative to consider the differences
in properties [52]. As a result, the characteristic of these differences, i.e., atomic size dif-
ference (δ), electronegativity difference (∆χ), and valence electron concentration (VEC) of
RCCAs [53] are also taken into consideration. The number of descriptors used in these
calculations is successfully applied in predicting the stability and properties of alloys in
past studies [19–26]. For example, the Islam group [20] used 118 instances of data set with
five descriptors, i.e., VEC, ∆Smix, ∆Hmix, δ, and χ, to determine the phase in multi-principle
element alloys. Khakurel et al. [27] used some ML models to estimate Young’s modulus
of CCAs. They found that VEC, geometrical parameter, δ, and melting temperature play
essential roles in determining the modulus of CCAs. The geometrical parameter (λ), which
is defined by ∆Smix divided by the square of δ, has also been added as a descriptor in
this work. The above-selected ten numeric descriptors are calculated using the following
Equations (3)–(12), shown in Table 1. A total of 370 alloys used in the ML models are
included in the form of categorical data.

Table 1. List of the mathematical formulation of descriptors used for different ML models.

Descriptors Abbreviation Descriptors Calculation Formula

Entropy of mixing Entropy ∆Smix = −R ∑m
i=1 ailnai (3)

Enthalpy of mixing Enthalpy ∆Hmix= ∑m
i=1,i 6=j 4∆Hmix

ij aiaj (4)

Melting temperature MT Tm = ∑m
i=1 ai(Tm)i (5)

Average atomic radius AAR r = ∑n
i=1 airi (6)

Average electronegativity AE χ = ∑n
i ai(χi) (7)

Unitless parameter Omega Omega Ω =
Tm∆Smix
|∆Hmix|

(8)

Atomic size difference ASD δ = 100×
√

∑m
i=1 ai

(
1− ri

r

)2
r (9)

Valence electron concentration VEC VEC = ∑m
i=1 ai(VEC)i (10)

Electronegativity difference ED ∆χ =
√

∑n
i ai(χi − χ) (11)

Geometrical parameter GP λ =
∆Smix

δ2 (12)

In equations of Table 1, ai and aj are the atomic percentages of the ith and jth element. ri ,
χi and (VEC)i are the radius, Pauling electronegativity, and valence electron concentration
of the ith element. r is averaged atomic radius, χ is average Pauling electronegativity, Tm is
the melting temperature of the element, and R is the ideal gas constant. The required data
of refractory elements for calculating the descriptors are shown in Tables 2 and 3.
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Table 2. The atomic radius, VEC, Pauling electronegativity, and Melting Temperature for refractory
elements [54].

Element Radius (Å) VEC Pauling
Electronegativity Melting Temperature (Kelvin)

Cr 1.249 6 1.66 2180
Hf 1.578 4 1.3 2506
Mo 1.363 6 2.16 2896
Nb 1.429 5 1.6 2750
Re 1.375 7 1.9 3459
Ta 1.43 5 1.5 3290
Ti 1.462 4 1.54 1941
V 1.316 5 1.63 2183
W 1.367 6 2.36 3695
Zr 1.603 4 1.33 2128

Table 3. The binary alloys’ mixing enthalpies ∆Hmix (kJ/mol) [47].

Element Cr Hf Mo Nb Re Ta Ti V W Zr

Cr 0 −9 0 −7 −4 −7 −7 −2 1 −12
Hf −9 0 −4 4 −2 3 0 −2 −6 0
Mo 0 −4 0 −6 −7 −5 −4 0 0 −6
Nb −7 4 −6 0 −26 0 2 −1 −8 4
Re −4 −30 −7 −26 0 −24 −25 −13 −4 −35
Ta −7 3 −5 0 −24 0 1 −1 −7 3
Ti −7 0 −4 2 −25 1 0 −2 −6 0
V −2 −2 0 −1 −13 −1 −2 0 −1 −4
W 1 −6 0 −8 −4 −7 −6 −1 0 −9
Zr 12 0 −6 4 −35 3 0 −4 −9 0

2.3. Machine Learning Models

There are 370 RCCAs data points from the DFT calculation. A total of 90% of data
were utilized for training, and 10% were used to test and validate the results. The three
ML models used in this work are random forest (RF) regressor, gradient boosting regressor
(GBR), and XGBoost (XGB) through the Scikit-learn library [55], which is also used for data
preparation and model assessment. The RF model is an ensemble approach consisting of
many decision trees to improve prediction accuracy and reduce overfitting by averaging the
trees. The samples of the training dataset may reappear in the single tree due to sampling
replacement, also known as bootstrapping. GBR and XGB are multi-purpose machine
learning methods that can handle both classification and regression problems. The GBR is
a type of ensemble model having an iterative collection of tree models, and it is capable
of learning from the previous model’s mistakes. The XGBoost [56] is a powerful machine
learning method that makes a quick decision by implementing boosted decision trees
efficiently and effectively. After finalizing the descriptors, the 3 ML models were trained
using 370 datasets of elastic constants with all calculated descriptors. The GridSearchCV
function in the sklearn library was used to improve the machine learning model with
a cross-validation score of 5. The adjustment of hyperparameters was essential since
it impacts the overall performance of machine learning algorithms as it cross-validates
the training and testing datasets. Following the searching algorithm of GridSearchCV,
hyper-tuned parameters for all models were found. It was used in the model to make
ML models to predict elastic constants. The root-mean-squared error (RMSE), the average
coefficient of determination (R2), and mean absolute error (MAE) are calculated for each
ML model to evaluate its performance. The most satisfactory model with high performance
during the training and testing phases is further used to predict the elastic constants of
four experimental and simulation data. These data are entirely new to the model to predict
elastic constants. The workflow of this work, as explained above, is illustrated in Figure 2.
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3. Results and Discussion
3.1. Feature Selection Criteria

Before applying the ML models, the Pearson correlation coefficients (p) between each
pair of descriptors are calculated, and the results are shown using the triangular heatmap in
Figure 3. The numeric values of p equal to 0, 1, and −1 denote no correlation, high positive
correlation, and high negative correlation, respectively. The highly correlated features are
likely to overfit the ML model, which is undesirable. The dark purple and light-pink colors
represent highly positive and negative correlations, respectively. Two of the descriptors,
i.e., average electronegativity and average radius, are strongly correlated with VEC, and
it has been removed from the descriptor list. Since there is no substantial dependency
between any two of the remaining descriptors, all metrics should be incorporated into the
ML model. Therefore, the number of descriptors reduce from 11 to 9.

3.2. ML Model Performance

The elastic constant for RCCAs was predicted from the dataset by employing three
ML methods: RF, GBR, and XGBoost. The dataset is randomly divided into a training and
a testing set with a 9 to 1 ratio. For each approach, hyper tunning is done with a cross-
validation score of 5. The different tuned hyperparameter of three ML models obtained
from the Grid search method is shown in Table 4. MSA, RMSE, and R2 are calculated for
measuring the performances of the ML models using the equations below.

MAE =
1
n ∑n

i=1|yi − ŷi| (13)

RMSE =

√
∑n

i=1(yi − ŷ)2

n
(14)

R2 = 1− ∑i(yi − ŷ)2

∑i(yi − y)2 (15)

where yi, ŷi, y and n represent the DFT elastic constants, ML-predicted elastic constants,
mean of all elastic constants, and sample size, respectively.
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The performance metrics MAE, R2, and RMSE of all three models are shown in Figure 4.
To evaluate which model performs very well while predicting the elastic constant, MSA, R2,
and RMSE needs to be analyzed. ML model with a higher value of R2 close to 1.0 with low
MAE and RMSE will result in better performance. It is hard to distinguish which model
performs well on the dataset if only R2 is analyzed. Analyzing results from Figure 4a–c,
GBR has the least MAE and RMSE with higher R2 value than the other two ML models
indicating its higher prediction accuracy of elastic constant. The R2 value for all models
ranges from 0.76–0.97 for the training and testing datasets. Similar value of R2 was found
by Trostianchyn et al. [57] while predicting the magnetic remanence of Sm-Co magnets
using machine learning methods. They found the R2 value of their ensemble ML model
greater than 0.7. In this work, considering the different performance metrics of the GBR
among other models, it is considered to be the optimal model.

Table 4. Tuned hyperparameter obtained from Grid Search method.

Elastic
Constant

ML
Models Hyper-Tuned Hyperparameters

GBR Learning rate: 0.01, max depth: 8, estimators: 900, subsample: 0.2
C11 RF Max depth: 10, estimators: 1000

XGB Learning rate: 0.2, estimators: 100

GBR Learning rate: 0.04, max depth: 4, estimators: 200, subsample: 0.7
C12 RF Max depth: 10, estimators: 500

XGBoost Learning rate: 0.1, estimators: 100

GBR Learning rate: 0.01, max depth: 6, estimators: 900, subsample: 0.3
C44 RF Max depth: 10, estimators: 500

XGBoost Learning rate: 0.1, estimators: 100
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Figure 4. (a–c) Represents the MAE, R2, and RMSE of different ML models used, respectively.

The GBR model optimizes the bias while training the dataset and repeatedly trains the
trees in the entire process to avoid the early paralysis of trees during the training data which
results in better performance in prediction. The performance metrics of all 3 ML models are
listed in Table 5. The MAE of training data of the GBR model is below 5, which means it has
predicted the elastic constants of RHEAs with an average error of less than 5 GPa. Similarly,
the MAE of the test data of the GBR model is less than 11 for the test dataset, which means
there is not much difference in the prediction of the training and testing datasets. This
manifests the testing data is not highly overfitted. The overall performances of all three
models were good, which confirms that the selection of 9 descriptors fitted well for the ML
models. The elastic constants predicted by the optimal GBR models versus DFT results
on the training and testing datasets are illustrated in Figure 5. Most training data points
(blue dots), and testing data points (dark pink diamonds) are clustered around the light
blue solid diagonal line, indicating that predicted elastic constants of RCCAs predicted
by the GBR ML model are consistent with the DFT calculations. Some testing data points
are slightly far away from the diagonal line. It is due to the absence of sufficient data
points around the relevant area. In the future, the addition of more data points will further
improve the model, and data points will likely distribute evenly around the diagonal line.

3.3. Additional Testing on The Final Model

Furthermore, four experimental and simulation data of RCCAs available in the previ-
ous publications [10,17] were passed in the optimal model, i.e., GBR, to predict the elastic
constants for additional testing. All the elastic constants data of four alloys is provided in
Table 6 and the results are shown in Figure 6, a histogram with an error bar. The error bar
denotes the deviation from the original prediction. The elastic constants predicted by the
GBR ML models for TiZrVNbMo, TiZrNbMo, and TiZrVNb RHEAs are compared with the
simulation conducted by Tian’s group. The elastic constants predicted by the ML models
are in good agreement with the SQS model calculation since the average error bar length is
smaller. However, there is a slight difference between the SQS model and the ML model,
which may have been caused by the number of atoms used in the model construction
and the applied DFT method. The SQS structures for RHEAs of MoNbTiZr, MoNbTiVZr,
and NbTiVZr consist of 128, 250, and 128 atoms, respectively. In comparison, depending
on the types of RCCAs, the DFT calculation utilized in this work to build the database
comprises supercells of 8, 16, 32, 36, 64, and 125 atoms. Due to inconsistency in the size of
the atomic model and applied potential, there is a difference between chemical interactions
of atoms in the DFT method, which results in a slight difference in elastic constants [58].
The elastic constant C11 predicted by the ML model for NbTaTiV matches the experimental
value reported in Lee’s study very well [17]. The slight difference between the ML and
the experimental values of elastic constants may result from the temperature difference.
The DFT models were performed at 0K, whereas the experiment was conducted at 300 K.
Similar results were found while predicting the elastic constants of HEA Al0.3CoCrFeNi
by Kim et al. [28]. The predicted elastic constants of HEA Al0.3CoCrFeNi deviate from
the measured values from the in situ neutron-diffraction. As mentioned before, measuring
elastic constants by experiment is time consuming and has its limitation. It is expected
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more high throughput experimental methods will be designed to confirm the findings of
the elastic constants for RHEAs MoNbTiVZr, MoNbTiZr, and NbTiVZr.

Table 5. Different metrics of the dataset using different ML models.

Elastic
Constant

ML
Models R2 Train R2 Test MAE Train MAE

Test
RMSE
Train RMSE Test

GBR 0.995 0.97 4.74 10.24 6.17 13.7
C11 RF 0.995 0.95 6.31 12.17 8.25 16.69

XGBoost 0.994 0.964 5.2 11.52 6.99 15.5

GBR 0.985 0.803 2.19 8.25 3.77 9.88
C12 RF 0.979 0.815 3.032 8.2 4.46 10.10

XGBoost 0.959 0.812 4.392 8.23 6.16 10.39

GBR 0.994 0.787 2.20 10.38 2.67 14.45
C44 RF 0.981 0.761 3.58 10.86 4.62 15.4

XGBoost 0.967 0.787 4.622 9.84 6.06 14.95
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Table 6. Elastic constants (C11, C12, and C44 are in GPa) for MoNbTiVZr, MoNbTiZr, NbTiVZr, and
NbTaTiV refractory alloys experimental (exp.), and SQS.

Elastic Constants of
RHEAs MoNbTiVZr (SQS) MoNbTiZr

(SQS)
NbTiVZr

(SQS)
NbTaTiV

(exp)

C11 209.3 203 159 196
C12 123 121 114 121
C44 39.12 29.6 18.5 46

SQS [10] exp. [17].

3.4. Descriptor Importance and Visualization

The Shapley Additive exPlanations (SHAP) method explains how each descriptor
influences the ML by calculating the Shapley values [59]. All the dataset instances are used
in the SHAP bar graph by taking the mean absolute value of every descriptor. The relevance
ranking of 9 descriptors and their role in contributing to the elastic constants are displayed
in Figure 7. VEC and MT hold the top two positions in predicting the elastic constants.
From the previous findings, it is interesting to note the role of the VEC descriptor, which
has the top position in descriptor importance in determining the crystal structure [20–25],
Young’s modulus [27,60,61], and hardness [62] of HEAs. The previous study has shown
that VEC is the essential feature in determining Young’s modulus of complex concentrated
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alloys in their ML models [27]. Moreover, Roy et al. [63] also found that MT is an essential
parameter in predicting Young’s modulus of HEAs using the gradient boosting method.
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Using the SHAP value, the relevance ranking of various descriptors provides a nu-
merical correlation between the input descriptors and target descriptors. Further details
between the descriptors and elastic constant can be explored using the data visualization
techniques and the concept of material. The parallel coordinate plot (PCP) of the dataset
is plotted to display the correlations of the descriptor with the elastic constants, and it is
shown in Figure 8. The highest value of each descriptor is shown on the top and bottom of
the vertical axes, respectively. The values of alloy elastic constants are demonstrated by the
three-colored bars on the right-hand side of Figure 8. The purple color represents the high-
est elastic constants, and yellow represents the lower elastic constant. The PCP indicates
that higher VEC, MT, and GP values with lower omega values are favorable for developing
a higher elastic constant in refractory alloys. The VEC value positively influences the elastic
constant of RHEAs; the greater the VEC, the higher the elastic constant, and vice versa. This
observation is quite similar to Guo et al. findings [53], which show when VEC is less than
6.87, the solid solution phase of the BCC is more stable due to solid strengthening caused
by lattice distortion. Similar phenomena is observed from the PCP, when VEC lies between
5 to 6.3, the elastic constant becomes higher and it could be due to the lattice distortion. The
lattice distortion is also formed when different size elements are mixed, and this mixing
will force the atoms to move from their original position and result in lattice distortion.
Previous work has also described the significance and importance of VEC in physical
characteristics and phase stability in alloys [53,54,64,65]. Similar results were found by
Huang et al. [66] about the VEC, which holds the top position in features importance while
predicting the hardness of RHEAs using the RF model. They also highlight that VEC is
important in charge transfer, which impacts RHEA strength because of lattice distortion.
So far, the lattice distortion study is still in progress, and it is done by simulation only.
Experimental measurement of lattice distortion in alloys is needed to get further knowledge
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about the contribution of each element to the elastic properties of RHEAs. The second top
descriptor is melting temperature. According to the PCA plot, RHEAs with higher melting
temperatures favor the elastic constant of materials. The RHEAs consisting of elements Re,
W, Ta, and Mo which have higher VEC and MT, have increased the alloy’s elastic constant.
Additional visualization using the contour plot is plotted to see the relationship between
top important features VEC and MT with elastic constants. Figure 9a–c show the contour
plot of the elastic constants of RHEAs as a function of VEC and MT. The original value of
VEC and MT is normalized to get the smooth graph. The right-hand side color bar denotes
the values of elastic constant in GPa. According to the contour plot, elastic constants of
RHEAs increased with higher MT and VEC values. If MT is higher in RHEAs, with low
VEC, then the alloy will have low elastic constants. A similar color pattern graph is obtained
for all elastic constants as a function of VEC and MT. As a result, it is necessary to consider
MT and VEC to get high elastic constants. The change in elastic constants with change in
materials stability will help to improve the mechanical properties.
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3.5. Comparison of Current Work with Previous Work

In terms of elastic constant, Vasquez et al. [67] reported the analytical model to predict
the elastic constants of RHEAs consisting of five elements Nb, Mo, Ta, W, and V alloys.
In comparison, ten elements were included in the dataset in this study to give a boarder
range of compositional space for alloys. Furthermore, hyper tunning of all 3 ML models is
also performed, and metrics such as MSE and RMSE are calculated to find the optimal ML
model capable of predicting elastic constant with higher accuracy. The dataset and model
could be more beneficial to optimizing the various alloys and help in alloy design.
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As the availability of elastic constants for RCCAs is very limited, this study demon-
strates the methodology of estimating the elastic constants for RCCAs based on the ML
models using a database constructed from DFT calculations. A total of 370 instances of
data were created with the help of DFT computational simulations. The used database is
relatively small, but as previous studies show, ML can successfully be applied to a small
dataset. As an example, Islam et al. [20] also used 118 instances and five features of the
multi-principal element alloys dataset, which were used to forecast the alloy’s structure.
Wen et al. [32] applied ML methods to the alloy system of Al-Co-Cr-Cu-Fe-Ni to find
the maximum hardness with just 155 samples. Another group [68] identified the phase
formation in HEAs with a small dataset by selecting low dimension descriptors. This
study aimed to predict the elastic constants of RCCAs without performing any expensive
DFT simulations and experimental methods, which is supposed to save time, effort, and
money in designing RCCAs. It is indispensable to state that elastic constants are essential
properties affecting materials’ stability, strengths, and anisotropy. There is still plenty
of room to optimize the compositional space of alloys. It is necessary to determine the
shear strains using an atomic displacement field to evaluate the lattice distortion. The
elastic constant is also one parameter for obtaining the overall influence of such local strain
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changes [69]. Therefore, faster methods that are effective in exploring the compositional
space of alloys for creating high-temperature and high-pressure performance materials are
highly demanded. The current ML methods can acquire information from the descriptor of
datasets and link the relationship between the HEAs composition and target properties,
i.e., elastic constants. One achievement of this study is that if a user comes up with a
new composition of an alloy, the provided Python program can predict all of the nine
descriptors for the considered alloys. If the obtained information is passed into the trained
ML models, the elastic constant of the given alloy will be predicted. These models may be
further applied to study the compositional space of novel RCCAs, and they can be used
to develop future RCCAs with desirable mechanical properties. These ML models do not
consider complex phenomena such as lattice defects, dislocations, grain boundaries, slip
planes, and plastic deformation in RCCAs. It is expected that more powerful models will
be developed that can consider the complex phenomenon of RCCAs to make more accurate
predictions of mechanical properties.

4. Conclusions

In this study, three popular ML methods, namely random forest regressor, gradient
boosting regressor, and decision tree regression models, were used for predicting the elastic
properties of RCCAs. The ML model consists of eight different descriptors of RCCAs.
GBR performs very well as compared with the other two ML models. While predicting
elastic constants C11, C12, and C44, the R2 value of testing data of the GBR model were
0.97, 0.803, and 0.787, respectively. The GBR model has a high R2 value and low MAE
and RMSE error than RF and XGB ML models and is promising for predicting the elastic
constant of RHEAs. The elastic constants of alloys MoNbTiVZr, MoNbTiZr, NbTiVZr,
and NbTaTiV predicted by the GBR model are consistent with the current simulation and
experimental findings, which validate its prediction accuracy and applicability. The feature
importance from SHAP and PCP plot shows that the VEC and MT are the most influential
features affecting the elastic constants of RHEAs. The dataset created in this study using
CALPHAD and DFT modeling could help scientists to construct RHEAs that can endure
extreme temperatures and pressures. Compared to the computationally expensive DFT
calculation and experimentally tedious trial-and-error methods for calculating the elastic
constants, ML methods can be applied to predict the elastic constant of any novel refractory
high-entropy alloys with very low costs, and hence helps on designing RHEAs to meet
the industry demands. The GBR model is not capable of predicting the elastic constants of
RHEAs at different temperatures and therefore future work should be focused on creating
an ML model that can predict the elastic constants at varying temperatures.
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