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Abstract: This study investigated the twinning behavior with increasing compressive strain in rolled
AZ31 alloy. With that purpose, a polycrystalline structure with an average grain size of 30 µm was
utilized to perform the uniaxial compression tests. Microstructure evolution was traced by in situ
electron backscattered diffraction (EBSD). Multiple primary twin variants and extension double twins
were observed in the same grain. A comprehensive analysis of kernel average misorientation (KAM)
and Schmid factor (SF) revealed that the nucleation of twins in one special grain is not only based on
the SF criterion, but that it is also strongly influenced by surrounding grains. Moreover, the existing
primary twins modified the inner and outer strain distribution close to the twin boundaries. With
continued compression, the strain inside the primary twins stimulated the nucleation of double twins,
while the strain in the matrixes facilitated twin growth. Therefore, the primary twin growth and the
new nucleation of secondary twins could take place simultaneously in the same twinning system to
meet the requirements of strain accommodation. Twinning behaviors are controlled by the combined
effect of the Schmid factor, strain accommodation between surrounding grains, and variation in the
local stress state. The local stress exceeded the critical resolved shear stress (CRSS), implying that
twin nucleation is possible. Hence, the twinning process tends to be a response of the local stress
rather than the applied stress.

Keywords: double twin; local stress state; multiple twin variants

1. Introduction

Deformation twinning is recognized as one of the main deformation modes in Mg
alloys because it can accommodate strain from the crystal c-axis and improve formability
at room temperature by increasing available independent shear systems [1–4]. As revealed
from previous investigations, extension twinning is easy to active and has low critical
resolved shear stress (CRSS) among all deformation mechanisms in Mg and its alloys [4–7].
Moreover, extension twinning will adjust the micro-texture by inducing a crystallographic
lattice rotation of 86.3◦, which can be activated when the crystal is subjected to tensile
stress along the c-axis or compress stress perpendicular to the c-axis in hcp materials. The
twinning process can be separated through the following steps: nucleation, propagation,
and then growth [8–10].

Double twinning is an important twinning behavior to relax strain concentrated on
grain boundaries. There are two different double twin structures in Mg alloys: (a) the
{10–11}-{10–12} double twin, where the extension twin nucleates inside the contraction
twin; and (b) the {10–12}-{10–12} double twin, where the extension twin is generated
inside the pre-existing extension twin [11,12]. The {10–11}-{10–12} double twin is regarded
as the cause of failure at early deformation stages because of the combination of strain
softening and the local generation of twins; it is usually observed when compression
strain is conducted on a crystal from the c-axis [13–16]. In contrast, the {10–12}-{10–12}
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double twin is perceived to be an enhancer of mechanical properties by adjusting texture
and grain refinement, and it is commonly observed when the sample is undergoing a
strain path change. Some publications have also provided experimental evidence to
confirm the nucleation of {10–12}-{10–12} double twins during complicated metalworking
processes at room temperature [10,11,17–19]. In addition, other reports have demonstrated
that the formation of double tensile twinning is caused by the impingement of two pre-
existing extension twins during uniaxial compression tests [8,20]. Most secondary twins
were found to be located at the intersections of primary twins. More recently, in single
crystals, secondary {101–2} twins with negative SFs were observed, which is attributed to
requirements of local strain accommodation.

Twinning nucleation is a complicated activity, and it can easily be affected by many
different parameters such as grain shapes, grain sizes, etc. Beyerlein et al. [21,22] proposed
that the selection of primary twin variants would be influenced by local stress field induced
by neighboring grains in simulations. However, more experimental investigations are
needed to strengthen this theory. Moreover, the internal stress caused by the pre-existing
twins, in turn, will influence the new nucleation of twin variants with further deformation.
However, more investigations need to be conducted to study secondary or ternary twin
nucleation. Hence, the local stress state plays an important role in twinning behavior.
However, few studies have focused on the nucleation of {10–12}-{10–12} double twins
affected by local stress fluctuations.

Therefore, this study assessed the formation of a {10–12}-{10–12} double twin induced
by the local stress state at room temperature. To investigate the twinning behavior, an in
situ EBSD technique was used to trace the twinning evolution, whereas Schmid factor and
KAM analyses were employed to explain it.

2. Materials and Methods

In this study, the material employed was a commercial AZ31 (3 wt % Al, l wt %
Zn, balance Mg) rolling sheet with a thickness of 20 mm. Compression samples with
dimensions of 15 (rolling direction) × 10 (transverse direction) × 10 mm (normal direction)
were machined from the rolled sheet. Then, to eliminate dislocations or pre-existing twins,
homogenized heat treatment at 250 ◦C for 24 h was utilized [23,24]. Three comparative
mechanical tests were conducted on an AG-X machine (SHIMADZU SPL-10 kN, Kyoto,
Japan) at an average strain rate of 10−3 s−1, and in situ compression tests were interrupted
at different deformation stages. Two compression tests were continually conducted along
the RD direction. The first sample was compressed along the RD direction at strains of 2%
and 4%. The second sample was compressed along the RD at strains of 1.5%, 2.5%, and
3.5%. The other test was performed with two orthogonal paths: rolling and transverse
directions. The specimen was first compressed along the RD 1.5%, and then compressed
along the TD 2%.

All the samples were prepared by silicon carbide papers ground from 300 to 2000 grit;
then, electrochemical polishing with commercial AC2 solution (Struers) at a voltage of 20 V
and an electric current of 0.1 A for 60 s at a temperature of −20 ◦C was used to attain mirror
surfaces. EBSD examinations were performed using a field emission scanning electron
microscope (JOEL JSM 7800F, Akishima, Japan) equipped with an HKL-EBSD system: the
step size was 0.6 µm and the magnification was 500. The RD-TD plane was checked via the
interrupted EBSD method at the same region several times in three samples. Six possible
twinning systems—(−1102) [1–101], (1–102) [−1101], (−1012) [10–11], (10–12) [−1011],
(0–112) [01–11], and (01–12) [0–111]—were marked as V1–V6, respectively [9,12].

3. Results
3.1. Microstructure and Texture Evolution

In Figure 1, the microstructure and texture evolutions under continued plane compres-
sion are presented as in situ EBSD maps and pole figures. The grain boundaries are larger
than 15◦ and presented in black. The IPF map at strain of 0% shows that the average grain
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size of the polycrystalline is about 30 µm and a typical basal texture with a c-axis parallel
to the normal direction shown in the (0001) pole figure. The compression deformation
conducted along the RD direction facilitated the nucleation of extension twinning because
the c-axis of most grains was perpendicular to the applied stress. Meanwhile, the twin
volume fractions were calculated at different strain levels, and the value increased from 0%
at strains of 0% to 72% at a strain of 4%. Therefore, the basal texture gradually decreased,
and a typical RD texture was generated in the pole figure.
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Figure 1. Microstructures and corresponding pole figures at strains of 0% (a), 2% (b), and 4% (c).

Different from the uniaxial compression, the strain path change test was conducted on
the second specimen. As presented in Figure 2, this sample was first compressed to 1.5%
along the RD and then followed by the TD compression to the strain of 2%. First, the RD
texture was observed in the pole figure after the first deformation, and then it decreased
after the second compression along the TD. Meanwhile, the TD texture was generated. The
maximum intensity of the basal texture decreased from 16.08 for the starting material to
11.00 after the first compression along the RD, and it continually decreased to 5.44 after the
second deformation along the TD.

As shown in Figure 3, several grains were selected from Figures 1 and 2 and enlarged
to analyze the evolution of twinning. Three grains—A, B, and C—were located in the
center of the pole figure and identified as the matrix of the starting material. The lamellae
TA, TB, and TC were close to the RD and the misorientation between twin lamellae and
corresponding matrixes was close to 86.3◦, suggesting that all twin lamellae were {10–12}
extension twins. According to the results, twinning behavior is governed by nucleation,
propagation, and coalescence mechanisms without changing the loading direction. In Grain
D, the primary tensile twin TD1 was generated after the first RD compression. When the
second strain path changed from the RD to TD, the secondary twin TD2 nucleated inside
the primary twin TD1. Different from the twin morphology in Grain D, no secondary twins
were observed in Grain E, although the width of primary twin TE decreased. From the
description above, there are two twinning processes in the strain path change test. First,
twinning and secondary twinning were the dominate deformation mechanisms in Grain D.
Second, twinning and de-twinning governed the deformation in Grain E.
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3.2. Unusual Secondary Twinning Behavior

In some special cases, the twinning growth and secondary twinning nucleation op-
erated simultaneously in the same twinning system during continued RD compression.
Figure 4 displays the microstructure and texture evolution at different strain levels. The
starting texture with c-axis parallel to the ND decreased and the RD texture was formed
at a strain of 1.5% (Figure 4a). As the strain continued to increase to 2.5%, the ND texture
experienced further weakening, whereas the RD texture was enhanced and the twin volume
fraction is increased from ~13.2% to ~25.9%. After the third compression, the pre-existing
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twin lamellae grew very fast; several grains were absolutely consumed by twins. The twin
volume fraction was enhanced from ~25.9% to ~46.4%. In addition, the texture intensity
showed a continued decrease from 19.3 to 10.01. The boundaries of primary tension twins
and secondary tension twins are shown in red and green lines in Figure 5a, respectively.
The width of twin lamellae expanded very quickly, and a few grains were nearly consumed
by the primary twins. Therefore, at early deformation stages, the main deformation mode is
the primary twin growth. From Figure 5b, primary twins with two different variants were
found in some grains. In addition, the extension twins nucleated inside the existing twins
to obtain secondary extension twins under uniaxial compression along the RD direction.
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Figure 5. (a) The {10–12} primary tension twin and {10–12}-{10–12} secondary twin boundaries are
presented in red (86.5◦ < 11–20 > ± 5◦) and green (34◦ < 11–20 > ± 5◦), respectively. (b) Primary twins
with the first variant and second variant are shown in brown and purple, respectively. In addition,
the secondary twins are plotted in green. The two maps correspond to strains of 3.5%.

In order to understand this special twinning behavior, partial maps are enlarged in
Figure 6. The microstructural evolution of two selected grains is presented, and the pole
figure illustrates the crystallographic relationship between the matrix and twin bands. In
Grain M, twins T1 and T2 are identified as two distinct primary twin variants, V3 and V4,
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respectively. The theoretical misorientation angle is about 60◦. Similarly, in Grain S, two
different twin variants X1 and X2 are recognized as V4 and V5, respectively. From in situ
IPF maps, the two secondary twins T3 and X3 nucleated inside the primary tension twin T1
and X1, respectively. As can be seen from {0001} pole figure, the twins T2, T3, and X3 had a
similar crystal orientation and all twins were close to the TD direction, which is different
from the direction of the applied stress, indicating that both non-Schmid primary twin
variants and secondary extension twins were caused by other parameters.
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4. Discussion

Normally, the twinning process is governed by nucleating, growing, and merging
mechanisms without changing the loading direction [25–27]. The new twins prefer to
generate at grain boundaries and at early deformation stage to accommodate the applied
stress. With further deformation, a single predominant variant with the highest SF or
fewest parallel twins with the same variant grow rapidly until the whole grain is consumed.
Sung et al. [28–30] reported that the twinning deformation is also affected by changing
compressive loadings. In detail, when the compression tests with two orthogonal direc-
tions are applied to rolled AZ31 alloy, multiple twinning modes are observed. Therefore,
{10–12}-{10–12} double twins can generate inside the primary twin bands. These results are
similar to the second sample in this study. Not only were two different kinds of primary
variants found in the same grain, but some {10–12}-{10–12} double twins also nucleated
inside the primary twins under uniaxial compression. To determine the origin of this
behavior, several aspects were considered.

4.1. Schmid Factor (SF) Analysis

In Mg alloys, one of reasonable principles for analyzing the formation of twinning is
the Schmid factor, which can provide accurate geometrical parameters to judge whether the
applied stress meets the requirement of twinning [28,31]. As can be seen from Table 1, both
twins T1 and X1 had the highest SF values among all variants, whereas the twin variants T2
and X2 ranked with the fifth and third highest SF values (0.10 and 0.26) among all variants,
respectively. These twins with SF values lower than 0.3 are identified as non-Schmid twins,
indicating that the variant selection is affected by other parameters during compression
deformation. Indranil et al. [32–34] reported that the stress distributions inside the twin and
in front of twin tips are quite different. In addition, the distribution of strain is dependent
on the location, i.e., in the center or close to the grain boundary. In Table 1, the primary
twin variants are calculated with different assumptive loading directions. The SF values
of twin variants in Grain M and Grain S are comparatively low, and some values were
negative when compressive loading was performed along the RD direction. This suggests
that twins are restricted in this loading condition based on the SF criterion. Compared with
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two other assumed loading conditions, based on Schmid’s law, it seems more reasonable
that twins with high SF values are generated under the assumption of tensile loading along
RD. This calculation implies that the secondary twinning behavior is not only governed by
the Schmid factor law, but is also influenced by other factors.

Table 1. Twin variants and their corresponding SF values in the selected grains under different
loading directions.

Compression along RD Tension along RD Compression along TD

SF Values M S T1 X1 T1 X1 T1 X1

V1 0.10 0.44 −0.49 −0.39 0.49 0.39 0.25 0.36
V2 0.13 0.25 −0.49 −0.44 0.49 0.44 0.03 −0.02
V3 0.49 0.02 −0.49 −0.43 0.46 0.43 0.49 0.19
V4 0.10 0.45 −0.49 −0.43 0.45 0.43 0.24 0.39
V5 0.12 0.26 −0.49 −0.45 0.43 0.45 0.03 −0.01
V6 0.47 0.02 −0.49 −0.41 0.46 0.41 0.49 0.16

4.2. Twinning Behavior Is Affected by Surrounding Grains

Jonas et al. [17,35] suggested that variant selection is required to accommodate the
strain from neighboring grains. Therefore, to understand this special twinning behavior,
it was necessary to determine the deformation mechanisms in neighboring grains. Thus,
Grain M and seven surrounding grains were selected for study in Figure 7. At a strain level
of 1.5%, twins nucleated in all grains except grains N5 and N6. With continued compression,
some existing primary twins grew quickly, and the second variants were nucleated as well
in some grains. In addition, the double twin nucleated in the center of the primary twin in
Grain M and more second variants were generated in surrounding grains at a strain of 3.5%.
The misorientation values between Grain M and the neighboring grains are shown in white
in Figure 7a, and the average value is 32◦. Due to high-angle grain boundaries, the stress is
hard to accommodate by twinning and slip transfer. Therefore, the local stress increased
in Grain M with increasing compressive strain. In addition, the distributed features of
in-grain misorientation axes (IGMAs) in surrounding grains have been investigated [36].
The strong intensities of the IGMAs in Grains N1, N3, and N6 changed from <0001> to
<uvt0>, suggesting that the slip mode changed from basal to non-basal. In addition, the
strong intensity of the IGMA in Grain M changed, which indicates that the stress inside the
grain is variable.

In Table 2, the SF values of twin variants and basal slip in all selected grains are
presented. In detail—in the N1, N3, N5, N6, and N7 grains—one or two twin variants with
SF values smaller than 0.3 are observed. Generally, the non-Schmid effect is associated
with the local stress fluctuations induced by strain accommodation between grains because
twinning deformation is a local-stress-controlled nucleation process [17,37]. In addition,
the local shear stress of one twinning system and the ability to accommodate the shearing
stress from the surrounding grains are two main parameters which affect the nucleation
process [1]. The key to achieving new twin variants is that the accumulated local stress
reaches the critical resolved shear stress. Similarly, the double twins can nucleate inside
the existing primary twins when the accumulated local stress reaches its CRSS. The second
variant is considered to be an accommodation mechanism to release the applied stress
during uniaxial compression. In this case, the double twins have a similar effect to multiple
twin variants.
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Figure 7. The selected Grain M and seven surrounding grains at different strain levels: (a) RD 1.5%;
(b) RD 2.5%; (c) RD 3.5%; (d) the maximum/minimum intensities of each IGMA distribution for
each grain.

Table 2. Twin variants and their corresponding SFs in the selected grains.

V1 V2 V3 V4 V5 V6
Active Twin

Variant Basal SF

S 0.44 0.25 0.02 0.45(X1) 0.26(X2) 0.02 V4,V5 0.10
M 0.10 0.13 0.49(T1) 0.10(T2) 0.12 0.47 V3,V4 0.12
N1 0.03 0.08 0.23 0.01 0.10 0.17 V1,V4 0.45
N2 0.40 0.01 0.30 0.38 0.01 0.32 V1,V6 0.13
N3 0.47 0.04 0.24 0.47 0.04 0.24 V1,V3 0.01
N4 0.41 0.01 0.30 0.40 0.01 0.31 V3,V4 0.10
N5 0.11 0.19 0.19 0.11 0.15 0.14 V1,V2 0.36
N6 0.26 0.06 0.04 0.25 0.11 0.10 V1,V4 0.44
N7 0.15 0.10 0.49 0.15 0.10 0.49 V2,V6 0.01

4.3. Local Stress State inside the Grain

Due to the density and spatial configuration of defects, the direction of the stress in
the local area was not completely in agreement with the loading stress; it was influenced by
grain shapes, sizes, and the segregation of alloy elements and other factors. The local stress
state played an important role in deformation mechanisms, especially in twinning behavior.

Previous reports suggested that the macroscopic loading state may significantly devi-
ate from the local stress state when non-Schmid twins are observed [11]. Indranil et al. [33]
also reported that geometrically necessary dislocation (GND) densities are in full agree-
ment with KAM values close to grain boundaries. Therefore, the distribution of local stress
gradients is in accordance with local misorientation values. The KAM maps at different
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strain levels and the four L1–L4 arrows with corresponding point-to-point data profiles are
presented in Figure 8. The black and red dotted lines, L1 and L2, respectively, are selected
in two different twin lamellae with the same twin variant as in Grain M. The maximum
misorientation in L1 is four times larger than that in L2, which means that the stress is much
larger in twin T1 than that in T2. The result is that the secondary twin, T3, is generated
inside twin T1 lamellae, although no twins nucleate in T2 after further deformation, which
seems reasonable. In addition, the lines L3 and L4 represent point-to-point misorientation
values in the same region at strain levels of 2.5% and 3.5%, respectively. The maximum
misorientation in L3 is six times larger than that in L4, which means that the constrained
stress is released by the new nucleation of the secondary twin X3. It also proves that stress
is concentrated on the site where the secondary extension twin is observed. In addition,
there are two different primary twin variants in both Grain S and Grain M. From the
point-to-point data profile, the distribution of the internal stress is significantly influenced
by the growth of two different twin variants. With further deformation, the accumulated
flow stress meets the requirement to activate the secondary twins; therefore, the double
twins are generated. Usually, several parallel twins will nucleate at the initial deformation
stage and the pre-existing twins will grow quickly with further deformation. As mentioned
above, from the {0001} pole figure in Figure 6, the twins T2, T3, and X3 have a similar crystal
orientation close to the TD direction, and the local stress changes from the RD direction at
strain of 2.5% to the TD direction with continued deformation. The existing primary twins
change the distribution of strain inside and outside the twin boundaries—i.e., the strain in
the primary twins will facilitate the nucleation of double twins—whereas the strain close to
primary twin boundaries and inside the matrixes will help with twinning growth. Hence,
in Grain M, the primary twin propagation and the double twin nucleation (T3) can occur
simultaneously in the same twinning system (T1).
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The selection of twin variants is mainly attributable to the local stress state, which is
different with the applied stress and governed by several parameters, such as the strain
accommodation between surrounding grains, loading direction, and the shape of grains.
Multiple twin variants are generated in one grain when the local stress reaches the value
of critical resolved shear stress (CRSS). Similarly, the secondary tension twins can also
nucleate inside the primary twins during uniaxial compression. In other words, twinning
behavior tends to be a response to accommodate local stress rather than macroscopic stress.
Twinning behavior, such as that in double twins and multiple twin variants, requires higher
energy and larger applied stress.
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5. Conclusions

This study investigated the origin of secondary twinning behavior and multiple twin
variants which occurred in a rolled AZ31 sheet subjected to uniaxial compression along
the RD. An in situ electron backscatter diffraction technique was employed to trace the
microstructural evolutions; moreover, SF and KAM analyses were used to study the unusual
double-twinning behavior and twin variant selections. The following conclusions can be
drawn from this study:

1. Under uniaxial compression, multiple primary twin variants with low SFs are nucle-
ated in one grain because of the local stress fluctuations induced by strain accommodation.
Moreover, non-SF twins, in turn, will influence the distribution of local stress gradients.

2. Existing primary twins change the distribution of strain inside and outside the
twin boundaries. With further deformation, the strain inside the primary twins will
facilitate the nucleation of double twins, whereas the strain close to the primary twin
boundaries and inside the matrixes will help with twinning growth. Therefore, twin
propagation and the new nucleation of double twins can be activated simultaneously in
existing twinning systems.

3. The formation of secondary twins and primary twin variant selections are controlled
by a combined effect of the Schmid factor, strain accommodation between surrounding
grains, and variation in the local stress state. The key principle to achieve twin nucleation
is whether the local stress can reach the value of critical resolved shear stress (CRSS).

These results offer new insights to studies of twinning behavior and can help in the
design of new alloys with high strength and ductility properties. Further studies are needed
to quantify this double-twinning behavior among all deformation mechanisms.
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