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Abstract: In a roller bit, the flat rubber ring (FRR) often needs to apply a certain amount of com-
pression to ensure that its rotation and static sealing surfaces can be stably sealed. For the predicted
Mises stress, values smaller than the actual Mises stress due to soft single-axis compression (SAC)
stress are predicted by the Yeoh (N = 3) model. To more reasonably predict stress under the static
compression of the FRR in the roller bit, the sealing effect of the FRR based on the SAC contact stress
and the calculated Mises stress was evaluated by the Yeoh_revised model. Based on the assumption
that hydrogenated nitrile-butadiene rubber (HNBR) is isotropic and incompressible, first, we derived
the fitting formulas for three types of constitutive models and the Jacobi matrix of the Yeoh_revised
model and developed hyperelastic constitutive subroutines. Simultaneously, the accuracy of three
models (Yeoh, Yeoh_revised and Ogden) was evaluated by the goodness of fit (R2) to data from
three kinds of tensile experiment tests. The highest R2 is 0.9771 with the Yeoh_revised model, which
merges the advantages of the other two fitting models and effectively improves the Yeoh model’s
soft property of SAC contact stress. Additionally, by measuring on-site FRR wear, the maximum
Mises stress on the sealing surface calculated based on the Yeoh_revised model is about twice that
of the Yeoh model, and the maximum Mises stress on the rotation contact sealing surface is higher
than that on the outside (static sealing) surface, which makes the aging of the rotation surface more
severe. Thus, it was demonstrated that, on the premise of ensuring FRR sealing contact stress, the
Yeoh_revised model can more reasonably predict the sealing effect of the FRR to more precisely
calculate Mises stress than the Yeoh model. This also contributes to FRR structure optimization to
prolong the service life of the FRR in the roller bit.

Keywords: FRR; Yeoh_revised; Mises stress; incompressible

1. Introduction

Generally speaking, the rubber of the FRR used in a roller bit is an initially isotropic
and incompressible material. The study of its mechanical constitutive model is mainly
divided into two categories: phenomenological theory and thermodynamic statistical
theory based on molecular chain networks. Based on the former theory, Mooney, M. [1] and
Rivlin, R. S. [2] proposed the classic Mooney–Rivlin (M-R) hyperelastic constitutive model,
which represents the strain energy density function with deformation tensor invariant Ii
(i = 1, 2, 3). The second-order term of this model is the most widely used hyperelastic
constitutive model in current small deformation analyses, with significant errors based on
the Neo-Hookean model when fitting experimental data with a tensile ratio greater than
1.4. On the basis of the Mooney–Rivlin model, O.H. Yeoh [3] only considered the effect on
the strain energy density function from the first strain invariant (I1) while retaining (I1-3)
at less than or equal to the third-order terms to accurately predict the uniaxial and plane
tensile test stress–strain relationship, but the “soft” phenomenon was observed compared
to experimental data. Ogden, R. W. [4] represented the strain energy density function with
the elongation ratio λi (i = 1, 2, 3), which can accurately predict the stress–strain data of
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uniaxial stretching, plane stretching and equibiaxial stretching experiments simultaneously,
but it is not suitable for predicting single-stretching experimental data.

Based on the latter theory, Guth et al. [5] proposed the Neo-Hookean model, called the
classical Gaussian statistical mechanics model, which is only suitable for small deformation
situations. Lopez-Pamies, O. [6] proposed an evolving porous Neo-Hookean model to
characterize the macroscopic response of 2D isotropic porous Neo-Hookean solids with
random and particulate microstructures, providing ample motivation to carry out further
analyses for more general 3D material systems. Treloar, L. R. G., et al. [7] and Treloar, L. R. G.
and G. Riding [8] proposed that the Neo-Hookean model no longer applies when the end of
a Gaussian chain exceeds the vector length by 1/3 of the chain length. Guth, E. et al. [5] and
Wang, M. C. and E. Guth [9] modified the ideal Gaussian theory under the distribution of
the Langevin inverse function, which more accurately simulates the nonlinear elastic char-
acteristics of rubber materials under large deformation, and further proposed a simplified
three-chain model. ARRUDA, E. M. and M. C. Boyce [10] proposed an eight-chain molec-
ular model based on the three-chain non-Gaussian network model and showed that the
Arruda–Boyce model may be preferable when only uniaxial tensile test data are available.
On the previous basis, P. D. Wu and E. van der Giessen [11] established a more accurate full
network model, which can fit between the three-chain and eight-chain molecular models.
Yang, L. and L. Yang [12] proposed that under certain assumptions, the Gent model [13,14]
and the Arruda–Boyce model are consistent. Lopez-Pamies, O. [15] proposed a two-term
model, which can be regarded as a generalized Neo-Hookean model, as well as a variant of
the Arruda–Boyce (eight-chain) model, and can degenerate into the Yeoh configuration,
so it also fits equibiaxial stretching experimental data with the soft phenomenon. Based
on this model, Huang, Z.-P. [16] proposed a Gent-Gent hyperelastic constitutive model,
which improved the Gent fit. Zhou, L. et al. [17] provided further evidence of the good
performance of the equibiaxial deformation prediction of the Gent-Gent model by using it
to study the inflation of a circular plane membrane.

Based on the experimental data of L. R. G. TRELOAR [18,19], Xiao-ling, H. et al. [20]
fitted five common prediction models for stress–strain test data (Neo-Hookean, Mooney–
Rivlin, Yeoh, Ogden and Arruda–Boyce) and employed a model selection strategy for three
basic test datasets. The results show that only Ogden (N = 3) could completely fit the
experimental data when the three types of experiments were sufficient, avoiding the soft
phenomenon of equibiaxial tensile stress fitting. Xue-bing, L. and W. Yin-tao [21] proposed
a revised Yeoh hyperelastic material constitutive model that effectively overcomes the
“partial soft” properties of the Yeoh model in predicting equibiaxial stretching curves. In a
large strain range, the stress–strain relationship of uniaxial, plane and equibiaxial tension
compression could be accurately predicted simultaneously, but it was not compared with
the Ogden (N = 3) model and needs to be verified by the finite element method (FEM).

Among the constitutive models used in FRR seal analysis, the M-R model is the most
extensively used; for instance, Niu, S [22] and Zhang, J. and J. Xie. [23] investigated the
sealing performance of an O-ring based on FEM with the M-R model, where the effects of
pressure and pre-compression, fluid pressure, the friction coefficient, etc., on the sealing
performance analysis were studied. In addition, Liao, B. et al. [24] obtained the time-varying
reliability of the O-ring, and Hu, Y. et al. [25] studied the fretting wear of the O-ring, as well
as the life prediction, safety and service life of the seal. Yi Zhou and L. Wang [26] proposed
that O-ring rubber circles are superior to other cross-sectional rubber rings, while Zhang, H.
and J. Zhang [27] reported that the O-ring can be effectively replaced by a D-ring in a static
seal. Liang, B. et al. [28] proposed that the material and geometric parameters had a greater
influence on the reliability of the rubber O-ring, so Zhang, L. and X. Wei. [29] proposed
a new structure of a butterfly rubber ring by analyzing the factors affecting the sealing
performance of the rubber ring on the groove side. The Yeoh model is also widely used.
Zhou, C. et al. [30,31] studied the sealing performance of a combined sealing structure
composed of a rubber D-ring, O-ring and wedge ring used in a high-pressure hydrogen
storage vessel by elucidating the swelling mechanisms due to dissolved hydrogen.
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The Yeoh_revised constitutive model is the most accurate in fitting experimental data
(R2 = 0.9771) compared to Yeoh and Ogden models and is especially suitable for predicting
Mises and contact stresses under SAC deformation. In this study, we evaluated the sealing
effect of SAC contact stress and Mises stress based on the Yeoh_revised model for a novel
FRR in a roller bit under SAC deformation. The results clearly show that the Yeoh_revised
model can predict the Mises stress more accurately than the Yeoh model and provides a
more reasonable prediction of the aging of the FRR, which further ensures a more stable
seal. It also provides specifications for its size optimization in the future.

2. Problem Description and Analysis Method
2.1. FRR Static Compression Analysis in a Roller Bit

FRRs are often used for sealing in roller bits. The sealing effect is related to the
influence of the working environment, such as the moving force in the roller bit, down-hole
temperature, ambient pressure, etc. [32,33]. During the sealing process, the contact stress
of the sealing surface is related to the amount of FRR compression, the fluid pressure
difference on both sides of the FRR, and FRR hardness. Generally speaking, higher ambient
temperature and internal Mises stress tend to accelerate the aging of rubber [24,25], resulting
in rubber hardness increases that make the wear of the sealing surface inconsistent [34]. The
higher the hardness of the FRR surface, the slower the wear. Due to inconsistent hardness,
a wear gradient of the FRR in the roller bit will occur, and the sealing effect of the FRR will
finally deteriorate.

To reduce the difference in wear, this study calculated the contact stress and Mises
stress of an FRR in the static sealing process based on the Yeoh_revised model and compared
it to the calculation results of the Yeoh model. The aim is to achieve a more accurate
prediction of the maximum Mises stress on the FRR under the premise of ensuring a stable
seal. Meanwhile, it provides a reference for reasonably designing the size of the FRR
structure, prolonging the service life and ensuring a more reliable seal.

The novel structure scheme of the FRR is shown in Figure 1a, in which the center
symmetry form and structural parameters are as follows: seal length l = 6.25 mm, height
h = 3.0 mm, oblique length b = 2.3 mm, arc radius r = 3.84 mm, oblique horizontal angle
e = 11◦, arc corresponding to central angle β = 25◦, oblique chamfer length α = 0.6 mm, etc.
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Figure 1. Schematic diagram of the cross-sectional structure (a) and contact deformation of FRR (b)
in a roller bit. In the contact path (green dotted line in Figure 1b), the critical point on the rotation
surface contact with the outer and inner fluid zone is A and B, point C is the middle point in the
contact path and the critical point on the outside surface contact with the outer and inner fluid zone
is D and E.

Figure 1b is the schematic diagram of the FRR force in the roller drill, where the outside
surface and rotation surface of the FRR are pre-compressed by a sealed groove and axle
journal, respectively. During the actual sealing process, the two ends of the rotation surface
profile of the FRR are subjected to fluid pressure (e.g., 20 MPa). Meanwhile, to simplify
the calculation, the ambient temperature is assumed to be 120 ◦C, the friction factor of the
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sealing contact surface is 0.08, the sealed groove and axle journal are rigid bodies only
considering FRR deformation, and the contact, load and constraint of the whole model
have axial symmetry. Cloud diagrams of FEM calculation results for contact stress and
Mises stress under FRR static compression are shown in Section 3.2. By setting the contact
path (Figure 1b), the contact stress and Mises stress curves can be obtained as shown in
Section 3.2 too.

2.2. Hyperelastic Experiment and Fitted Model

To determine the hyperelastic constitutive model of HNBR materials, uniaxial tensile
(UT), planar tensile (PT) and equivalent tensile (ET) tests [35–37] at 120 ◦C were performed
based on the good resistance of HNBR at high temperatures, as shown in Figure 2. In
the basic dense elastomer hyperelastic tensile experiment executed by Axel Products, Inc.,
the parameters were set as follows: strain speed: 0.01 s−1, five times per level; strain
levels: 11%, 24%, 30% and 39%. Three UT specimens, three PT specimens and three ET
specimens were cut from the provided slabs (slab measurements: 150 mm in length by
150 mm in width, 1.0 to 2.0 mm thick). In the test, the specimens were loaded slowly
with between zero force and a user-defined stretch level for 5 loadings and unloadings at
up to 4 maximum strain levels so as to examine the initial stress–strain behavior and the
“stabilized” stress–strain behavior in each of the maximum strain conditions. In addition, a
schematic diagram of the tensile sample force is given in Figure 3. Considering the HNBR
as an isotropic incompressible material, the main tensile ratio λi (i = 1,2,3) and the Cauchy
stress in related directions (Figure 3), Equation (1) is obtained.

ST : λ1 = λ, λ2 = λ−0.5, λ3 = λ−0.5, σ2 = σ3 = 0
ET : λ1 = λ, λ2 = λ, λ3 = λ−2, σ3 = 0
PT : λ1 = λ, λ2 = 1, λ3 = λ−1, σ3 = 0

(1)
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2.2.1. Mathematical Stress Formula

HNBR materials are usually regarded as incompressible and isotropic hyper-elastomers,
and their mechanical properties can be described by the strain energy density equation.
Under isothermal conditions, the strain energy density equation of isotropic super-elastic
materials can be represented as in Equation (2) as a function of the three strain invariants
of the left/right Cauchy–Green deformation tensor b/C, as defined in Equation (3).

φ = φ(IC, I IC, I I IC), φ = φ(Ib, I Ib, I I Ib) (2)

in which: 
Ib = IC = trC = λ1

2 + λ2
2 + λ3

2

I Ib = I IC = 1
2 [(trC)2 − trC2] = λ1

2λ2
2 + λ1

2λ3
2 + λ2

2λ3
2

I I Ib = I I IC = detC = λ1
2λ2

2λ3
2

(3)

By definition, the relationship between type II Piola–Kirchhoff stress S and strain
energy density φ (strain energy per unit volume) is expressed as Equation (4) [13].

S = 2
∂φ

∂C
(4)

Combining Equation (2) with Equation (3) and deriving Equation (4) by the chain rule
of the composite function [21], we derived Equation (5).

S = 2
∂φ

∂C
= 2[(

∂φ

∂IC
+ IC

∂φ

∂I IC
)I− ∂φ

∂I IC
C + I I IC

∂φ

∂I I IC
C−1] (5)

We consider the relationship between type II Piola–Kirchhoff stress S and Cauchy
stress σ as in Equation (6) and combine C = FT · F, b = F · FT , Ib = IC, I Ib = I IC, I I Ib = I I IC

and J = (I I Ib)
0.5. Using the Cayley–Hamilton theorem [38] in Equation (7), Equation (6)

can be transformed into Equation (8).

σ =
1
J

F · S · FT (6)

− b2 = −Ibb + I IbI− I I Ibb−1 (7)

σ = 2

(I I Ib)
1
2
[( ∂φ

∂Ib
+ IC

∂φ
∂I Ib

)b− ∂φ
∂I Ib

b2 + I I Ib
∂φ

∂I I Ib
I]

= 2

(I I Ib)
1
2
[ ∂φ

∂Ib
b− ∂φ

∂I Ib
I I Ibb−1 + (I Ib

∂φ
∂I Ib

+ I I Ib
∂φ

∂I I Ib
)I]

= −PI + ∂φ
∂Ib

b− ∂φ
∂I Ib

b−1

(8)

Depending on the incompressibility of the rubber material, I I Ib = I I IC = 1, and P is
hydrostatic pressure. For the isotropic materials, σ, b and b−1 are coaxial [39]; therefore, in
the spindle coordinate system, the principal Cauchy stress in Equation (9a) and the nominal
principal stress in Equation (9b) are obtained.

σi = −P + 2
∂φ

∂Ib
λi

2 − 2
∂φ

∂I Ib
λi
−2 (9a)
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Pi =
σi
λi

=
−P
λi

+ 2
∂φ

∂Ib
λi − 2

∂φ

∂I Ib
λi
−3 (9b)

Eliminating uncertain hydrostatic pressure terms, Equation (10) is as follows.

σi − σj = 2
∂φ

∂Ib
(λi

2 − λj
2)− 2

∂φ

∂I Ib
(λi
−2 − λj

−2) (10)

2.2.2. The Three Models’ (Yeoh (N = 3), Yeoh_Revised (N = 3) and Ogden (N = 3))
Fitted Stress

Yeoh (N = 3) uses the higher-order term of I1 to correct the strain energy function of
the Neo-Hookean model. The modified model is called the Reduced Polynomial model,
whose strain energy function is expressed in Equation (11). Based on Drucker stability [40],
the material constraint inequalities are defined in Equation (12).

φ = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (11)

C10 > 0, C20 < 0, C30 > 0 (12)

Combining Equations (9b) and (10), the relationship between the nominal stress Pi
and the stretching ratio λi of the Yeoh (N = 3) model under three basic deformation modes
is obtained, as shown in Equation (13) [38].

PST
yeoh =

3
∑

i=1
2iCi0(λ

2 + 2λ−1 − 3)i−1
(λ− λ−2)

PET
yeoh =

3
∑

i=1
2iCi0(2λ2 + λ−4 − 3)i−1

(λ− λ−5)

PPT
yeoh =

3
∑

i=1
2iCi0(λ

2 + λ−2 − 2)i−1
(λ− λ−3)

(13)

Since the IIC term in Equation (2) is completely discarded, the Yeoh model predicts
the ET stress with the “soft” phenomenon. Based on the above considerations, by in-
troducing the first part of IIC [20], the following strain energy equation is proposed (see
Equation (14)), and based on Drucker stability [40], the material constraint inequality is
defined in Equation (15).

φ = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 + C01(I2 − 3) (14)

C10 > 0, C20 < 0, C30 > 0, C01 > 0 (15)

Combining Equations (9b) and (10), the relationship between the nominal stress Pi
and the stretching ratio λi of the Yeoh_revised (N = 3) model under three basic deformation
modes is obtained, as shown in Equation (16).

PST
yeoh_re =

3
∑

i=1
2iCi0(λ

2 + 2λ−1 − 3)i−1
(λ− λ−2) + 2C01(1− λ−3)

PET
yeoh_re =

3
∑

i=1
2iCi0(2λ2 + λ−4 − 3)i−1

(λ− λ−5) + 2C01(λ
3 − λ−3)

PPT
yeoh_re =

3
∑

i=1
2iCi0(λ

2 + λ−2 − 2)i−1
(λ− λ−3) + 2C01(λ− λ−3)

(16)

The strain energy function of the Ogden model is shown in Equation (17) [4,38],
where µi and αi are arbitrary constants (which can be non-integers). Based on Drucker
stability [40], material constraint inequalities are shown in Equation (18).

φ =
N

∑
i=1

µi
αi
(λ1

αi + λ1
αi + λ1

αi − 3) (17)

N

∑
i=1

µiαi>0 (18)
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Combining Equations (9b) and (10), the relationship between the nominal stress Pi and
the stretching ratio λi of the Ogden (N = 3) model under three basic deformation modes is
obtained as shown in Equation (19).

PST
ogden = 2

3
∑

i=1

µi
αi
(λαi−1 − λ−

1
2 αi−1)

PET
ogden = 2

3
∑

i=1

µi
αi
(λαi−1 − λ−2αi−1)

PPT
ogden = 2

3
∑

i=1

µi
αi
(λαi−1 − λ−αi−1)

(19)

2.2.3. Model Goodness of Fit

Using the hyperelastic constitutive fitted model obtained in Section 2.2.2, least squares
fitting was performed on experimental data [18,32]. The model goodness of fit R2 was
introduced to evaluate the fitting quality, and the deviation square sum (SSdev) and the
residual square sum (SSres) were calculated.

R2 = 1− SSres

SSdev
(20a)

SSres =
N

∑
i=1

(
∧
Pi − Pi)

2

(20b)

SSdev =
N

∑
i=1

(Pi − Pi)

2

(20c)

where Pi is the experimental value; Pi is the average of Pi; P̂i is the model fit value; and
N is the number of test data points involved in fitting. A larger goodness-of-fit value,
R2, indicates the higher overall goodness of the model fit. The Yeoh fitting formula in
Equation (13), Yeoh_revised fitting formula in Equation (16) and Ogden fitting formula in
Equation (19) were fitted to three sets of tensile experimental data. The fitting results and
residual analysis are shown in Figures 6 and 7, respectively.

2.3. Validation of the Fitted Constitutive Parameters in FEM

In engineering, the vast majority of dense HNBR materials are often considered
mechanically incompressible during the deformation process [41,42], which still satisfies
the accuracy requirements of the solution. In general, the hyperelastic Jacobi matrix of

incompressible HNBR materials is often solved in the form of the stress–strain rate;
•
S,
•
τ

is not objective [39], so Ctan cannot be used for the hyperelastic Jacobi matrix of rubber

materials [39]. Since
o
τ and

�
τ are objective, the Jacobi matrix that can be used to solve the

constitutive model according to its objectivity is shown in Equations (21a) and (21b). Finally,
the Jacobi matrix Cijkl of the material is derived from the variation in the Jaumann-Zaremba
rate of the Kirchhoff stress tensor [39].

•
S = Ctan :

•
E

�
τ =

•
τ − l · τ − τ · lT

F−1 · �τ · F−T = Ctan : FT ·D · F
�
τ = (F⊗F : Ctan : FT ⊗ FT) : D = L : D

(21a)


◦
τ =

�
τ + D · τ + τ ·D =

∧
L : D

D · τ + τ ·D = 2H : D
∧
L = L + 2H
Cijkl = L̂ijkl/J = (Lijkl + 2Hi jkl)/J

(21b)
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where Ctan is known as the material tangent elasticity tensor,
•
τ is the derivative of the

Kirchhoff stress tensor with time,
�
τ is the Oldroyd rate of the Kirchhoff stress tensor,

o
τ

is the Jaumann-Zaremba rate of the Kirchhoff stress tensor, L or L̂ is the spatial tangent
elasticity tensor in the current configuration, H is the symmetric part of L̂, l is the velocity
deformation gradient tensor, and D is the symmetric part of l.

2.3.1. Calculation of Yeoh_Revised Jacobi Matrix (Incompressible)

In order to verify the correctness of the HNBR hyperelastic configuration model, this
section first establishes the Jacobi matrix of the Neo-Hookean model and compares the
results with the Neo-Hookean Jacobi matrix given by the help document in ABAQUS [43].
Helmholtz free energy per unit reference volume (φ) of the Neo-Hookean model is shown
in Equation (22) [44,45].

φ = φ̃ + φvol = C10(IC̃ − 3) +
1

D1
(J − 1)2 (22)

where φ̃, φvol represent the shear and dilatation parts of Helmholtz free energy, respectively,
and Di characterizes the compressibility of HNBR.

According to the definitions in Equations (4) and (5), the second type of Piola–Kirchhoff
stress (S) is shown in Equation (23a), where S̃, Svol represent the shear and dilatation parts

of Piola–Kirchhoff stress (S), S̃ represents the stress (S) defined in the pure dilatation
configuration (Figure 4), and P is the fourth-order projection tensor.

S = 2
φ(C)
∂C

= S̃ + Svol (23a)

Svol = J φvol(J)
∂J C−1 = 2

D1
J(J − 1)C−1

S̃ = 2 ∂φ̃(C̃)
∂C = J−

2
3 [ ∂C̃

∂C : 2 ∂φ̃(C̃)
∂C̃

] = J−
2
3 P : S̃ = J−

2
3 S̃

dev (23b)

S̃ = 2
∂φ̃(C̃)
∂(C̃)

, P =
∂C̃
∂C

= I I − 1
3

C−1 ⊗ C (23c)
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Substituting Equations (22), (23b) and (23c) into Equation (23a), the specific expression
of S is obtained in Equation (24).

S = S̃ + Svol = 2C10 J−
2
3 [I − trC

3
C−1] +

2
D1

J(J − 1)C−1 (24)
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To determine the Neo-Hookean Jacobi matrix, Equation (24) is substituted into Equation (21a)
to obtain the material tangent elasticity tensor (Ctan), as shown in Equation (25), and the
spatial tangent elasticity tensor (L) is shown in Equation (26).

Ctan = 2 ∂S
∂C = − 4

3 C10 J−
2
3 [C−1 ⊗ I + I⊗ C−1]

+[ 4
9 C10 J−

2
3 trC + 2

D1
(2J − 1)J]C−1 ⊗ C−1

+[ 2
3 C10 J−

2
3 trC− 2

D1
(J2 − J)][C−1⊗C−1 + C−1 ⊗ C−1]

(25)

L = F⊗F : Ctan : FT ⊗ FT = − 4
3 C10 J−

2
3 [I⊗ b + b⊗ I]

+[ 4
9 C10trbJ−

2
3 + 2

D1
(2J − 1)J]I⊗ I

+[ 2
3 C10trbJ−

2
3 − 2

D1
(J2 − J)][I⊗I + I⊗ I]

(26)

In fact, the material Jacobi matrix is obtained from the variation in the Jaumann-Zaremba

rate of the Kirchhoff stress tensor (
o
τ). According to the relationship between

o
τ and

�
τ (see

Equation (21b)), Hijkl and L̂ijkl component expressions are shown in Equations (27) and (28),
respectively. The detailed derivation process of Hijkl is shown in Appendix A.

2Hijk l = C10(δik b̃jl + δi l b̃jk + b̃ikδjl + b̃i lδjk)

−[ 2
3 C10

trb̃
3 −

2
D1

(J2 − J)](δikδjl + δilδjk)
(27)

∧
Lijkl = Lijkl + 2Hijkl = − 4

3 C10[δij b̃kl + b̃ijδkl ]

+[ 4
9 C10trb̃ + 2

D1
(2J − 1)J]δijδkl

+C10(δik b̃jl + δil b̃jk + b̃ikδjl + b̃ilδjk)

(28)

Finally, the Neo-Hookean Jacobi matrix component Cijkl of rubber material is shown
in Equation (29). The result is consistent with the help document given in the ABAQUS
help file [46].

Cijkl =
∧
Lijkl/J = − 4

3J C10[δij b̃kl + b̃ijδkl ]

+[ 4
9J C10trb̃ + 2

D1
(2J − 1)]δijδkl

+C10
J (δik b̃jl + δil b̃jk + b̃ikδjl + b̃ilδjk)

(29)

Likewise, based on Equation (14), the strain energy density equation for the Yeoh_revised
(incompressible) model is obtained [38] (see Equation (30)).

φ = φ̃ + φvol =
3

∑
i=1

Ci0(IC − 3)i + C01(I IC − 3) + γ(J − 1) (30)

where C̃ = C, and γ is the introduced Lagrange multiplier and satisfies γ = −P = σkk/3.
Equation (30) is substituted into Equation (23a), and after the calculation of Equation (31),

Equation (32) is obtained.

Svol = J φvol(J)
∂J C−1 = JγC−1

S̃ = 2 ∂φ̃(C̃)
∂C = 2

[
( ∂φ̃(C̃)

∂IC
+ ∂φ̃(C̃)

∂I IC
IC)I− ∂φ̃(C̃)

∂I IC
C
]

=
3
∑

i=1
2iCi0(IC − 3)i− 1I + 2C01(ICI− C)

(31)

S = S̃ + Svol =
3

∑
i=1

2iCi0(IC − 3)i−1I + 2C01(ICI− C) + JγC−1 (32)

Similar to the calculation of Equations (25)–(28), the Yeoh_revised model (incompress-
ible) Jacobi matrix component Cijkl of HNBR material is shown in Equation (33), and the
detailed derivation process is shown in Appendix B.
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Cijkl =
∧
Lijkl/J = 1

J [8C20 + 24C30trb− 72C30 − 4C01]bijbkl

− 4C01
J bikbjl +

1
J [Jγ]δijδkl +

1
J [C10 + 2C20(trb− 3)

+3C30(trb− 3)2 + C01trb](δikbjl + δilbjk + bikδjl + bilδjk)

− 1
J C01(δikbjpbpl + δilbjpbpk + bipbpkδjl + bipbplδjk)

(33)

2.3.2. Notes on Developing Subroutines

In this study, a subroutine program based on Equation (33) was used to verify the
superiority of the Yeoh_revised model (incompressible) in predicting SAC by FEM, and
it was compared with the Yeoh and Ogden models. Since the Jacobi matrix expressed in
Equation (33) is derived based on the premise of incompressibility, UMAT or UHYPER
subprograms can be directly developed [47].

2.3.3. Verification of the Equivalent CAE Simulation Design for the ET (SAC) Test

On the premise that HNBR material volume is incompressible, combined with experi-
mental data obtained at constant temperature (such as 120 ◦C), different λi values under
ET boundary conditions were converted to different compressive axial displacements (uzi)
based on Equation (1) (see Table 1). The contact stress between the picked mesh element
and pressure plate was extracted, as shown in Figure 5, by using an axisymmetric model
for calculations; the finite element mesh type of rubber material is CAX4H, and the number
of CAX4H is 300. The pressure plate is designated as an analytical rigid body, its mesh type
is RAX2, and the pressure plate and rubber are set to be in frictionless contact (equivalent to
ET). The contact stresses under different λi are plotted together in Figure 8, which is based
on the three constitutive models obtained using Equations (13), (16) and (19), respectively.
In addition, the Yeoh_revised Jacobi matrix was derived on the basis of Equation (33), and
the other two Jacobi matrix models usually exist in popular FEM software.

Table 1. SAC displacements corresponding to different tensile ratios λi.

λi 1 1.02 1.04 1.06 1.08 1.10

uzi 0 6.16 mm 7.26 mm 8.30 mm 9.28 mm 10.21 mm
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3. Results and Discussion
3.1. Fitting Results Analysis

In Figures 6 and 7, based on the three types (UT, ET and PT) of tensile experimental
data of HNBR at 120 ◦C, the Yeoh_revised (N = 3) constitutive model’s overall goodness of
fit (R2 = 0.9771) is the most accurate compared with the Yeoh (N = 3) constitutive and Ogden
(N = 3) models, and the maximum negative fitting residuals are: −0.3782, −0.155, −0.2141,
respectively; the Yeoh_revised model is improved compared to the Yeoh constitutive model,
which predicts ET (or SAC) stress with the softness phenomenon. This is because the
ET experimental fitting formula holds one more item 2C01(λ

3 − λ−3), which gradually
increases as λ increases, than the Yeoh model in Equation (16). The obtained curve in
Equation (16) shows a more obvious “upturning” phenomenon than that in Equation (13),
which indicates better agreement with ET experimental data. Compared with the Ogden
(N = 3) model, the Yeoh_revised (N = 3) model achieves a more accurate fit with fewer
parameters (i.e., four), so it proves to be the most suitable for stress prediction in SAC
deformation. Meanwhile, the Yeoh_revised (N = 3) model still has the smallest fluctuation
in UT and PT tensile values, as shown in Figure 7b,c. Thus, in general, the Yeoh_revised
(N = 3) model possesses the best fitting effect and merges the advantages of the other
two fitting models. The fitting coefficient values of the three models, the deviation square
sum (SSdev) and the goodness of fit (R2) are shown in Table 2.

Table 2. Comparison of the fitted results of tensile stress based on three models.

Yeoh Yeoh_Revised Ogden

T 120 ◦C T 120 ◦C T 120 ◦C

C10 1.3745 C10 0.36 u1 0.8152
C20 −1.4273 C20 −1.3323 α1 −0.0003
C30 2.3639 C30 3.0578 u2 0.8152
/ / C01 0.9965 α2 0.0005
/ / / / u3 0.8152
/ / / / α3 −0.0002

SSdev 0.7124 SSdev 0.2659 SSdev 0.6465
R2 0.9385 R2 0.9771 R2 0.9442

3.2. Equivalent FEM Verification Results

In Figure 8, when the tensile ratio (λ) increases from 1 to 1.10 at an experimental
temperature of 120 ◦C, the experimental values are consistently higher than the CAE-
calculated values of the Yeoh_revised, Yeoh and Ogden models. Nevertheless, the three
constitutive models produce results with different size degrees; in general, Yeoh_revised is
the smallest, Yeoh is the largest, and Ogden is in the middle. For example, when λ is 1.10,
the Yeoh_revised CAE calculation model is 10.17% smaller, while Yeoh_revised and Ogden
CAE calculation models are 10.17% and 14.16% smaller, respectively, which again indicates
that the Yeoh_revised model will significantly improve the soft SAC stress based on the
Yeoh model. For other stretch ratios, the comparison between the CAE-calculated values of
the three constitutive models and experiments is shown in Table 3.

Table 3. Comparison between CAE-calculated and experimental values.

λ Test_Data Yeoh_Cae Deviation Yeoh_Re_Cae Deviation Ogden_Cae Deviation

T = 120 ◦C

1.00 0.0000 0.0000 0 0.0000 0 0.0000 0
1.02 0.4137 0.3159 −23.65% 0.3213 −22.34% 0.2892 −30.10%
1.04 0.7333 0.601 −18.04% 0.6315 −13.88% 0.5753 −21.55%
1.06 1.0250 0.8451 −17.55% 0.9219 −10.06% 0.8559 −16.50%
1.08 1.3346 1.048 −21.48% 1.195 −10.46% 1.1300 −15.33%
1.10 1.6309 1.219 −25.26% 1.465 −10.17% 1.4000 −14.16%

Notes: deviation = (xx_cae − test_date)/test_date × 100%.
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Figure 6. The results of three models fitted to HNBR stretching experiments at 120 ◦C: Yeoh model
(a), Yeoh_revised model (b) and Ogden model (c).

Meanwhile, in Figure 8, it is clear that as λ increases from 1 to 1.10, the numerical
values from the experiment and the CAE-calculated values of Yeoh_revised and Ogden are
all linearly distributed, while the Yeoh CAE-calculated values are nonlinearly distributed,
and their deviation from experimental values rises as λ increases. Therefore, the Yeoh
model is seldom suitable for predicting SAC stress under large deformation.

In order to compare the difference between the experimentally fitted values (i.e.,
Equations (13), (16) and (19)) and the CAE-calculated values (i.e., Equation (33)) for the
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same λ, the fitted values of experimental SAC (ET) data were collated together with the
CAE-calculated values of the three constitutive models in Table 4. The results demonstrate
that the maximum deviation between the fitted values of each constitutive model and the
corresponding CAE-calculated values never exceeds ±0.5% at 120 ◦C, which, importantly,
meets the requirement for engineering accuracy, so the accuracy of the fitting parameters of
each constitutive model obtained by the least squares method in this paper is proved.
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Table 4. Comparison between CAE-calculated and fitted values.

T = 120 ◦C

λ Yeoh_Cae Yeoh_Fit Deviation λ Ogden_Cae Ogden_Fit Deviation

1.00 0.0000 0.0000 0 1.00 0.0000 0.0000 0

1.02 0.3159 0.3173 −0.43% 1.02 0.2892 0.2905 −0.46%

1.04 0.6010 0.6008 0.04% 1.04 0.5753 0.5752 0.01%

1.06 0.8451 0.8438 0.15% 1.06 0.8559 0.8546 0.15%

1.08 1.0480 1.0466 0.13% 1.08 1.1300 1.1290 0.09%

1.10 1.2190 1.2157 0.27% 1.10 1.4000 1.3959 0.29%

λ Yeoh_re_cae Yeoh_re_fit Deviation

1.00 0.0000 0.0000 0

1.02 0.3213 0.3227 −0.43%

1.04 0.6315 0.6315 0.01%

1.06 0.9219 0.9207 0.13%

1.08 1.1950 1.1934 0.13%

1.10 1.4650 1.4608 0.29%

Notes: deviation = (xx_cae − xx_fit)/xx_cae × 100%.

3.3. FEM Results of FRR under Static Compression

The cloud diagram of contact stress FEM calculation results under FRR static compres-
sion is shown in Figure 9. For a more intuitive comparison, the contact stresses calculated
based on two constitutive models in the contact path (Figure 1b) is extracted and plotted
in Figure 10, where the static pre-compression contact stresses are basically the same dis-
tribution, and the difference between the contact stresses after being squeezed by fluid is
also subtle. In comparison, based on the Yeoh_revised model, the contact stress value on
the rotation surface is slightly larger than the value calculated by the Yeoh model between
points A and B in the contact path, while the contact stress value on the outside surface
between points D and E shows the opposite pattern. After being squeezed by fluid, the
contact stress of the two contact surfaces increases above the fluid pressure (i.e., 20 MPa) in
the cavity. Meanwhile, the contact stress after fluid extrusion based on the two constitutive
models is basically the same, which indicates that the FRR structure with this structural
parameter set would ensure that it is sealed. The Mises stress expression is shown in
Equation (34).

σ =

√
1
2
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (34)

Under static compression, the maximum Mises stress calculated based on the two
constitutive models is located in the F, G and C areas of the FRR section, as shown in
Figure 11a,c, and only the maximum Mises stress values are different. According to
Equations (20a) and (34), the Yeoh_revised model predicts principal stress σi (i = 1, 2, 3)
values more accurately in each direction, so it also desired the value of Mises stress more
precise. For instance, the maximum Mises stress value obtained based on the Yeoh_revised
model is 1.437 MPa, which is greater than the Yeoh model value of 1.413 MPa.

After being squeezed by fluid, the maximum Mises stress also occurs in areas where
the two sealing surfaces are in contact with the fluid, i.e., A, B, D and E. It is also found that
the cloud graph in Figure 11d is not consistent with Figure 11b; based on the Yeoh_revised
model, the maximum Mises stress after fluid extrusion is mainly distributed in the contact
areas between the two sealing contact surfaces and the liquid cavity (i.e., A, B, D and E),
while the Yeoh model hardly reflects this distribution law. Extracting the Mises stress values
on the contact path (Figure 1b), as shown in Figure 12, indicates that Mises stress values at
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the contact areas (i.e., A, B) are basically the same. Owing to the symmetrical deformation
of the FRR, the contact areas are at the junction of the rotation sealing surface and fluid of
both ends, and the two contact areas (D, E) on the outer sealing surface are also identical.
Meanwhile, based on the two constitutive models, Mises stress concentration occurs in the
four regions (A, B, D and E) after being squeezed by fluid (i.e., the FRR sealing process),
and the Mises stress obtained by the Yeoh_revised model is twice the value obtained by
the Yeoh model; the larger the value, the easier it is to age and harden in the four regions.
Simultaneously, Mises stress in the contact areas (i.e., A and B) at the junction of the rotating
surface and fluid is the maximum on the contact path, which indicates that this area is the
most fragile part of the entire FRR structure and is likely to cause the sealing effect of the
FRR to deteriorate [48].
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Figure 9. Contact stress cloud diagram of FRR in a roller bit: (a) pre-compression contact stress based
on Yeoh model; (b) contact stress after fluid extrusion based on Yeoh model; (c) pre-compression
contact stress based on Yeoh_revised model; (d) contact stress after fluid extrusion based on
Yeoh_revised model.
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Figure 10. Contact stress on the contact path of FRR in a roller bit. In the contact path (green dotted
line in Figure 1b), the critical point on the rotation surface contact with the outer and inner fluid zone
is A and B, point C is the middle point in the contact path and the critical point on the outside surface
contact with the outer and inner fluid zone is D and E.
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Figure 11. Mises stress cloud diagram of FRR in a roller bit: (a) pre-compression Mises stress based
on Yeoh model; (b) Mises stress after fluid extrusion based on Yeoh model; (c) pre-compression Mises
stress based on Yeoh_revised model; (d) Mises stress after fluid extrusion based on Yeoh_revised
model. In the contact path (green dotted line in Figure 1b), the critical point on the rotation surface
contact with the outer and inner fluid zone is A and B, point C is the middle point in the contact path
and the critical point on the outside surface contact with the outer and inner fluid zone is D and E.
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Figure 12. Mises stress on the contact path of FRR in roller bit. In the contact path (green dotted line
in Figure 1b), the critical point on the rotation surface contact with the outer and inner fluid zone is A
and B, point C is the middle point in the contact path and the critical point on the outside surface
contact with the outer and inner fluid zone is D and E.

4. FRR Field Application

Taking the well named MaHW6415 as an example, the lithology is gray mudstone, the
estimated ambient temperature is 90 ◦C, and the pump pressure is 20 MPa (fluid pressure
difference: ±0.5 MPa). After the total number of rotations of the roller bit reached about
980,000 cycles, the FRR was extracted, its appearance was checked, and the wear condition
was analyzed, as shown in Figure 13.
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Figure 13. The on-site wear effect on FRR in a roller bit. The wear effect on the outside and rotation
surfaces of FRR before and after use is shown in (a) and (c), respectively. The magnification of the
outside and rotation surfaces’ wear effect is shown in (b) and (d), respectively. In the contact path
(green dotted line in Figure 1b), the critical point on the rotation surface contact with the outer and
inner fluid zone is A and B, the critical point on the outside surface contact with the outer and inner
fluid zone is D and E.

There are worn lines on the rotation surface and outside surface in Figure 13b,d. The
larger the distance between the center line of the stress concentration area (i.e., thick dotted
line) and the wear gradient boundary line (i.e., thin dotted line), the larger the hardened
area of the rubber contact surface, the more severe the aging of the rubber contact surface,
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and the worse the sealing effect. Meanwhile, the distance between the thick dotted line
and the thin dotted line of the cross-sectional stress concentration area in Figure 13d is
higher than that in Figure 13b, which demonstrates that the maximum Mises stress on the
rotation sealing surface is higher than that on the outside sealing surface. Consequently,
the spacing distance will be reduced by optimizing the FRR structural parameters to reduce
the maximum Mises stress value. The schematic diagrams and test results of rotation and
outside surfaces are shown in Figure 14 and Table 5, respectively.
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Table 5. Flat sealing ring size and hardness measurements before and after use.

Object Bore
Size/mm

Length of Different Phase-Angle
Cross-Sections (l)

Height of Different Phase-Angle
Cross-Sections (h) Hardness/HA

0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦ Outside
Surface

Rotation
Surface

Before use 54.70 6.25 6.25 6.25 6.25 3.90 3.90 3.90 3.90 90 90
After use 55.22 6.03 5.96 5.95 6.05 3.92 3.92 3.88 3.89 94 101

In Table 5, the inner-diameter wear value of the rotation surface before and after use
is 0.52 mm; the maximum wear amount of the section length is about 0.30 mm at 90◦ or
180◦, respectively, so eccentric wear occurs, which shows that the FRR is not completely
antisymmetrically deformed inside the roller drill. The hardness of the FRR rotation surface
is hardened by 11HA before and after use, while the outside surface is only hardened by
4HA, which also proves that the maximum Mises stress on the rotation sealing surface is
higher than that on the outside sealing surface in actual operation.

5. Conclusions

This paper mainly focuses on the SAC contact stress and Mises stress of the Yeoh_revised
model compared to the Yeoh model, which was also applied to evaluate the sealing ef-
fect of an FRR in a roller bit under SAC deformation. The results clearly show that the
Yeoh_revised model can predict the Mises stress more accurately than the Yeoh model
and provides theoretical guidance for mitigating the aging of FRRs and ensuring a more
stable seal. It also further provides specifications for its size optimization. The following
important conclusions are drawn from this research:

1. Comparing the fitted values with the FEM-calculated data of three constitutive models,
it is demonstrated that the maximum deviation between the fitted value of each
constitutive model and the corresponding CAE-calculated value never exceeds ±0.5%
at 120 ◦C, which proves the accuracy of the fitting values of the parameters of each
constitutive model obtained through the least squares method in this paper.

2. Compared with the Yeoh model, the Yeoh_revised and Ogden models both address
the soft phenomenon encountered by the Yeoh constitutive model when predicting
stress in ET (SAC) tensile tests. Moreover, the Yeoh_revised model shows the greatest
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improvement, with an R2 up to 0.9771, in fitting the experimental values, and its
maximum underestimation is reduced to half of that of the Yeoh model.

3. The Yeoh_revised constitutive model is the most accurate in fitting the experimental
data. Compared with Ogden, it achieves more accurate fitting with fewer parameters
(i.e., four), while the number of fitted parameters (i.e., six) is higher in the Ogden
model; therefore, it is more suitable for Mises stress analysis of an FRR in a roller bit
under SAC deformation.

4. On the premise of ensuring the stability of sealing FRR contact stress, the maximum
Mises stress obtained with the Yeoh_revised model is 1.437 MPa greater than the
Yeoh model’s value of 1.413 MPa before FRR extrusion by fluid. The Yeoh_revised
model is more accurate in predicting Mises stress. In the sealing process (i.e., after
FRR extrusion by fluid), the Mises stress obtained with the Yeoh_revised model is
twice the value obtained with the Yeoh model, which provides a more reasonable
prediction for reducing FRR aging and further ensuring a more stable seal. It also
provides specifications for its size optimization in the future.
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Appendix A

The derivation process of Equation (27) is as follows:

I Isym
ijkl = 0.5(I Iijkl + I Iijkl) = 0.5(δikδjl + δilδjk) (A1)

where II = I⊗I, II = I⊗ I is a minor symmetric fourth-order unit tensor [38].

According to the symmetry of D:

Dip = I Isym
ipkl Dkl = 0.5(δikδpl + δilδpk)Dkl

Dpj = I Isym
pjkl Dkl = 0.5(δpkδjl + δplδjk)Dkl

(A2)

Substitute in:
Dip b̃pj = 0.5(δik b̃jl + δil b̃jk)Dkl

b̃ipDpj = 0.5(b̃ikδjl + b̃ilδjk)Dkl
(A3)

Dip Ipj = 0.5(δikδjl + δilδjk)Dkl
IipDpj = 0.5(δikδjl + δilδjk)Dkl

(A4)

Dip b̃pq b̃qj = 0.5(δik b̃jp b̃pl + δil b̃jp b̃pk)Dkl

b̃ip b̃pqDqj = 0.5(b̃ip b̃pkδjl + b̃ip b̃plδjk)Dkl
(A5)

According to Equation (21b), Equations (A6) and (A7) can be obtained:

τ = Jσ = F · S · FT = 2C10 J−
2
3 [b− trb

3
I] +

2
D1

J(J − 1)I (A6)
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2H : D = 2C10(D · b̃ + b̃ ·D)

−[2C10
trb̃
3 −

2
D1

(J2 − J)](D · I + I ·D)
(A7)

Substituting Equations (A3) and (A4) into Equation (A7), Equation (27) can be obtained.

Appendix B

Equation (32) can be redefined as Equation (A8):

S = S̃ + Svol =
3
∑

i=1
2iCi0(IC − 3)i− 1I + 2C01(ICI− C) + JγC−1

= SC10 + SC20 + SC30 + SC01 + Svol
(A8)

where:
SC10 = 2C10I (A9)

SC20 = 4C20(IC − 3)I (A10)

SC30 = 6C30(IC − 3)2I (A11)

SC01 = 2C01(ICI− C) (A12)

Svol = JγC−1 (A13)

According to the definition in Equation (25), Equation (A14) is obtained from Equation (A9):

Ctan
C10

= 2
∂SC10

∂C
= 0 (A14)

Ctan
C20

= 2
∂SC20

∂C
= 8C20I⊗ I (A15)

Ctan
C30

= 2
∂SC30

∂C
= (24C30 IC − 72C30)I⊗ I (A16)

Ctan
C01

= 2
∂SC01

∂C
= 4C01I⊗ I− 4C01I⊗I (A17)

Ctan
vol = 2

∂Svol
∂C

= γJC−1 ⊗ C−1 − γJ(C−1⊗C−1 + C−1 ⊗ C−1) (A18)

Combining Equations (A14)–(A18), Equation (A19) is obtained:

Ctan = (8C20 + 24C30 IC − 72C30 + 4C01)I⊗ I− 4C01I⊗I
+γJC−1 ⊗ C−1 − γJ(C−1⊗C−1 + C−1 ⊗ C−1) (A19)

According to Equation (21a), Equation (A19) becomes Equation (A20), which is the
spatial tangent elasticity tensor (L) of the Yeoh_revised model (incompressible).

L = (8C20 + 24C30 Ib − 72C30 + 4C01)b⊗ b− 4C01b⊗b
+γJI⊗ I− γJ(I⊗I + I⊗ I) (A20)

Substituting Equations (A3)–(A5) into Equation (A20), the fractional formula of L of
the Yeoh_revised model (incompressible) can be obtained, as shown in Equation (A21).

Lijkl = (8C20 + 24C30 Ib − 72C30 + 4C01)bijbkl − 4C01bikbjl
+γJδijδkl − γJ(δikδjl + δilδjk)

(A21)

Similarly, on the basis of Equation (32), according to Equation (21b), Equations (A22) and (A23)
can be obtained.

τ = Jσ = F · S · FT =

[
3
∑

i=1
2iCi0(Ib − 3)i−1 + 2C01 Ib

]
b

−2C01b · b + JγI
(A22)
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2H : D =

[
3
∑

i=1
2iCi0(Ib − 3)i−1 + 2C01 Ib

]
(D · b + b ·D)

−2C01(D · b · b + b · b ·D) + Jγ(D · I + I ·D)
(A23)

Substituting Equations (A3)–(A5) into Equation (A23), Equation (A24) can be obtained.

2Hijkl =

[
3
∑

i=1
iCi0(Ib − 3)i−1 + C01 Ib

]
(δikbjl + δilbjk + bikδjl + bilδjk)

−C01(δikbjpbpl + δilbjpbpk + bipbpkδjl + bipbplδjk) + Jγ(δikδjl + δilδjk)
(A24)

Combining Equations (A21) and (A24), the fractional formula of L̂ of the Yeoh_revised
model (incompressible) can be obtained, as shown in Equation (A25).

L̂ijkl = Lijkl + 2Hijkl = (8C20 + 24C30 Ib − 72C30 + 4C01)bijbkl
−C01(δikbjpbpl + δilbjpbpk + bipbpkδjl + bipbplδjk)− 4C01bikbjl + γJδijδkl

+

[
3
∑

i=1
iCi0(Ib − 3)i−1 + C01 Ib

]
(δikbjl + δilbjk + bikδjl + bilδjk)

(A25)

Finally, on the basis of Equation (A25), the Yeoh_revised model (incompressible) Jacobi
matrix component Cijkl is obtained, as shown in Equation (33).
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