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Abstract: Graphene has been widely and extensively used in mass sensing applications. The present
study focused on exploring the use of single-layer graphene (SLG) and double-layer graphene (DLG)
as sensing devices. The dynamic analysis of SLG and DLG with different boundary conditions (BDs)
and length was executed using the atomistic finite element method (AFEM). SLG and DLG sheets
were modelled and considered as a space–frame structure similar to a 3D beam. Spring elements
(Combin14) were used to identify the interlayer interactions between two graphene layers in the DLG
sheet due to the van der Waals forces. Simulations were carried out to visualize the behavior of the
SLG and DLG subjected to different BDs and when used as mass sensing devices. The variation in
frequency was noted by changing the length and applied mass of the SLGs and DLGs. The quantity
of the frequency was found to be highest in the armchair SLG (6, 6) for a 50 nm sheet length and
lowest in the chiral SLG (16, 4) for a 20 nm sheet length in the bridged condition. When the mass was
0.1 Zg, the frequency for the zigzag SLG (20, 0) was higher in both cases. The results show that the
length of the sheet and the various mass values have a significant impact on the dynamic properties.
The present research will contribute to the ultra-high frequency nano-resonance applications.

Keywords: zigzag; armchair; chiral; SLG; DLG; mass sensor; frequency

1. Introduction

Graphene was discovered in 2004, and its field of research now deals with various
aspects of graphene. Graphene possesses amazing features, such as high electrical and
thermal conductivity, and this drives the research [1–4]. It is a suitable material for flexible
electronics and nanomechanical systems due to its higher stiffness, reduced mass per unit
area, strength, and improved electrical conductivity nature [5–9]. A one-atom-thick planar
sheet of sp2-bonded carbon atoms densely packed in a two-dimensional honeycomb crystal
lattice is referred to as SLG. DLG is a stack of graphene sheets separated by 0.34 nanometres.
Nanorings are made up of distorted graphite sheets, and they are the basic structural
constituent of these structures. As one of the most widely used methods for producing
graphene sheets, electrochemical exfoliation was the first synthetic process. Graphene sheets
are thin sheets of graphene [10–13]. Microbial detections and diagnosis devices are all
examples of nanodevices with outstanding properties in engineering and medicine [14–17].
The theoretical modelling of nanostructured materials can be conducted in three ways:
(a) atomistic modelling, (b) hybrid atomistic-continuum mechanics, and (c) continuum
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mechanics, in addition to experimental studies. Classic molecular dynamics (MD) is an
example of the atomic modelling approach [18]. MD simulations for the free vibration of
multiple SLGs with varied lengths were utilized to find the suitable values of the nonlocal
parameter. The focus of this research is to investigate the variation in the frequency of SLGs
and DLGs for different values of the mass and length of the sheets using an atomistic model
and MD simulations [19]. The resonant frequencies of the graphene sheets, the effects
of the sheet sizes, the boundary conditions, and the number of layers were investigated.
The vibrations of DLGs with various BDs between two layers were also considered. The
modelling of the SLGs and DLGs is conducted at the atomic level [20]. The carbon atoms of
the graphene sheets are covalently linked together to form a hexagonal lattice. Individual
atoms cannot move due to the external forces and extreme bonds. Graphene can be
described as a space–frame structure by seeing the bonds as connecting load-carrying
elements and the atoms as the joints of the connecting elements. The mechanical behavior
of graphene can be studied using standard structural mechanics methods if it is considered
as a space–frame structure [21–27]. MD is an efficient technique for modeling graphene’s
complete mechanical performance. However, it has a significant computing cost, which
could be very costly for large-scale problems, particularly in the case of vibration analysis
of graphene single- and double-layer sheets. The present work focused on the vibration
analysis of SLG and DLG using zeptogram mass. For both designs, the results show a
decrease in resonance frequencies as the associated mass increases.

Van Der Waal Interaction in Graphene

At distances greater than 1 nm, the VdW force is significant in the interactions of
atoms and molecules with carbon nanostructures [28]. Lifshitz and Pitaevskii developed a
comprehensive VdW force theoretical framework based on the resonance dielectric permit-
tivity principle, which is based on quantum statistical physics [29]. The intermolecular and
atomic interaction with a microbody’s flat surface is described by this theory.

Figure 1 shows two layers of the double-layer graphene sheet; the spring element
Combin 14 is used to represent the weak VdW force and the atomic mass at the node. The
FEM model of the DLG is indicated in Figure 2.
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Figure 1. Double-layer graphene with spring element (Combin 14) and zeptogram mass attached in
centre of sheet.
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attached (b) SLG Front View Mass attached.

2. Interatomic Modelling of SLG and DLG

The beam elements in the atomistic model accurately represent the covalent interac-
tions between the carbon atoms. The elastic characteristics of the beam can be calculated by
establishing links between the molecular and structural potential energy [30].

At low stresses, the total steric potential energy of a graphene can be calculated by
adding the energies owing to the valence of the bonded contacts or the connected and
non-bonded interactions [31].

In the present study, potential energy has been used to analyse linear nanospring
stiffness by applying the finite element method. The sum of the forces exerted by the
electrons and the electrostatic forces exerted between the positively charged nuclei equals
the overall force exerted on each atomic nucleus.

U = ∑ Ur + ∑ Uθ + ∑ Uφ + ∑ Uω + ∑ Uvdw (1)

where Ur is the bond stretch interaction energy, Uθ is the bending (bond angle variation
energy), Uφ is the dihedral angle torsion energy, Uω is the out-of-plane torsion energy, and
Uvdw is the non-bonded van der Waals interaction energy.

Ur =
1
2

kr(r− r0)
2 =

1
2

kr(∆r)2 (2)

Uθ =
1
2

kθ(θ − θ0)
2 =

1
2

kθ(∆θ)2 (3)

Uτ = Uφ + Uω =
1
2

kτ(∆φ)2 (4)

where kr, kθ , and kτ are the bond stretching, bond bending, and torsional resistance force
constants, respectively, while ∆r, ∆θ and ∆φ represent the bond stretching increment, the
bond angle variation, and the angle variation of the bond twisting, respectively. The second
derivatives of the potential energy terms in Equations (2)–(4) with respect to bond length,
bond angle, and twisting bond angle variations produce the spring stiffness coefficients kr,
kθ , and kτ according to Castigliano’s theorem.
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The elements representing the bond are assumed to be elastic beams with Young’s
modulus E, length L, cross-sectional area A, and moment of inertia I.

The strain energy under pure tension N is given by

UA=
1
2

∫ l

0

N2

EA
dl=

1
2

N2L
EA

=
EA
L

(∆L)2 (5)

The strain energy of the beam element under the pure bending moment M can be
expressed as:

UM=
1
2

∫ l

0

M2

EI
dl=

2EI
L

(α)2 =
EI
L
(2α)2 (6)

where α is the rotational angle of the beam ends.
Similarly, the strain energy of the beam element under pure twisting moment T is

given by

UT =
1
2

∫ l

0

T2

GJ
dl=

1
2

T2L
GJ

=
1
2

GJ
L
(∆β)2 (7)

where J, G, and ∆β are the polar moment of inertia, the shear modulus, and the relative
rotations of the beam ends, respectively [20].

EA
L

= Kr,
EI
L

= Kθ ,
GJ
L

= Kτ (8)

The elastic properties of the beam element are given as [21]

d =

√
kθ

kr
, E =

k2
r L

4πkθ
,G =

k2
r kL

τ

8πk2
θ

, (9)

where d, L, E, and G represent the diameter, length, Young’s modulus, and shear modulus
of the beam element.

The stiffness Ks of the special spring is defined by the following equation:

Ks =

(
1

ac−c cos (60)0

)2

kθ (10)

For the Finite Element Model of DLG, as indicated in Figure 2, the DLGs are modeled
considering the weak van der Waals force of attraction between the upper and lower
layers as a spring element. The van der Waals force field between the interfacial layers is
represented by the spring element Combin 14.

The spring stiffness coefficients of Equations (2)–(4) are taken to be equal to
kr = 6.52×10−7 N nm−1, kθ = 8.76×10−10 N nm rad−2, and kt = 2.78×10−10 N nm rad−2 [32,33].

2.1. Single-Layer Graphene Sheets Analytical Approach

We analyse the dynamic behaviour of an SLG with an attached concentrated mass
(Zg) at an arbitrary place using nonlocal continuum mechanics, as shown in Figure 3. The
graphene sheet’s origin is located in one of its corners in the mid-plane [34–49].

The x- and y-axes are aligned with the SLG’s length Lp and width Lq, respectively,
and the z-axis is aligned with the SLG’s thickness h [50].

The two-dimensional nonlocal constitutive equations of the SLGs are written using
nonlocal elasticity theory, as follows:

σxx − (e0a)
2
(

σ2xx
σx2 + σ2xx

σy2

)
= E

1−(v)2 (εxx + vεxx)

σyy − (e0a)
2
(

σ2yy
σx2 + σ2yy

σy2

)
= E

1−(v)2

(
εyy + vεxx

)
τxy − (e0a)

2
(

σ2xy
σx2 + σ2xy

σy2

)
= Gγxy

(11)
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where E, G, and ν are the elastic modulus, the shear modulus, and the Poisson’s ratio of the
GSs, respectively. The internal characteristic length a is the distance between two atoms in
a C-C bond, which is 0.142 nm.

Mxx =
∫ h

2
−h
2

zσxxdz

Myy =
∫ h

2
−h
2

zσyydz

Mxy =
∫ h

2
−h
2

zτxydz

(12)
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The link between the strain and the displacement fields is represented as being when
the middle surface displacements in the x and y directions are ignored.

εxx = −z ∂2w
∂x2

εxx = −z ∂2w
∂y2

γxx = −2z ∂2w
∂x∂y

(13)

where w is the displacement along the GS’ thickness. We obtain Equation (15) by substitut-
ing Equation (13) into Equation (14)

Mxx − (e0a)
2
(

∂2 Mxx
∂x2 + ∂2 Mxx

∂y2

)
= −D

(
∂2ω
∂x2 + v ∂2ω

∂y2

)
Myy − (e0a)

2
(

∂2 Myy
∂x2 + ∂2 Myy

∂y2

)
= −D

(
∂2ω
∂y2 + v ∂2ω

∂x2

)
Mxy − (e0a)

2
(

∂2 Mxy
∂x2 + ∂2 Mxy

∂y2

)
= −D(1− v) ∂2ω

∂y∂x

(14)

where D is the flexural rigidity of SLGs, expressed as

D = −z
Eh3

12(1− v2)

The governing equation for the flexural vibration of SLGs carrying a nanoparticle can
be given as (

∂2 Mxx
∂x2 + 2 ∂2 Mxy

∂y∂x + ∂2 Mxx
∂y2

)
= [ρh + mcδ(x− x0)δ(y− y0)]

∂2ω
∂t2 (15)
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where mc is the mass of nanoparticles connected at point (x0, y0) and is the Dirac delta
function indicated by

δ(x) =
{
+∞,
0,

x = 0
x 6= 0

(16)

Substituting Equation (17) into Equation (18), the governing equation can be written
in terms of w as

D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
+

[
1− (e0a)2

(
∂2w
∂x2 +

∂2w
∂y2

)]
[ρh + mcδ(x− ξ)δ(x− η)]

∂2ω

∂t2 = 0 (17)

The harmonic solution of Equation (19) can be expressed as

W(x, y, t) = Y(x, y)eiwt (18)

where Y (x, y) is the shape function of deflection, and ω is the resonant frequency of
the SLGs.

Substituting Equation (20) into Equation (19), we obtain

D
(

∂4Y
∂x4 + 2

∂4Y
∂x2∂y2 +

∂4Y
∂y4

)
+

ω2

D

[
1− (e0a)2

(
∂2Y
∂x2 +

∂2Y
∂y2

)]
[ρh + mcδ(x− ξ)δ(x− η)]

∂2Y
∂x2 = 0 (19)

Note that the boundary conditions of the SLGs with simply supported edges are

ω = 0
∂2w
∂x2 = 0
∂2w
∂y2 = 0

(20)

On x = 0, Lp and y = 0 Lq.
Therefore, the shape function (Y) in Equation (20) can be expressed as

Y(x, y) = Amn sin
mπx
Lp

sin
nπy
Lq

(21)

where Amn denotes the oscillation’s vibration amplitude, and m and n denote the mode
numbers in the periodic directions. After some optimizations, we obtain the following
frequency equation by substituting the shape function of Equation (23) into Equation (21),
multiplying both sides of Equation (17) by sinmx/Lp sinny/Lq, and integrating over the
entire region with respect to x and y, with the limits x = 0 to x = Lp and y = 0 to y = Lq.

b∫
0

a∫
0

AmnD ∏4
(

m2

L2 p + m2

L2q

)2
sin2 m ∏ x

Lp sin2 n ∏ y
Lq dxdy

−ω2 Amn

[
1 + (e0a)2 ∏2

(
m2

L2 p + m2

L2q

)2
]
[ρh + mcδ(x− ξ)δ(x− η)] sin2 m ∏ x

Lp sin2 n ∏ y
Lq dxdy = 0

(22)

The required resonant frequencies corresponding to a given form function are all roots
of the above equation. For the non-trivial solution, the Amn coefficient should be zero. As a
result, the resonant frequency of a mass sensor may be calculated.

ωn
2 =

D ∏4
(

m2

L2 p + m2

L2q

)2[
1 + (e0a)2 ∏2

(
m2

L2 p + m2

L2q

)2
](

ρh + 4mc
LpLq

)
sin2 m ∏ ζ sin2 n ∏ η

(23)

The resonance frequency of an SLG with connected nanoparticles may also be calculated
using classical elasticity theory when the nonlocal parameter (e0a) is considered to be zero.
Graphene is an enormously robust nanomaterial, with a Young’s module near to 1 TPa [51–53].
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2.2. Validation of the Model

We obtained an analytical technique from Natsuki et al. [50] to compare with the FEA
model with the objective of validating the existing model results. As shown in Table 1,
the analytical and FEA results are in close proximity. The following material attributes
were considered by the authors when validating the SLG model: E = 3792.47739 nN/nm2,
ν = 0.17, and ρ = 8362.714 kg/m3.

Table 1. Results comparison of FEA method and analytical method.

Graphene Type Single Layer Length of
Graphene

FEA Method
Frequency (Hz)

Analytical Method [53]
Frequency (Hz)

Armchair
(6, 6) 10 1.0136 × 108 1.0235 × 108

(8, 8) 20 7.5488 × 107 7.5887 × 107

Zigzag (12, 0) 10 7.3185 × 107 7.3574 × 107

(20, 0) 20 2.5121 × 107 2.5489 × 107

Chiral
(8, 4) 10 9.5844 × 107 9.5987 × 107

(12, 4) 20 4.7985 × 107 4.8042 × 107

The results are presented in Figure 4. The frequency variation between the analytical
model and the simulated FEM proximity has been identified. However, the current model
for the application as a mass sensing device is reflected in the results of the FEA technique
and analytical results.
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Figure 4. Compression of first mode of frequency of current FEA model and analytical model
of Natsuki [50].

3. Results and Discussion

The SLG and DLG frame structures were modelled. Nine different varieties of SLGs
and DLGs were evaluated for analysis, including three different types of armchairs (8, 8),
(6, 6), (10, 10); zigzag (20, 0); (16, 0), (12, 0); and chiral (16, 4), (12, 4), (8, 4). The influence
of the diverse boundary conditions, such as cantilever and bridged, on the mass sensing
ability of the DLG- and SLG-based mass sensors was investigated.
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Table 2 shows the fundamental frequency of several types of cantilever DLGs with
various mass additions at the tip of sheet. Table 3 demonstrates the frequency of several
types of bridged DLGs with various mass additions in the sheet’s centre point. When the
mass is 0.1 Zg, the frequency for the zigzag DLG (20, 0) is higher in both cases. Furthermore,
when the associated mass on the tip and centre of the DLG increases, the fundamental
frequency decreases. Table 4 shows the fundamental frequency for several cantilever
SLGs with various mass additions at the sheet’s tip. Table 5 demonstrates the frequency
of several types of bridged SLGs with various mass additions at the centre of the sheet.
When the mass is 0.1 Zg, the frequency for the zigzag SLG (20, 0) is higher in both cases.
Moreover, as the associated mass on the tip and centre of SLGs increases, the fundamental
frequency decreases.

Table 2. Cantilever zigzag and armchair DLG with mass addition at tip of sheet.

Length of
Sheet (Nm) Mass (gm)

1.00 × 10−22 1.00 × 10−21 1.00 × 10−20 1.00 × 10−19 1.00 × 10−18 1.00 × 10−17 1.00 × 10−16

DLG Zigzag (6, 6)

10 1.71 × 108 1.62 × 108 1.14 × 108 4.57 × 107 1.49 × 107 4.73 × 106 1.50 × 106

20 1.97 × 108 1.92 × 108 1.52 × 108 6.82 × 107 2.26 × 107 7.19 × 106 2.28 × 106

30 2.14 × 108 2.10 × 108 1.75 × 108 8.22 × 107 2.74 × 107 8.73 × 106 2.76 × 106

40 2.26 × 108 2.23 × 108 1.94 × 108 9.57 × 107 3.22 × 107 1.02 × 107 3.24 × 106

50 2.36 × 108 2.33 × 108 2.03 × 108 9.63 × 107 3.20 × 107 1.02 × 107 3.21 × 106

DLG Zigzag (8, 8)

10 9.35 × 107 8.99 × 107 6.75 × 107 2.89 × 107 9.55 × 106 3.03 × 106 9.60 × 105

20 1.10 × 108 1.08 × 108 9.00 × 107 4.41 × 107 1.50 × 107 4.77 × 106 1.51 × 106

30 1.21 × 108 1.19 × 108 1.04 × 108 5.50 × 107 1.90 × 107 6.06 × 106 1.92 × 106

40 1.30 × 108 1.29 × 108 1.15 × 108 6.32 × 107 2.20 × 107 7.01 × 106 2.22 × 106

50 1.38 × 108 1.37 × 108 1.24 × 108 6.93 × 107 2.41 × 107 7.68 × 106 2.43 × 106

DLG Zigzag (10, 10)

10 5.95 × 107 5.76 × 107 4.50 × 107 2.02 × 107 6.72 × 106 2.14 × 106 6.76 × 105

20 6.71 × 107 6.60 × 107 5.70 × 107 2.99 × 107 1.04 × 107 3.32 × 106 1.05 × 106

30 7.59 × 107 7.50 × 107 6.73 × 107 3.84 × 107 1.37 × 107 4.39 × 106 1.39 × 106

40 8.17 × 107 8.10 × 107 7.43 × 107 4.48 × 107 1.63 × 107 5.22 × 106 1.65 × 106

50 8.66 × 107 8.60 × 107 8.00 × 107 4.99 × 107 1.83 × 107 5.88 × 106 1.86 × 106

DLG Armchair (12, 0)

10 1.14 × 108 1.11 × 108 9.29 × 107 4.57 × 107 1.55 × 107 4.96 × 106 1.57 × 106

20 1.45 × 108 1.42 × 108 1.18 × 108 5.69 × 107 1.93 × 107 6.14 × 106 1.94 × 106

30 1.58 × 108 1.56 × 108 1.33 × 108 6.57 × 107 2.22 × 107 7.06 × 106 2.24 × 106

40 1.65 × 108 1.63 × 108 1.43 × 108 7.21 × 107 2.44 × 107 7.77 × 106 2.46 × 106

50 1.74 × 108 1.72 × 108 1.53 × 108 7.78 × 107 2.62 × 107 8.34 × 106 2.64 × 106

DLG Armchair (16, 0)

10 7.39 × 107 7.14 × 107 5.52 × 107 2.44 × 107 8.11 × 106 2.58 × 106 8.16 × 105

20 8.30 × 107 8.15 × 107 7.00 × 107 3.63 × 107 1.25 × 107 4.01 × 106 1.27 × 106

30 9.04 × 107 8.92 × 107 7.92 × 107 4.35 × 107 1.53 × 107 4.88 × 106 1.54 × 106

40 9.49 × 107 9.39 × 107 8.51 × 107 4.90 × 107 1.73 × 107 5.55 × 106 1.76 × 106

50 1.01 × 108 1.00 × 108 9.22 × 107 5.44 × 107 1.93 × 107 6.18 × 106 1.96 × 106

DLG Armchair (20, 0)

10 5.46 × 107 5.29 × 107 4.18 × 107 1.90 × 107 6.35 × 106 2.02 × 106 6.39 × 105

20 5.05 × 107 4.97 × 107 4.34 × 107 2.34 × 107 8.20 × 106 2.62 × 106 8.31 × 105

30 5.46 × 107 5.41 × 107 4.95 × 107 3.01 × 107 1.11 × 107 3.57 × 106 1.13 × 106

40 5.72 × 107 5.67 × 107 5.26 × 107 3.30 × 107 1.23 × 107 3.95 × 106 1.25 × 106

50 6.14 × 107 6.10 × 107 5.72 × 107 3.73 × 107 1.40 × 107 4.53 × 106 1.43 × 106
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Table 3. Bridged DLG zigzag and armchair with mass addition at centre of sheet.

Length of
Sheet (Nm) Mass (gm)

1.00 × 10−22 1.00 × 10−21 1.00 × 10−20 1.00 × 10−19 1.00 × 10−18 1.00 × 10−17 1.00 × 10−16

DLG Zigzag (6, 6)

10 6.81 × 108 6.58 × 108 4.89 × 108 1.96 × 108 6.36 × 107 2.02 × 107 6.38 × 106

20 7.01 × 108 6.89 × 108 5.62 × 108 2.30 × 108 7.45 × 107 2.36 × 107 7.47 × 106

30 6.77 × 108 6.70 × 108 5.71 × 108 2.35 × 108 7.59 × 107 2.41 × 107 7.61 × 106

40 7.15 × 108 7.09 × 108 6.04 × 108 2.39 × 108 7.71 × 107 2.44 × 107 7.73 × 106

50 7.17 × 108 7.13 × 108 6.11 × 108 2.40 × 108 7.74 × 107 2.45 × 107 7.76 × 106

DLG Zigzag (8, 8)

10 4.46 × 108 4.35 × 108 3.49 × 108 1.54 × 108 5.10 × 107 1.62 × 107 5.13 × 106

20 4.55 × 108 4.50 × 108 3.96 × 108 1.93 × 108 6.42 × 107 2.04 × 107 6.46 × 106

30 4.82 × 108 4.78 × 108 4.35 × 108 2.12 × 108 7.00 × 107 2.22 × 107 7.03 × 106

40 4.88 × 108 4.85 × 108 4.50 × 108 2.18 × 108 7.14 × 107 2.27 × 107 7.17 × 106

50 4.73 × 108 4.71 × 108 4.45 × 108 2.17 × 108 7.12 × 107 2.26 × 107 7.15 × 106

DLG Zigzag (10, 10)

10 3.13 × 108 3.07 × 108 2.56 × 108 1.23 × 108 4.12 × 107 1.31 × 107 4.15 × 106

20 3.30 × 108 3.27 × 108 2.96 × 108 1.62 × 108 5.58 × 107 1.78 × 107 5.63 × 106

30 3.51 × 108 3.49 × 108 3.26 × 108 1.86 × 108 6.35 × 107 2.02 × 107 6.40 × 106

40 3.58 × 108 3.57 × 108 3.39 × 108 1.96 × 108 6.64 × 107 2.11 × 107 6.68 × 106

50 3.51 × 108 3.50 × 108 3.37 × 108 1.99 × 108 6.69 × 107 2.13 × 107 6.73 × 106

DLG Armchair (12, 0)

10 4.45 × 108 4.38 × 108 3.81 × 108 1.94 × 108 6.62 × 107 2.11 × 107 6.68 × 106

20 5.24 × 108 5.17 × 108 4.42 × 108 2.02 × 108 6.65 × 107 2.11 × 107 6.68 × 106

30 5.35 × 108 5.32 × 108 4.81 × 108 2.22 × 108 7.25 × 107 2.30 × 107 7.27 × 106

40 5.37 × 108 5.35 × 108 4.93 × 108 2.25 × 108 7.34 × 107 2.33 × 107 7.36 × 106

50 5.39 × 108 5.38 × 108 5.05 × 108 2.26 × 108 7.36 × 107 2.33 × 107 7.38 × 106

DLG Armchair (16, 0)

10 3.37 × 108 3.29 × 108 2.69 × 108 1.23 × 108 4.11 × 107 1.31 × 107 4.14 × 106

20 3.67 × 108 3.63 × 108 3.26 × 108 1.71 × 108 5.81 × 107 1.85 × 107 5.85 × 106

30 3.69 × 108 3.66 × 108 3.42 × 108 1.90 × 108 6.45 × 107 2.05 × 107 6.50 × 106

40 3.72 × 108 3.70 × 108 3.52 × 108 2.00 × 108 6.72 × 107 2.14 × 107 6.77 × 106

50 3.75 × 108 3.74 × 108 3.63 × 108 2.05 × 108 6.83 × 107 2.17 × 107 6.86 × 106

DLG Armchair (20, 0)

10 2.98 × 108 2.92 × 108 2.43 × 108 1.16 × 108 3.90 × 107 1.24 × 107 3.93 × 106

20 2.47 × 108 2.44 × 108 2.25 × 108 1.34 × 108 4.74 × 107 1.52 × 107 4.80 × 106

30 2.69 × 108 2.68 × 108 2.54 × 108 1.61 × 108 5.72 × 107 1.83 × 107 5.79 × 106

40 2.82 × 108 2.81 × 108 2.70 × 108 1.77 × 108 6.23 × 107 1.99 × 107 6.30 × 106

50 2.78 × 108 2.77 × 108 2.71 × 108 1.82 × 108 6.37 × 107 2.03 × 107 6.42 × 106

Table 4. Cantilever SLG zigzag and armchair with mass addition at tip of sheet.

Length of
Sheet (Nm) Mass (gm)

1.00 × 10−22 1.00 × 10−21 1.00 × 10−20 1.00 × 10−19 1.00 × 10−18 1.00 × 10−17 1.00 × 10−16

DLG Zigzag (6,6)

10 1.43 × 107 1.06 × 107 4.53 × 106 1.49 × 106 4.74 × 105 1.50 × 105 1.00 × 105

20 1.51 × 107 1.37 × 107 8.12 × 106 2.96 × 106 9.50 × 105 3.01 × 105 1.01 × 105

30 1.51 × 107 1.41 × 107 9.19 × 106 3.51 × 106 1.14 × 106 3.60 × 105 1.14 × 105
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Table 4. Cont.

Length of
Sheet (Nm) DLG Zigzag (6,6)

40 1.52 × 107 1.44 × 107 9.97 × 106 3.94 × 106 1.28 × 106 4.06 × 105 1.28 × 105

50 1.63 × 107 1.56 × 107 1.14 × 107 4.64 × 106 1.52 × 106 4.81 × 105 1.52 × 105

DLG Zigzag (8,8)

10 8.13 × 106 7.11 × 106 3.86 × 106 1.36 × 106 4.35 × 105 1.38 × 105 1.00 × 105

20 8.24 × 106 7.65 × 106 4.92 × 106 1.87 × 106 6.05 × 105 1.92 × 105 1.01 × 105

30 8.33 × 106 7.90 × 106 5.57 × 106 2.25 × 106 7.35 × 105 2.33 × 105 2.00 × 105

40 8.44 × 106 8.10 × 106 6.03 × 106 2.55 × 106 8.41 × 105 2.67 × 105 1.12 × 105

50 1.13 × 107 1.09 × 107 8.10 × 106 3.39 × 106 1.11 × 106 3.53 × 105 1.12 × 105

DLG Zigzag (10,10)

10 5.18 × 106 4.63 × 106 2.66 × 106 9.58 × 105 3.07 × 105 1.00 × 105 1.00 × 105

20 5.21 × 106 4.90 × 106 3.34 × 106 1.32 × 106 4.29 × 105 1.36 × 105 1.01 × 105

30 5.21 × 106 5.00 × 106 3.71 × 106 1.58 × 106 5.20 × 105 1.65 × 105 1.03 × 105

40 5.21 × 106 5.05 × 106 4.00 × 106 1.83 × 106 6.11 × 105 1.94 × 105 1.12 × 105

50 5.20 × 106 5.07 × 106 4.17 × 106 1.99 × 106 6.74 × 105 2.15 × 105 1.13 × 105

DLG Armchair (12,0)

10 1.07 × 107 9.15 × 106 4.76 × 106 1.65 × 106 5.27 × 105 1.67 × 105 1.00 × 105

20 1.13 × 107 1.04 × 107 6.50 × 106 2.44 × 106 7.87 × 105 2.50 × 105 1.69 × 105

30 1.13 × 107 1.07 × 107 7.43 × 106 2.97 × 106 9.06 × 105 2.87 × 105 1.10 × 105

40 1.12 × 107 1.07 × 107 7.62 × 106 3.10 × 106 1.01 × 106 3.21 × 105 1.03 × 105

50 1.13 × 107 1.09 × 107 8.10 × 106 3.38 × 106 1.11 × 106 3.52 × 105 1.11 × 105

DLG Armchair (16,0)

10 5.93 × 106 5.24 × 106 2.91 × 106 1.03 × 106 3.31 × 105 1.05 × 105 1.00 × 105

20 6.23 × 106 5.84 × 106 3.91 × 106 1.53 × 106 4.95 × 105 1.57 × 105 1.01 × 105

30 6.24 × 106 5.95 × 106 4.31 × 106 1.78 × 106 5.84 × 105 1.85 × 105 1.03 × 105

40 6.19 × 106 5.97 × 106 4.56 × 106 1.98 × 106 6.57 × 105 2.09 × 105 1.12 × 105

50 6.26 × 106 6.08 × 106 4.82 × 106 2.19 × 106 7.31 × 105 2.32 × 105 1.13 × 105

DLG Armchair (20,0)

10 3.56 × 106 3.20 × 106 1.85 × 106 6.69 × 105 2.15 × 105 1.19 × 105 1.00 × 105

20 3.75 × 106 3.54 × 106 2.46 × 106 9.86 × 105 3.22 × 105 1.02 × 105 1.00 × 105

30 3.76 × 106 3.62 × 106 2.76 × 106 1.21 × 106 3.99 × 105 1.27 × 105 1.03 × 105

40 3.73 × 106 3.62 × 106 2.90 × 106 1.34 × 106 4.50 × 105 1.43 × 105 1.12 × 105

50 3.77 × 106 3.69 × 106 3.09 × 106 1.54 × 106 5.25 × 105 1.67 × 105 1.19 × 105

The frequency of the cantilever SLG fluctuates with length and chirality, as shown in
Figure 5. The quantity of the frequency was found to be larger in the zigzag SLG (6, 6) for
a sheet length of 50 nm and lower in the armchair SLG (20 0) for a sheet length of 50 nm
in the cantilever condition. The quantity of frequency fluctuates for the different lengths
and chirality of the bridged SLGs; this is shown in Figure 6. The quantity of frequency
was found to be highest in the armchair SLG (6, 6) for a 50 nm sheet length and lowest in
the chiral SLG (16, 4) for a 20 nm sheet length in the bridged condition. The graph clearly
shows that as chirality increases, the frequency drops. In a smaller graphene, a higher
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frequency can be attained. In the bridged state of single-layer graphene, there is a huge
variation in frequency. It shows that the bridged condition has a higher frequency.

Table 5. Bridged SLG zigzag and armchair with mass addition at centre of sheet.

Length of
Sheet (Nm) Mass (gm)

1.00 × 10−22 1.00 × 10−21 1.00 × 10−20 1.00 × 10−19 1.00 × 10−18 1.00 × 10−17 1.00 × 10−16

DLG Zigzag (6, 6)

10 9.59 × 107 8.49 × 107 4.70 × 107 1.66 × 107 5.31 × 106 1.68 × 106 5.32 × 105

20 9.86 × 107 9.20 × 107 5.76 × 107 2.10 × 107 6.74 × 106 2.14 × 106 6.75 × 105

30 9.88 × 107 9.41 × 107 6.09 × 107 2.21 × 107 7.10 × 106 2.25 × 106 7.11 × 105

40 9.90 × 107 9.54 × 107 6.25 × 107 2.27 × 107 7.27 × 106 2.30 × 106 7.28 × 105

50 1.07 × 108 1.03 × 108 6.51 × 107 2.34 × 107 7.49 × 106 2.37 × 106 7.50 × 105

DLG Zigzag (8, 8)

10 3.54 × 107 3.27 × 107 2.07 × 107 7.81 × 106 2.52 × 106 7.99 × 105 2.53 × 105

20 7.38 × 106 7.33 × 106 6.83 × 106 4.38 × 106 1.64 × 106 5.29 × 105 1.68 × 105

30 5.45 × 107 5.26 × 107 3.88 × 107 1.56 × 107 5.06 × 106 1.60 × 106 5.07 × 105

40 5.51 × 107 5.36 × 107 4.02 × 107 1.61 × 107 5.23 × 106 1.66 × 106 5.24 × 105

50 7.33 × 107 7.14 × 107 5.11 × 107 1.94 × 107 6.25 × 106 1.98 × 106 6.26 × 105

DLG Zigzag (10, 10)

10 3.40 × 107 3.15 × 107 2.01 × 107 7.58 × 106 2.45 × 106 7.77 × 105 2.46 × 105

20 3.42 × 107 3.29 × 107 2.43 × 107 1.02 × 107 3.33 × 106 1.06 × 106 3.35 × 105

30 3.56 × 107 3.46 × 107 2.73 × 107 1.19 × 107 3.91 × 106 1.24 × 106 3.93 × 105

40 3.43 × 107 3.36 × 107 2.77 × 107 1.25 × 107 4.12 × 106 1.31 × 106 4.14 × 105

50 3.43 × 107 3.38 × 107 2.84 × 107 1.28 × 107 4.21 × 10−01 1.34 × 106 4.23 × 105

DLG Armchair (12, 0)

10 6.95 × 107 6.17 × 107 3.45 × 107 1.23 × 107 3.45 × 107 1.24 × 106 3.93 × 105

20 7.29 × 107 6.85 × 107 4.51 × 107 1.70 × 107 5.49 × 106 1.74 × 106 5.50 × 105

30 7.31 × 107 7.01 × 107 4.86 × 107 1.85 × 107 5.97 × 106 1.89 × 106 5.99 × 105

40 7.26 × 107 7.03 × 107 4.98 × 107 6.10 × 106 1.93 × 106 1.93 × 106 6.11 × 105

50 7.33 × 107 7.12 × 107 5.04 × 107 1.90 × 107 6.14 × 106 1.94 × 106 6.15 × 105

DLG Armchair (16, 0)

10 3.84 × 107 3.50 × 107 2.12 × 107 7.81 × 106 2.52 × 106 7.97 × 105 2.52 × 105

20 4.02 × 107 3.83 × 107 2.76 × 107 1.12 × 107 3.66 × 106 1.16 × 106 3.67 × 105

30 4.03 × 107 3.90 × 107 3.01 × 107 1.28 × 107 4.19 × 106 1.33 × 106 4.21 × 105

40 3.99 × 107 3.91 × 107 3.14 × 107 1.35 × 107 4.44 × 106 1.41 × 106 4.46 × 105

50 4.03 × 107 3.96 × 107 3.22 × 107 1.38 × 107 4.53 × 106 1.44 × 106 4.55 × 105

DLG Armchair (20, 0)

10 2.31 × 107 2.15 × 107 1.41 × 107 5.38 × 106 1.74 × 106 5.52 × 105 1.75 × 105

20 2.41 × 107 2.33 × 107 1.77 × 107 7.67 × 106 2.54 × 106 8.06 × 105 2.55 × 105

30 2.42 × 107 2.36 × 107 1.93 × 107 8.99 × 106 3.01 × 106 9.58 × 105 3.03 × 105

40 2.40 × 107 2.36 × 107 2.00 × 107 9.66 × 106 3.25 × 106 1.03 × 106 3.27 × 105

50 2.42 × 107 2.39 × 107 2.07 × 107 1.02 × 107 3.42 × 106 1.09 × 106 3.44 × 105

The graph in Figure 6 shows that a considerable fluctuation in frequency is attained
at different lengths of the double-layered graphene sheet. As the chirality of a frequency
grows, its value eventually falls. With a smaller graphene sheet, the armchair cantilever
SLG (6, 6), and a sheet length of 40, we obtain the highest frequency value. Its frequency
begins to decrease as its chirality increases. The greatest frequency is attained for the
smallest cantilever armchair DLG (6, 6). DLG (20, 0) achieves the lowest frequency value at
a length of 20 nm.
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The bridged armchair DLG (6, 6) with a length of 50 nm achieves the highest frequency.
We can see that as the chirality increases, the value of the frequency drops in the bridged-
conditioned double-layer graphene as well. The minimum frequency for DLG (20, 0) at
length 20 nm is obtained under the bridged state.

We discovered the highest frequency value for bridged chiral DLG (12, 4) at length
50 nm and mass attached 1 × 10−20 using the frequency shift graph given in Figure 7. For
the shortest length of 10 nm of bridged DLG, we obtain the lowest frequency shift (12, 4).
As the length of the graph grows, so does the frequency shift.

Figure 8 shows the frequency shift graph of the armchair single-layer cantilever
graphene SLG (8, 8). The maximum value frequency was attained for the longest length of
50 nm and the shortest length of 10 nm of a double-layer graphene sheet. The mass value
of 1 × 10−20 was found to give the highest frequency.
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Figure 9 depicts the frequency shift caused by mass change at several positions of the
bridging SLG (8, 8), (16, 0), (18, 0), and (12, 4). It can be shown that at lower mass values,
there are far fewer frequency shifts in the SLG, which significantly rises as the attached
mass grows. For an attached mass of more than 0.1 zg, the amount of frequency shift is
observed to be larger in SLG (8, 8) at a length of 50 nm. This clearly indicates that the
frequency fluctuation is much less at lower mass values. It suggests that SLGs with a mass
sensitivity of 0.1 zg can be impacted by changes in the sheet length.
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Figure 9. Frequency shift vs. different lengths of graphene sheet (nm) graph for chiral, armchair, and
zigzag bridged DLG.

Figure 10 depicts the frequency shift caused by mass fluctuation at different cantilever
SLGs (8, 8), (16, 0), and (12, 4). It can be shown that at lower mass values, there will be far
fewer frequency shifts in the SLG, which significantly rises as the attached mass increases.
For an attached mass of more than 0.1 zg, the amount of frequency shift is found to be
larger in the armchair SLG (8, 8) at a length of 50 nm, and the minimum frequency is found
in the chiral SLG (12, 4). This clearly indicates that the frequency fluctuation is much less at
lower mass and chirality values. It suggests that SLGs with a mass sensitivity of 0.1 zg can
be impacted by changes in sheet length.
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According to the graph in Figure 11, at a length of 20 nm the frequency was highest
in the cantilever chiral SLG (16, 4). As the length of the sheet grows longer, it steadily
diminishes. As demonstrated in the graph, the zigzag SLG (20, 0) has the lowest frequency
at a length of 20 nm.
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Figure 11. Graph of frequency (Hz) vs. different lengths of chiral, armchair, and zigzag cantilever DLG.

The graph shows that when the chirality grows, the frequency drops progressively. We
can determine from this graph that the maximum frequency can be reached with reduced
chirality and length. The frequency drops as the mass on the sheet increases.

Figure 12 illustrates the frequency shift due to mass fluctuation at various lengths of
SLG (8, 8), (16, 0), (18, 0), and (12, 4). It can be shown that at lower mass values, there were
much smaller frequency shifts in the SLG, which significantly rises as the attached mass
grows. For an attached mass of greater than 0.1 zg, the highest amount of frequency shift
was discovered in SLG (8, 8), at a length of 50 nm. This clearly indicates that the frequency
fluctuation is much less at lower mass values. It suggests that SLGs with a mass sensitivity
of 0.1 zg can be impacted by changes in the sheet length.
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The graph shows in Figure 13. that in single-layer graphene at maximum length,
maximum frequency may be reached. The graph clearly demonstrates that as the length of
the sheet rises, the frequency increases as well, with the highest frequency at 50 nm. As
the length lowers and the mass rises, the frequency decreases gradually. As a result, the
frequency variation will be much less with higher mass.
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Figure 13. Frequency vs. mass graph for bridged armchair SLG (8, 8).

Figure 14 shows the first ten mode shapes of vibration for the bridged SLG (16, 4) with
the length of 50 nm. The vibration of the bridged chiral SLG (16, 4) rises from the second
mode, as can be seen from the mode shape above. Mode 5 shows a half-sine-wave shape
of response.

FEA results show areas of high stress with red color, lower than that with green and
yellow color and lowest stress with blue. MN is stress at the fixed end and MX stress point
at the span of layer.

As shown in Figure 15. The vibrations increase with the second mode of the cantilever
single-layer graphene chiral graphene (16, 4) and continue to increase until the last mode
of vibration. A nonlinear pattern is observed for the different mode shapes.

Figure 16 shows the first ten mode shapes of bridged DLG (20, 0) with a length of
50 nm. The variation in the vibration of the sheet from the second mode can be seen from
the mode shape of the bridged DLG (20, 0). The last mode shows a non-coaxial vibration
of response.

The variation in the vibration of the sheet as shown in Figure 17. starts from the second
mode, as shown in the mode shape of the cantilever DLG (20, 0).
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Figure 14. First ten mode shapes of bridged SLG (16, 4) with length 50 nm (front view of mode shape).
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Figure 15. Different mode shapes of cantilever SLG (16, 4) with length 50 nm (front view of mode shape).
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 Figure 16. (A–E) Different mode shapes of bridged DLG (20, 0) with length 50 nm (front view of
mode shape).
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4. Conclusions 

To investigate the vibrational characteristics of the cantilever and bridged double-
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4. Conclusions

To investigate the vibrational characteristics of the cantilever and bridged double-layer
zigzag, armchair, and chiral graphene sheets, an atomistic FEA model for the van der Waal
interaction between the upper and lower graphene sheets and the concentrated masses
was prepared.

The frequency shift graph of SLG and DLG for the bridging and cantilever conditions
concludes that as the length of the sheet increases, so does its frequency, and as the mass of
the sheet increases, the frequency also increases. The effect of different lengths of single-
and double-layer graphene sheets on frequency was studied using an atomistic modelling
technique. It was discovered that the longer the graphene sheet, the higher the frequency.
The impacts of mass attached to the tip of the single-layer graphene and the double-layer
graphene for the cantilever conditions, as well as to the centre of a bridging graphene
sheet, were investigated. In both cases, maximum frequency was reached for mass values
greater than 1 zg. The vibrations began with the second mode shape as the SLG and DLG
vibrate in different planes, as observed from the mode shapes of the SLGs and DLGs for
the cantilever and bridged states. In the bridged DLG (6, 6) with a 1.00 × 10−16 mass
attached at the centre of the sheet, the maximum frequency achieved was 7.76 × 106, and
in bridged SLG (6, 6) with a similar mass attached, the highest frequency obtained was
7.50 × 105. The results show that the graphene sheet (6, 6) with a length of 50 nm achieves
the maximum frequency for both the bridged SLG and the DLG. This research will help in
future applications of graphene in advanced nano-resonator applications.
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