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Abstract: Significant advances in the field of composite structures continue to be made on a variety of
fronts, including theoretical studies based on advances in structural theory kinematics and computer
models of structural elements employing advanced theories and unique formulations. Plate vibration
is a persistently interesting subject owing to its wider usage as a structural component in the industry.
The current study was carried out using the Co continuous eight-noded quadrilateral shear-flexible
element having five nodal degrees of freedom, which is ground on first-order shear deformation
theory (FSDT). For small strain and sufficiently large deformation, the geometric nonlinearity is
integrated using the Von Kármán assumption. The governing equations in the time domain are
solved employing the modified shooting technique along with an arc-length and pseudo-arc-length
continuation strategy. This work explored the effect of fiber angle on the steady-state nonlinear forced
vibration response. To explain hardening nonlinearity, the strain and stress fluctuation throughout
the thickness for a rectangular laminated composite plate is determined. The cyclic fluctuation of the
steady-state nonlinear normal stress during a time period at the centre of the top/bottom surfaces is
also provided at the forcing frequency ratio of peak amplitude in a nonlinear response. Because of the
variation in restoring forces, the frequency spectra for all fiber angle orientations show significantly
enhanced harmonic participation in addition to the fundamental harmonic.

Keywords: composite; nonlinear forced vibration; shooting technique; steady-state

1. Introduction

Theoretical studies incorporating advancements in the kinematics of structural theo-
ries, as well as damage and life prediction models, are among the new developments in
the field of composites and structures. Advanced theories, innovative formulations, and
experimental studies are used to characterize materials and damage models in computer
modelling of structural components. Plate vibration is a persistently interesting topic due
to its widespread application as a structural component. A finite element (FE) model for the
large amplitude vibration of thin plates under harmonic loads was provided [1]. If the right
harmonics are not incorporated, the harmonic balance or incremental harmonic balance
approaches provide incorrect results [2]. The modal interaction between two modes in
laminated plates exposed to harmonic force was studied by Abe et al. [3]. The geometri-
cally nonlinear periodic response analysis of thin rectangular plates exposed to external
harmonic excitations was examined by employing the hierarchical finite element approach
and the harmonic balance methods. Internal resonance caused modal coupling, and the
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resulting multimodal and multifrequency responses were verified [4]. Using a C1 eight-
noded shear-flexible plate element, the dynamic instability of composite laminated plates
placed on elastic foundations and exposed to periodic in-plane stresses was investigated [5].
This feature was based on recent kinematics, which allowed for accurate control of the in-
terfaces between the layers of the laminate for displacements and stresses. Using Galerkin’s
method, the differential equations of motion were solved, assuming that the transverse
deflection had two linear modes. Ganapathi et al. [6] investigated the flexural loss factors
of composite laminated beams using the C1 quadrilateral eight-noded shear-flexible plate
element. The FEM formulation incorporates the impact of anisotropy and in-plane rotatory
inertia. The geometrically nonlinear parametric properties of an isotropic and composite
plates were obtained utilising a FE framework. The resultant nonlinear equations of motion
were solved employing the Newmark time integration approach in combination with a
modified Newton–Raphson iteration method [7]. Makhecha et al. [8] employed a novel
higher-order theory representing the actual change of in-plane and transverse displace-
ments via thickness for the dynamic response investigation of thick multilayered laminated
plates. Geometrically nonlinear vibrations of the rectangular plates exposed to radial har-
monic force in the spectral vicinity of the smallest resonances was analyzed by Amabili [9].
The nonlinear strain displacement relationships of the von Karman were applied. The
nonlinear responses are obtained by employing a code, based on the arc-length continuance
scheme, which allows the bifurcation analysis. Ganapathi et al. [10] analysed the nonlinear
dynamic behaviour of thick composite/sandwich laminates using an accurate higher-order
theory. Ribeiro and Duarte [11] presented the response-curve behaviour on changing the
fiber angle for laminated composite plates, modelled by the p-version FEM. Only periodic
oscillations were observed in the absence of in-plane compression.

Direct-time integration techniques need greater processing effort to obtain steady-state
solutions for large-scale weakly damped nonlinear systems and are incapable of capturing
the unstable branches of the response curves [12]. The periodic solution of the nonlinear
system of equations can be obtained by the shooting technique. In contrast to frequency
domain approaches, there is no need to assume the harmonics. When compared to direct
time-integration approaches, steady-state solution of the equations can be found in hardly
three to five iterations. Another characteristic of the shooting approach is the generation of
monodromy matrix, which can be used to assess the stability of the response [13]. Thomasa
and Bilbao performed geometrically nonlinear vibration analysis of a plate having in-plane
boundary conditions [14]. Ibrahim et al. [15] present a method based on shooting methodol-
ogy and a time-integration strategy to obtain the periodic responses of nonlinear structures
directly from the solution of a second-order equation of motion without transforming
to first-order.

Amabili [16] investigated laminated composite circular cylindrical shells to assess
their nonlinear forced vibration response using higher-order shear deformation theory. The
large displacement flexural analysis of the laminated composite skew plates using third-
order shear deformation theory (TSDT) and von Karman nonlinearity was examined [17].
Breslavsky et al. [18] employed an approach based on the pseudo-arc-length continuation
and collocation scheme to analyze bifurcation and resonance for static deflection as well as
free/forced, large-displacement vibrations of a thin rectangular rubber plate under equally
distributed load. It is demonstrated that the system of an ordinary differential equation
having just quadratic and cubic polynomial components may appropriately explain the
behaviour of a rubber plate with both geometrical and material nonlinearities.

Khan and Patel [19] recently obtained the nonlinear forced vibration response of
bimodular rectangular plates and cylindrical panels. Their investigation revealed that
the response amplitudes for positive/negative half-cycles differ for bimodular plates and
shells. Akhavan and Ribeiro [20] explored the large-amplitude forced vibration of variable
stiffness laminated plates with curvilinear fibers. To obtain periodic solutions to the gov-
erning equations, a shooting strategy based on the Runge–Kutta fifth-order approach and
adaptable step-size control is employed. The Tsai–Wu method was used to predict an onset
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of the damage. The mechanical behaviour of composite laminated skew plates reinforced
with carbon nanotubes subjected to transverse time-dependent load was first investigated
by Zhang and Xiao [21]. The plate is made up of multilayer nanocomposites that have been
strengthened with single-walled carbon nanotubes (SWCNTs). The Mori–Tanaka approach
was used to obtained material properties of carbon nanotube-reinforced composites lami-
nated. Gholami and Ansari [22] examined harmonic excitations of the functionally graded
graphene platelet-reinforced composite rectangular plates (FG-GPLRC) with varied edge
restrictions. Guo et al. [23] investigated the influence of nonlinear factors on the dynamic
behaviour of the laminated composite plates reinforced with graphene. Using Hamilton’s
principle and the von Karman distortion theory, the governing equations for a reinforced
thin composite graphene plate are developed. To evaluate the nonlinear dynamics of the
laminated composite plates reinforced with graphene, bifurcation diagrams, waveform
graphs, and phase plane plots have been used. Thakur et al. [24] adapted a computationally
efficient Co FE model in combination of the nonpolynomial shear deformation theory
(NPSDT) for investigation of forced vibrational behaviour of composite laminated plates.

According to the literature review, analyzing the entire nonlinear steady-state periodic
response with stable as well as unstable regimes is computationally difficult and has
not been addressed thoroughly. The harmonic balance (HB) or incremental harmonic
balance (IHB) methods lead to errors in results in absence of the accurate number of
harmonics. In certain applications, where excitation/response amplitudes are larger, linear
theories struggle to predict strains/stresses, deflections and frequencies to the optimal
degree of precision, and a geometrically nonlinear forced vibration response of the plates
is found to predict rich and varied responses not possible with the linear analysis. The
shooting technique can be used to generate periodic solutions of the nonlinear systems.
In contrast to frequency domain approaches, the number of equations is independent of
the harmonics number. Furthermore, steady-state solutions are obtained in much fewer
iterations as compared to the direct time-integration approaches. Another advantage
of the shooting approach is that a monodromy matrix is generated, which is used for
forecasting the solution’s stability. The current work focuses on the implementation of
the efficient numerical scheme for geometrically nonlinear forced vibration analysis of
composite laminated rectangular plates. Our goal in this study is to investigate the effects
of fiber orientation on the dynamic response of rectangular composite laminated plates
subjected to periodic excitations.

2. Formulation

The nonlinear steady-state periodic response analysis of the composite laminated
rectangular plates shown in Figure 1a, subjected to a uniformly distributed transverse
harmonic force (F = F0cosωFt) has been studied. In the spectral neighbourhood of the
fundamental free vibration frequency, the forcing frequency (ωF) is varied. Using the
formulation presented below, the steady-state peak displacement at centre of the plate
corresponding to variation in the forcing frequency ratio considering geometrically linear
(L) and geometrically nonlinear (NL) strain–displacement relations was obtained.

Using first-order shear deformation theory (FSDT), the displacement field is ex-
pressed as:

u(x, y, z, t) = u0(x, y, z, t) + zφx(x, y, t)
v(x, y, z, t) = v0(x, y, z, t) + zφy(x, y, t)

w(x, y, z, t) = w0(x, y, t)
(1)

where (u0, v0, w0) are generalized point displacements on the mid-plane; and φx and φy are
rotations of the normal to the mid-plane about the y and x axes, respectively.
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Based on von Karman’s assumption, the strain field in terms of the reference plane
may be represented as follows [19]:

{ε} =

{
εL

P
0

}
+

{
zεb
εs

}
+

{
εNL

P
0

}
(2)

where, εL
P denotes the linear membrane strain, εb denotes bending strain, εs denotes the

transverse-shear strains and εNL
P denotes the nonlinear membrane-strain tensors, which are

further written as [19]:

εL
p =


u0,x
v0,y

u0,y + v0,x

; εb =


φx,x
φy,y

φx,y + φy,x

; εs =

{
φx + w0,x
φy + w0,y

}
; (3)

The kinetic energy [T(U)] is written in Equation (4), where ρk stands for mass density
of a kth layer and hk, hk + 1 represents thickness parameters of a laminated plate referring to
the bottom and top surfaces for the kth layer [25].

[T(U)] =
1
2

x


n

∑
k = 1

∫ hk+1

hk

ρk
{ .

uk
.
vk

.
wk
}{ .

uk
.
vk

.
wk
}Tdz

dxdy (4)

The potential energy function [P(U)] because of the strain energy and transverse
harmonic force is shown in Equation (5).

[P(U)] =
1
2

x


n

∑
k = 1

∫ hk+1

hk

{σ}

T

{ε}dz

dxdy−
∫

A
Fw0dA (5)

Based on the incremental matrices approach used by Rajasekaran and Murray [26] the
above equation can be written as [25]:

[P(U)] = {U}T[(1/2)K + (1/6)K1(U) + (1/12)K2(U)]{U} − {U}T{F} (6)

where, [K] stands for linear stiffness matrix, [K1] and [K2] stands for nonlinear stiffness
matrix, which are linearly and quadratically dependent on the field variable.
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For obtaining the element-level governing equations, the kinetic energy may be written
as [19]:

[T(U)] =
1
2

{ .
δ
}T

[M]
{ .

U
}

(7)

With Rayleigh proportional damping included to account for damping in the system,
the governing equations of motion are as follows [19,25]:

[M]
{ ..

U
}
+ [C]

{ .
U
}
+ [K + (1/2)K1(U) + (1/3)K2(U)]{U} = {F} (8)

The governing Equation (8) is computed in the time domain incorporated with the
shooting methodology, the Newmark time integration method, and the Newton–Raphson
iteration approach, as can be shown in detail in the authors’ work [25,27], which is not
included for brevity. The damping matrix [C] is calculated using the Rayleigh proportional
damping model as follows [25]:

[C] = α[M] + β[K]

where β = ξ
2ωn

; α = 2ξωn; (ξ represent modal damping factor; ωn stands for natural
fundamental frequency; and [K] is the linear stiffness matrix).

The present study is performed using C0 eight-noded quadrilateral shear-flexible ele-
ments having five degrees of freedom

(
u0, v0, w0, φx, φy

)
. The field variables are expressed

in terms of nodal values by using the shape functions as [25]:

(
u0, v0, w0, φx, φy

)
=

8

∑
i = 1

N0
i
(
u0i, v0i, w0i, φxi, φyi

)
(9)

where N0
i are the initial shape functions for the eight-noded quadratic element.

The overall response is produced in two steps: (i) the forcing frequency is raised
starting at a frequency considerably away from resonance, and the convergent solution is
obtained; and (ii) whenever the slope of the response curves changes abruptly or bifurca-
tion points are encountered, the solution is proceeded with arc-length/pseudo-arc-length
continuation. The eigen values of the monodromy matrix are obtained near the bifurcation
points, which throw insight into the ensuing bifurcations. It is important to mention here
that the shooting approach itself generates a monodromy matrix as a by-product thereby
making this scheme computationally efficient; further, the banded nature of the matrices
are prevented using the modified shooting method.

3. Validation

The initial layer in the analysis corresponds to the bottom-most layer, and it is assumed
that all layers are of same thickness. As indicated in Figure 1b, the fiber angle is selected
with reference to the meridional direction. The solution procedure used in this paper is
verified for the results available in the literature; the dimensionless free vibration frequen-
cies for the clamped rectangular composite laminated plates ((00/900/00), E1/ E2 = 40,
E2 = 1 GPa, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = 0.25, ρ = 1000 kg/m3)) subjected to
the transverse load are obtained and the results are presented in Table 1. The free-vibration
frequencies (ω) obtained are in excellent agreement with the frequencies investigated earlier
(Liew et al. [28]; Ferreira and Fasshauer [29]; Ngo-Cong et al. [30]).
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Table 1. Free-vibration dimensionless frequencies (ω =
(

b2

2

)√
ρh
D0

) .

Mode Sequence Number
a/b t/b Study

1 2 3 4

1

0.001

Present 14.6736 17.6454 24.6955 36.2302

Ngo-Cong et al. [30] 14.6722 17.6383 24.5238 35.4471

Ferreira and
Fasshauer [29] 14.8138 17.6138 24.5114 35.5318

Liew et al. [28] 14.6655 17.6138 24.5114 35.5318

0.2

Present 4.4587 6.6623 7.7246 9.2185

Ngo-Cong et al. [30] 4.4466 6.6419 7.6996 9.1852

Ferreira and
Fasshauer [29] 4.4463 6.6419 7.6995 9.1839

Liew et al. [28] 4.4468 6.6419 7.6996 9.1852

2

0.001

Present 5.1079 10.5547 10.6112 14.4045

Ngo-Cong et al. [30] 5.1092 10.5447 10.6042 14.3642

Liew et al. [28] 5.1051 10.5265 10.5828 14.3241

0.2

Present 3.0516 4.2603 5.8075 5.9263

Ngo-Cong et al. [30] 3.0453 4.2484 5.7917 5.9050

Liew et al. [28] 3.0453 4.2484 5.7918 5.9047

4. Results and Discussion

The study employs 10 × 10 spatial discretization of the rectangular laminated plate
with a time step of ∆t = π/100ωF based on the convergence steady. The layers are all
the same thickness, and the first layer refers to the bottom layer. The material attributes
employed in the study are as follows, unless otherwise specified:

E1/E2 = 25, E2 = E3, G12/E2 = G13/E2 = 0.5, G23/E2 = 0.2, ν12 = ν23 = ν13 = 0.25 and
E2 = 1 GPa, ρ = 1000 kg/m3. All-clamped-edge (u0 = v0 = w0 = φx = φy = 0) boundary
conditions are used in this study.

The geometrically nonlinear and linear frequency response curves are compared,
demonstrating that the linear displacement/stress amplitude is much larger than predicted
by the nonlinear strain–displacement relation. To explain the occurrence of higher harmon-
ics in the overall response, the steady-state displacement/stress history and phase plane
graphs have been shown. The contribution of higher harmonics to the overall response is
assessed using the response’s frequency spectra. The periodic fluctuation of the steady-state
fiber direction and transverse to fiber direction stress, as well as its FFT, are derived to shed
light on fatigue behaviour under linear and nonlinear analysis. The nonlinear dynamic
behaviour of the plate is described using stress–strain fluctuation along the thickness to
indicate the amount of the tensile/compressive portion and to explain the restoring force
dynamics resulting in the observed response. A systematic parametric study is used to
explore the effect of fiber orientation on the nonlinear/linear steady-state forced vibration
response. The geometrically nonlinear/linear (GNL/GL) peak displacement amplitude
obtained based on linear and nonlinear displacement relations and percentage difference in
peak amplitudes of the composite laminated rectangular plates considered in the analysis
are shown in Table 2 for various fiber orientation.

The influence of the fiber angle on the nonlinear/linear forced vibration response of
the all-clamped-edge, two-layered angle-ply laminated plate (l/b = 1, b/h = 100, ζ = 0.01,
b = 0.5 m, F0 = 100 Pa) exposed to uniformly distributed harmonic force is examined and
are presented as frequency response curve (Figure 2). Table 2 presented the fundamental
frequency (Hz) of a two-layered angle-ply plate which increases as the fiber angle increases.
When compared to the angle-ply plate, the cross-ply plate exhibits more hardening non-
linear behaviour and a lower peak amplitude. As the fiber angle rises, the hardening
nonlinearity increases and the peak displacement decreases, as seen in Figure 2. Figure 2
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shows that forcing frequency ratio corresponding to the nonlinear peak displacement falls
with the increasing fiber angle, with ωF/ω = 1.64, 1.558 and 1.308 for a two-layered angle-ply
plate with fiber angle 15◦/−15◦, 30◦/−30◦ and 45◦/−45◦, respectively.

Table 2. Fundamental free-vibration frequencies (Hz) and peak amplitudes.

Nondimensional
Amplitude (w0/h)Load (Pa) a/b Lamination

Scheme
Fundamental

Frequency (Hz)
GNL GL

% Difference of GNL/GL
Amplitudes

100 1.0

15◦/−15◦ 31.645 1.606 9.000 460.39

30◦/−30◦ 34.012 1.558 7.715 395.19

45◦/−45◦ 41.584 1.308 5.129 292.13

90◦/0◦ 47.280 1.149 4.050 252.48
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Figure 2. Nonlinear (a) and linear (b) variation of amplitude (w0/h) at the centre of the plate for
different forcing frequency ratio.

Peak amplitude reduces with the increasing fiber angle in both linear and nonlin-
ear analyses for the two-layered angle-ply plate because of greater lamination scheme-
generated bending–stretching coupling, leading to higher rigidity. The comparison of
peak displacement amplitude of linear and nonlinear analysis shows that linear analysis
peak displacement amplitude is considerably greater than the nonlinear analysis. The
comparison of linear and nonlinear peak displacement amplitude reveals that the percent-
age difference between the two decreases with the increase in fiber angle, and the linear
peak amplitude is 5.6, 4.9 and 3.9 times the nonlinear peak amplitude for the two-layered
angle-ply plate with fiber angles of 15◦/−15◦, 30◦/−30◦ and 45◦/−45◦, respectively.

The nonlinear dynamic behaviour of the plate is evaluated by obtaining the displace-
ment time history of the plate’s centre referring to the forcing frequency ratio of peak
amplitude in Figure 2’s nonlinear response, which is shown in Figure 3 together with
the phase-plane plot at this moment. The steady-state response history shows that the
positive/negative half-cycle amplitudes will have nearly equal intervals in tension and
compression for all fiber angles evaluated. The asymmetricity in the phase-plane plot
implies strong higher harmonic participation, whereas the symmetric phase-plane plots
imply limited higher harmonic involvement.
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Figure 3. Nonlinear steady-state periodic response (a) and phase-plane plots (b) referring to the
peak amplitude.

Figure 4 depicts the variation of the nonlinear steady-state normal strain/stress
throughout the thickness of laminate in the positive/negative half-cycle at forcing fre-
quency ratio of the peak amplitude. Figure 4 shows that the top layer of the plate is in the
tension for all fiber angles considered in the case of positive half-cycle, whereas the bottom
layer is in tension for the negative half-cycle.
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The fluctuation of the nonlinear steady-state normal stress (Fiber-direction “σ11” and
transverse to fiber direction “σ22”) within a time period at the centre of the top/bottom
surface with reference to forcing frequency ratio of the peak displacement amplitude in
the nonlinear response is presented in Figure 5. It is observed from Figure 5 that for the
two-layered plate with all the fiber angles considered, the tensile stress amplitude (σ11
and σ22) at the top/bottom surfaces are greater than compressive stress amplitude. The
positive and negative half-cycle times of both top/bottom surfaces are nearly equal for
all the fiber orientations, except for the 15◦/−15◦ angle-ply laminated composite plate.
The cyclic stress variation reveals multiple stress reversals and slope changes within the
loading cycle for all the load, revealing higher harmonic contribution, which is critical for
the laminated composite plate’s fatigue design [27].

Materials 2022, 15, x FOR PEER REVIEW 9 of 12 
 

 

The fluctuation of the nonlinear steady-state normal stress (Fiber-direction “σ11” and 
transverse to fiber direction “σ22”) within a time period at the centre of the top/bottom 
surface with reference to forcing frequency ratio of the peak displacement amplitude in 
the nonlinear response is presented in Figure 5. It is observed from Figure 5 that for the 
two-layered plate with all the fiber angles considered, the tensile stress amplitude (σ11 and 
σ22) at the top/bottom surfaces are greater than compressive stress amplitude. The positive 
and negative half-cycle times of both top/bottom surfaces are nearly equal for all the fiber 
orientations, except for the 15°/−15° angle-ply laminated composite plate. The cyclic stress 
variation reveals multiple stress reversals and slope changes within the loading cycle for 
all the load, revealing higher harmonic contribution, which is critical for the laminated 
composite plate’s fatigue design [27]. 

 
(a) Top Surface 

 
(b) Bottom Surface 

Figure 5. Nonlinear periodic stress (σ11 and σ22) distributions for top (a) and bottom surface (b), 
respectively. 

The contributions from the higher harmonics as revealed from the cyclic variations 
of the nonlinear stress were quantified by obtaining the frequency spectrum of nonlinear 
steady-state stresses (σ11 and σ22) employing the fast Fourier transform (FFT), and the find-
ings are shown in the Figure 6. FFT shows a significantly greater higher harmonics partic-
ipation together with the fundamental harmonic for all fiber orientations. The second har-
monic contributions for two-layered angle ply plate with 15°/−15° lamination scheme at 
the centre of the bottom surface is greater than the fundamental harmonic. This is because 
quadratic nonlinear restoring forces are stronger than quadratic nonlinear restoring forces 
as well as linear restoring forces [27]. 

0.00 0.25 0.50 0.75 1.00

-14

-7

0

7

14 150/-150    

300/-300   
450/-450   
900/00      

 Nondim. time 
(t/T)

 
σ 1
1 0.00 0.25 0.50 0.75 1.00

-1.2

-0.6

0.0

0.6

1.2 150/-150    

300/-300   
450/-450   
900/00      

 Nondim. time 
(t/T)

 
σ 2
2

0.00 0.25 0.50 0.75 1.00

-20

-10

0

10

20 150/-150    

300/-300   
450/-450   
900/00      

 
Nondim. time 

(t/T)

 σ 1
1 0.00 0.25 0.50 0.75 1.00

-1.2

-0.6

0.0

0.6

1.2 150/-150    

300/-300   
450/-450   
900/00      

 
Nondim. time 

(t/T)

 σ 2
2

Figure 5. Nonlinear periodic stress (σ11 andσ22) distributions for top (a) and bottom surface (b), respectively.

The contributions from the higher harmonics as revealed from the cyclic variations
of the nonlinear stress were quantified by obtaining the frequency spectrum of nonlinear
steady-state stresses (σ11 and σ22) employing the fast Fourier transform (FFT), and the
findings are shown in the Figure 6. FFT shows a significantly greater higher harmonics
participation together with the fundamental harmonic for all fiber orientations. The second
harmonic contributions for two-layered angle ply plate with 15◦/−15◦ lamination scheme
at the centre of the bottom surface is greater than the fundamental harmonic. This is because
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quadratic nonlinear restoring forces are stronger than quadratic nonlinear restoring forces
as well as linear restoring forces [27].
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5. Conclusions

The steady-state nonlinear/linear periodic response studies of a laminated composite
rectangular plate for different fiber orientations were analyzed. To demonstrate the vari-
ation of nondimensional peak displacement amplitude with the forcing frequency ratio,
the linear/nonlinear frequency response curves were plotted. The steady-state response
displacement/stress history, phase-plane plots, and the FFT of response were used to
investigate the nonlinear dynamic behaviour. The response’s peculiarity is explained by
the fluctuation of strain/stress over the laminate’s thickness. The following are the main
observations drawn:

• When compared to the angle-ply plate, the cross-ply plate exhibits more harden-
ing nonlinear behaviour and a lower peak amplitude. As the fiber angle rises, the
hardening nonlinearity increases and the peak amplitude drops.

• Variations in nonlinear stresses throughout a loading cycle indicate repeated slope
changes and stress reversals, suggesting the presence of fluctuating stresses, which is
crucial for fatigue design.
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• The frequency spectra of nonlinear steady stress displays significant higher harmonic
contributions, and in some circumstances, second/third harmonic contributions are
greater/comparable to fundamental harmonic contributions. Greater even-order
harmonics result from a higher contribution of quadratic nonlinear restoring forces,
whereas higher odd-order harmonics result from a greater participation of cubic
nonlinear restoring forces.
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