Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Preparation of Adsorbents
2.3. Instrumentation
2.4. Adsorption Process
2.4.1. Preparation of Solutions
2.4.2. Dye Concentration
2.4.3. Adsorption Modeling
2.4.4. pH
2.4.5. Thermodynamic Study
2.4.6. Adsorbent Amount
2.4.7. Agitation Rate
3. Results and Discussion
3.1. Characterization of the Precursor
3.2. Characterization of Activated Carbon Samples Obtained
3.3. Adsorption Equilibrium
3.4. Adsorption Kinetics
3.5. The Effect of pH of Water Solutions of the Dyes
3.6. Thermodynamic Study
3.7. The Effects of Adsorbent Dosage and Agitation Rate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Zou, F.; Fu, K.; Jin, C.; Li, M.; Zhang, G.; Zhang, R.; Bai, H. Microwave-prepared surface imprinted magnetic nanoparticles based electrochemical sensor for adsorption and determination of ketamine in sewage. Anal. Chim. Acta 2022, 1217, 340025. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Wang, Z.; Niu, P.; Miao, M. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Bioresour. Technol. 2016, 210, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Deng, W.; Hu, M.; Chen, G.; Zhou, P.; Zhou, Y.; Su, Y. Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue. J. Environ. Manag. 2021, 299, 113601. [Google Scholar] [CrossRef]
- Daikh, S.; Ouis, D.; Benyoucef, A.; Mouffok, B. Equilibrium, kinetic and thermodynamic studies for evaluation of adsorption capacity of a new potential hybrid adsorbent based on polyaniline and chitosan for Acetaminophen. Chem. Phys. Lett. 2022, 798, 139565. [Google Scholar] [CrossRef]
- Rahman, N.U.; Ullah, I.; Alam, S.; Khan, M.S.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Vincevica-Gaile, Z.; et al. Activated Ailanthus altissima Sawdust as Adsorbent for Removal of Acid Yellow 29 from Wastewater: Kinetics Approach. Water 2021, 13, 2136. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, L.; Zhu, X.; Zhu, X. The preparation of activated carbon from walnut shell bio-oil distillation residues. New Carbon Mater. 2019, 34, 434–440. [Google Scholar] [CrossRef]
- Jiang, C.; Yakaboylu, G.A.; Yumak, T.; Zondl, J.W.; Sabolsky, E.M.; Wang, J. Activated carbons prepared by indirect and direct CO2 activation oflignocellulosic biomass for supercapacitor electrodes. Renew. Energy 2020, 155, 38–52. [Google Scholar] [CrossRef]
- Siddiqa, A.; Sherugar, P.; Nagaraju, D.H.; Padaki, M. A spongy Rhizophora mucronata derived ultra-high surface area activated carbon for high charge density supercapacitor device. J. Energy Storage 2022, 50, 104698. [Google Scholar] [CrossRef]
- Liu, X.; Zuo, S.; Cui, N.; Wang, S. Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon 2022, 191, 581–592. [Google Scholar] [CrossRef]
- da Silva, E.L.; Torres, M.; Portugau, P.; Cuña, A. High surface activated carbon obtained from Uruguayan rice husk wastes for supercapacitor electrode applications: Correlation between physicochemical and electrochemical properties. J. Energy Storage 2021, 44, 103949. [Google Scholar] [CrossRef]
- Gayathiri, M.; Pulingam, T.; Lee, K.T.; Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.H.; Park, S.; Yoon, S.-H.; Jung, D.-H. Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization. Desalination 2022, 539, 115901. [Google Scholar] [CrossRef]
- Yusop, M.F.M.; Aziz, A.; Ahmad, M.A. Conversion of teak wood waste into microwave-irradiated activated carbon for cationic methylene blue dye removal: Optimization and batch studies. Arab. J. Chem. 2022, 15, 1040801. [Google Scholar] [CrossRef]
- Nowicki, P.; Pietrzak, R. Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on their NO2 sorption capacity under dry conditions. Chem. Eng. J. 2011, 166, 1039–1043. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Wolski, R.; Paluch, D.; Nowicki, P.; Pietrzak, R. Removal of organic dyes from aqueous solutions by activated carbons prepared from residue of supercritical extraction of marigold. Materials 2022, 15, 3655. [Google Scholar] [CrossRef] [PubMed]
- Bazan-Wozniak, A.; Pietrzak, R. Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem. Eng. J. 2020, 393, 124785. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, Z.; Wang, X.; Yang, X.; Wan, Z. A two-step method for the preparation of high performance corncob-based activated carbons as supercapacitor electrodes using ammonium chloride as a pore forming additive. New Carbon Mater. 2018, 33, 402–408. [Google Scholar] [CrossRef]
- Durán-Jiménez, D.; Hernández-Montoya, V.; Montes-Morán, M.A.; Bonilla-Petriciolet, A.; Rangel-Vázquez, N.A. Adsorption of dyes with different molecular properties on activated carbons prepared from lignocellulosic wastes by Taguchi method. Microporous Mesoporous Mater. 2014, 199, 99–107. [Google Scholar] [CrossRef]
- Yujiao, K.; Qinyan, Y.; Baoyu, G.; Qian, L. Comparison of activated carbons from epoxy resin of waste printed circuit boards with KOH activation by conventional and microwave heating methods. J. Taiwan Inst. Chem. Eng. 2016, 68, 4040–4445. [Google Scholar] [CrossRef]
- Kumar, S.N.; Grekov, D.; Pré, P.; Alappat, B.J. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications—An overview. Renew. Sustain. Energy Rev. 2020, 124, 109743. [Google Scholar] [CrossRef]
- Baytar, O.; Şahin, Ö.; Saka, C. Sequential application of microwave and conventional heating methods for preparation of activated carbon from biomass and its methylene blue adsorption. Appl. Therm. Eng. 2018, 138, 542–551. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, L.; Liu, L.; et al. Microwave assisted preparation of activated carbon from biomass. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Puchana-Rosero, M.J.; Adebayo, M.A.; Lima, E.C.; Machado, F.M.; Thue, P.S.; Vaghetti, J.C.P.; Gutterres, M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 105–115. [Google Scholar] [CrossRef]
- Xu, J.; Chen, L.; Qu, H.; Jiao, Y.; Xie, Y.; Xing, G. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 2014, 30, 674–680. [Google Scholar] [CrossRef]
- Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Preparation of activated carbon from cherry stones by chemical activation with ZnCl2-main. Appl. Surf. Sci. 2006, 252, 5967–5971. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, H. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresour. Technol. 2011, 102, 9814–9817. [Google Scholar] [CrossRef]
- Bazan-Wozniak, A.; Nowicki, P.; Pietrzak, R. Removal of NO2 from gas stream by activated bio-carbons from physical activation of residue of supercritical extraction of hops. Chem. Eng. Res. Des. 2021, 166, 67–73. [Google Scholar] [CrossRef]
- Zaini, M.A.A.; Zhi, L.L.; Hui, T.S.; Amano, Y.; Machida, M. Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons. Mater. Today Proc. 2021, 39, 917–921. [Google Scholar] [CrossRef]
- Sun, K.; Jiang, J. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy 2010, 34, 539–544. [Google Scholar] [CrossRef]
- Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Nagalakshmi, T.V.; Emmanuel, K.A.; Bhavani, P. Adsorption of disperse blue 14 onto activated carbon prepared from Jackfruit-PPI-I waste. Mater. Today Proc. 2019, 18, 2036–2051. [Google Scholar] [CrossRef]
- Langergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetensk. Hand 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [PubMed]
- Bazan-Wozniak, A.; Nowicki, P.; Wolski, R.; Pietrzak, R. Activated Bio-Carbons Prepared from the Residue of Supercritical Extraction of Raw Plants and Their Application for Removal of Nitrogen Dioxide and Hydrogen Sulfide from the Gas Phase. Materials 2021, 14, 3192. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass. Convers. Biorefin. 2019, 9, 775–802. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, K. Development of high surface area mesoporous activated carbons from herb residues. Chem. Eng. J. 2011, 167, 148–154. [Google Scholar] [CrossRef]
- Jung, S.H.; Oh, S.J.; Choi, G.G.; Kim, J.S. Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass. J. Anal. Appl. Pyrolysis 2014, 109, 123–131. [Google Scholar] [CrossRef]
- El-Sadaawy, M.; Abdelwahab, O. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex. Eng. J. 2014, 53, 399–408. [Google Scholar] [CrossRef]
- Mogale, R.; Akpomie, K.G.; Conradie, J.; Langner, E.H.G. Dye adsorption of aluminium- and zirconium-based metal organic frameworks with azobenzene dicarboxylate linkers. J. Environ. Manag. 2022, 304, 114166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, J.; Lia, Y.; Zhang, P.; Li, M.; Zheng, H.; Zhang, X.; Li, H.; Du, Q. Methylene blue adsorption by activated carbon, nickel alginate/activated carbon aerogel, and nickel alginate/graphene oxide aerogel: A comparison study. J. Mater. Res. Technol. 2020, 9, 12443–12460. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.A.; Thabet, S.M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Hosseini, S.S.; Akbari, A.; Ramavandi, B. Hydroxyapatite biomaterial production fromchicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. J. Hazard. Mater. 2021, 413, 125428. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Bartczak, P.; Jesionowski, T. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent. Int. J. Biol. Macromol. 2017, 99, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.N.; El-Daim El Taher, M.A.; Fadlalla, S.M.M. Adsorption of methylene blue using modified adsorbents from drinking water treatment sludge. Water. Sci. Technol. 2016, 74, 1885–1898. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, R.; Peighambardoust, S.J.; Peighambardoust, S.H.; Pateiro, M.; Lorenzo, J.M. Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules 2021, 26, 2241. [Google Scholar] [CrossRef]
- Bankole, A.A.; Poulose, V.; Ramachandran, T.; Hamed, F.; Thiemann, T. Comparative Study of the Selective Sorption of Organic Dyes on Inorganic Materials—A Cost-Effective Method for Waste Treatment in Educational and Small Research Laboratories. Separations 2022, 9, 144. [Google Scholar] [CrossRef]
Organic Dye | Name | Structure | Wavelength [nm] |
---|---|---|---|
methylene blue | 3,7-bis(dimethylamino) -phenothiazin-5-ium | 665 | |
methyl red | 2-[[4(dimethylamino) phenyl]diazenyl]benzoic acid | 443 |
Precursor | Ash Content | Moisture | Elemental Analysis | References | |||
---|---|---|---|---|---|---|---|
C | O | N | H | ||||
P | 2.1 | 5.1 | 58.8 | 27.2 | 3.2 | 10.8 | this study |
hops residues | 7.6 | - | 47.4 | 38.1 | 4.8 | 9.6 | [36] |
olive stones | 2.3 | 8.8 | 46.5 | - | 0.4 | 6.4 | [37] |
herb residues | 5.6 | 4.7 | 36.1 | - | 3.5 | 6.1 | [38] |
walnut shells | 1.0 | 11.2 | 69.2 | 25.3 | 0.3 | 4.1 | [39] |
Sample | Surface Area 1 [m2/g] | Total Pore Volume [cm3/g] | Average Pore Diameter [nm] | Micropore Area [m2/g] |
---|---|---|---|---|
AC | 1085 | 0.64 | 1.9 | 1044 |
AF | 520 | 0.62 | 4.1 | 360 |
Sample | Cdaf 1,2 | Hdaf | Ndaf | Odiff 3 |
---|---|---|---|---|
AC | 83.4 | 1.6 | 0.9 | 14.1 |
AF | 88.9 | 1.4 | 0.5 | 9.2 |
Isotherms | Parameters | Methylene Blue Values | Methyl Red Values | ||
---|---|---|---|---|---|
AC | AF | AC | AF | ||
Freundlich | R2 | 0.9966 | 0.9710 | 0.9911 | 0.9917 |
KF (mg/g(L/mg)1/n) | 199.66 | 93.63 | 61.67 | 37.26 | |
1/n | 0.121 | 0.233 | 0.353 | 0.460 | |
Langmuir | R2 | 0.9986 | 0.9913 | 0.9578 | 0.9146 |
qm | 250.00 | 163.93 | 169.49 | 144.93 | |
KL (L/mg) | 0.027 | 0.012 | 0.003 | 0.002 | |
RL | 0.254–0.384 | 0.502–0.729 | 0.787–0.908 | 0.854–0.976 | |
Temkin | R2 | 0.4050 | 0.7422 | 0.9809 | 0.9472 |
B | 53.81 | 47.43 | 43.46 | 37.73 | |
AT (L/mg) | 12.51 | 3.30 | 2.53 | 1.75 | |
Dubinin–Radushkevich | R2 | 0.7608 | 0.9021 | 0.8793 | 0.7953 |
qm (mg/g) | 228.45 | 152.47 | 151.00 | 108.49 | |
E (kJ/mol) | 1.763 | 1.581 | 0.707 | 0.912 |
Isotherms | Parameters | Methylene Blue Values | Methyl Red Values | ||
---|---|---|---|---|---|
AC | AF | AC | AF | ||
qe,exp (mg/g) | 197.47 | 147.89 | 107.14 | 92.76 | |
Pseudo-first-order | R2 | 0.8997 | 0.9785 | 0.9670 | 0.9282 |
k1 (L/min) | 8.52 × 10−3 | 4.44 × 10−2 | 1.65 × 10−2 | 2.09 × 10−2 | |
qe,cal (mg/g) | 37.32 | 39.45 | 4.54 | 44.51 | |
Pseudo-second-order | R2 | 0.9808 | 0.9991 | 0.9991 | 0.9985 |
k2 (g/mg × min) | 8.17 × 10−3 | 8.63 × 10−3 | 1.63 × 10−3 | 1.58 × 10−3 | |
qe,cal (mg/g) | 200.00 | 149.25 | 108.69 | 94.33 |
Sample | Temperature (K) | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/mol K) |
---|---|---|---|---|
AC (methylene blue) | 298 | −5.32 | 6.68 | 40.12 |
318 | −5.98 | |||
338 | −6.94 | |||
AF (methylene blue) | 298 | −4.50 | 10.15 | 49.18 |
318 | −5.47 | |||
338 | −6.47 | |||
AC (methyl red) | 298 | −4.77 | 13.34 | 60.67 |
318 | −5.86 | |||
338 | −7.21 | |||
AF (methyl red) | 298 | −5.15 | 19.15 | 81.44 |
318 | −6.68 | |||
338 | −8.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazan-Wozniak, A.; Cielecka-Piontek, J.; Nosal-Wiercińska, A.; Pietrzak, R. Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating. Materials 2022, 15, 5664. https://doi.org/10.3390/ma15165664
Bazan-Wozniak A, Cielecka-Piontek J, Nosal-Wiercińska A, Pietrzak R. Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating. Materials. 2022; 15(16):5664. https://doi.org/10.3390/ma15165664
Chicago/Turabian StyleBazan-Wozniak, Aleksandra, Judyta Cielecka-Piontek, Agnieszka Nosal-Wiercińska, and Robert Pietrzak. 2022. "Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating" Materials 15, no. 16: 5664. https://doi.org/10.3390/ma15165664
APA StyleBazan-Wozniak, A., Cielecka-Piontek, J., Nosal-Wiercińska, A., & Pietrzak, R. (2022). Adsorption of Organic Compounds on Adsorbents Obtained with the Use of Microwave Heating. Materials, 15(16), 5664. https://doi.org/10.3390/ma15165664