Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Choi, J.Y.; Fukuda, T.; Kakeshita, T. Effect of magnetic field on isothermal martensitic transformation in a sensitized SUS304 austenitic stainless steel. J Alloys Compd. 2019, 577, S605–S608. [Google Scholar] [CrossRef]
- Chan, J.W.; Chu, D.; Sunwoo, A.J.; Morris, J.W. Metastable austenites in cryogenic high magnetic field environments. Materials 1992, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Egawa, M.; Ueda, N.; Nakata, K.; Tsujikawa, M.; Tanaka, M. Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels. Surf. Coat. Technol. 2010, 205, S246–S251. [Google Scholar] [CrossRef]
- Bell, T.; Li, C.X. Stainless steel low temperature nitriding and carburizing: Low-temperature nitriding and carburizing of austenitic stainless steels have been developed and are rapidly gaining acceptance for improving resistance to wear and corrosion. Adv. Mater. Process. 2002, 160, 49–52. [Google Scholar]
- Kochmański, P.; Baranowska, J.; Fryska, S. Microstructure of low-temperature gas-carbonitrided layers on austenitic stainless steel. Metals 2019, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Yan, J.; Yan, M. Atomistic diffusion mechanism of rare earth carburizing/nitriding on iron-based alloy. Appl. Surf. Sci. 2019, 484, 710–715. [Google Scholar] [CrossRef]
- Tsujikawa, M.; Egawa, M.; Ueda, N.; Okamoto, A.; Sone, T.; Nakata, K. Effect of molybdenum and copper on S-phase layer thickness of low-temperature carburized austenitic stainless steel. Surf. Coat. Technol. 2008, 202, 5488–5492. [Google Scholar] [CrossRef]
- Liu, B.X.; Yin, F.X.; Dai, X.L.; He, J.N.; Fang, W.; Chen, C.X.; Dong, Y.C. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status. J. Mater. Sci. Eng. A 2017, 679, 172–182. [Google Scholar] [CrossRef]
- Souza, R.M.D.; Ignat, M.; Pinedo, C.E.; Tschiptschin, A.P. Structure and properties of low temperature plasma carburized austenitic stainless steels. Surf. Coat. Technol. 2009, 204, 1102–1105. [Google Scholar] [CrossRef]
- Scheuer, C.J.; Cardoso, R.P.; Pereira, R.; Mafra, M.; Brunatto, S.F. Low temperature plasma carburizing of martensitic stainless steel. J. Mater. Sci. Eng. A 2012, 539, 369–372. [Google Scholar] [CrossRef]
- Tsujikawa, M.; Noguchi, S.; Yamauchi, N.; Ueda, N.; Sone, T. Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel. Surf. Coat. Technol. 2007, 201, 5102–5107. [Google Scholar] [CrossRef]
- Rovani, A.C.; Breganon, R.; de Souza, G.S.; Brunatto, S.F.; Pintaúde, G. Scratch resistance of low-temperature plasma nitrided and carburized martensitic stainless steel. Wear 2017, 376, 70–76. [Google Scholar] [CrossRef]
- Ren, Z.; Eppell, S.; Collins, S.; Ernst, F. Co–Cr–Mo alloys: Improved wear resistance through low-temperature gas-phase nitro-carburization. Surf. Coat. Technol. 2019, 378, 124943. [Google Scholar] [CrossRef]
- Courant, B.; Hantzpergue, J.J.; Avril, L.; Benayoun, S. Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition. J. Mater. Process. Technol. 2005, 160, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Lee, J.; Kim, S.; Hong, E.; Lee, H. Hydrogen permeation barrier of carbon-doped TiZrN coatings by laser carburization. Corros. Sci. 2021, 190, 109700. [Google Scholar] [CrossRef]
- Valentini, L.; Di Schino, A.; Kenny, J.M.; Gerbig, Y.; Haefke, H. Influence of grain size and film composition on wear resistance of ultra fine grained AISI 304 stainless steel coated with amorphous carbon films. Wear 2002, 253, 458–464. [Google Scholar] [CrossRef]
- Alentini, L.; Di Schino, A.; Kenny, J.M.; La Rosa, S.; Lozzi, L.; Santucci, S.; Bregliozzi, G.; Gerbig, Y.; Haefke, H. Wear resistance of fine-grained high nitrogen austenitic stainless steel coated with amorphous carbon films: The soft X-ray spectroscopy approach. Tribol. Lett. 2004, 16, 51–58. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, M.F.; Zhang, Y.X.; Zhang, C.S.; Wang, X.A. Self-lubricating and anti-corrosion amorphous carbon/Fe3C composite coating on M50NiL steel by low temperature plasma carburizing. Surf. Coat. Technol. 2016, 304, 142–149. [Google Scholar] [CrossRef]
- Rotundo, F.; Ceschini, L.; Martini, C.; Montanari, R.; Varone, A. High temperature tribological behavior and microstructural modifications of the low-temperature carburized AISI 316L austenitic stainless steel. Surf. Coat. Technol. 2014, 258, 772–781. [Google Scholar] [CrossRef]
- Angelini, V.; Boromei, I.; Martini, C.; Scheuer, C.J.; Cardoso, R.P.; Brunatto, S.F.; Ceschini, L. Dry sliding behavior (block-on-ring tests) of AISI 420 martensitic stainless steel, surface hardened by low temperature plasma-assisted carburizing. Tribol. Inter. 2019, 103, 555–565. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, M.F.; Zhang, Y.X.; Li, D.Y.; Zhang, C.S.; Zhu, Y.D.; Wang, Y.X. Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process. Carbon 2017, 122, 1–8. [Google Scholar] [CrossRef]
- Dalibón, E.L.; Heim, D.; Forsich, C.; Rosenkranz, A.; Guitar, M.A.; Brühl, S.P. Characterization of thick and soft DLC coatings deposited on plasma nitrided austenitic stainless steel. Diam. Relat. Mater. 2015, 59, 73–79. [Google Scholar] [CrossRef]
- ISO 20808; ISO Standard, Fine Ceramics (Advanced ceramics, Advanced Technical Ceramics)—Determination of Friction and Wear Characteristics of Monolithic Ceramics by Ball-on-Disc Method. ISO: Geneva, Switzerland, 2016.
- Wu, W.; Li, X.; Chen, J.; Dong, H. Design and characterisation of an advanced duplex system based on carbon S-phase case and GiC coatings for 316LVM austenitic stainless steel. Surf. Coat. Technol. 2009, 203, 1273–1280. [Google Scholar] [CrossRef]
- Borgioli, F. From austenitic stainless steel to expanded austenite-S phase: Formation, characteristics and properties of an elusive metastable phase. Metals 2020, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Mukhopadhyay, A.K.; Das, S.C.; Bhattacharjee, G.; Majumdar, A.; Hippler, R. Surface Stoichiometry and Optical Properties of Cu x–Ti y C z Thin Films Deposited by Magnetron Sputtering. Coatings 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, N.; Yeo, R.J.; Satyanarayana, N.; Kundu, S.; Tripathy, S.; Bhatia, C.S. Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats. Sci. Rep. 2015, 5, 7772. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, N.; Lee, K.-R.; Wang, A. Effect of metal doping on structural characteristics of amorphous carbon system: A first-principles study. Thin Solid Films 2016, 607, 67–72. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, L.; Liu, J.; Luo, L.; Wu, Y. Residual stress relief of hard a-C films though buckling. Ceram. Int. 2018, 44, 3644–3648. [Google Scholar] [CrossRef]
- Przybylska, N.; Śliwińska-Bartkowiak, M.; Kościński, M.; Rotnicki, K.; Bartkowiak, M.; Jurga, S. Confined effect of water solution of ciprofloxacin in carbon nanotubes studied by Raman and Fourier Transform Infrared Spectroscopy methods. J. Mol. Liq. 2021, 336, 115938. [Google Scholar] [CrossRef]
- Szybowicz, M.; Nowicka, A.B.; Dychalska, A. Characterization of carbon nanomaterials by Raman spectroscopy. In Characterization of Nanomaterials; Woodhead Publishing: Poznan, Poland, 2018; pp. 1–36. [Google Scholar] [CrossRef]
- Sudha, C.; Bharasi, N.S.; Anand, R.; Shaikh, H.; Dayal, R.K.; Vijayalakshmi, M. Carburization behavior of AISI 316LN austenitic stainless steel–Experimental studies and modeling. J. Nucl. Mater. 2010, 402, 186–195. [Google Scholar] [CrossRef]
- Cusenza, S.; Schaaf, P. Amorphous stainless steel coatings prepared by reactive magnetron-sputtering from austenitic stainless steel targets. Appl. Phys. A 2009, 94, 139–154. [Google Scholar] [CrossRef] [Green Version]
Laser Output | Lattice Constant |
---|---|
As-deposited | 3.612 Å |
60% | 3.612 Å |
70% | 3.674 Å |
80% | 3.749 Å |
90% | 3.915 Å |
100% | 3.964 Å |
Laser Output | sp2/sp3 Ratio |
---|---|
70% | 3.21 |
80% | 3.14 |
90% | 2.67 |
100% | 2.52 |
LASER Output | ID/IG |
---|---|
70% | 0.68 |
80% | 0.85 |
90% | 1.24 |
100% | 1.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, T.; Hong, E.; Lee, H. Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation. Materials 2022, 15, 5764. https://doi.org/10.3390/ma15165764
Kim S, Kim T, Hong E, Lee H. Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation. Materials. 2022; 15(16):5764. https://doi.org/10.3390/ma15165764
Chicago/Turabian StyleKim, Seonghoon, Taewoo Kim, Eunpyo Hong, and Heesoo Lee. 2022. "Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation" Materials 15, no. 16: 5764. https://doi.org/10.3390/ma15165764
APA StyleKim, S., Kim, T., Hong, E., & Lee, H. (2022). Lattice Distortion, Amorphization and Wear Resistance of Carbon-Doped SUS304 by Laser Ablation. Materials, 15(16), 5764. https://doi.org/10.3390/ma15165764