Investigation on the In Situ Ti2AlC/TiAl Composite with a Homogenous Architecture by Adding Graphene Nanosheets
Abstract
:1. Introduction
2. Experimental Methods
3. Experimental Results and Analysis
3.1. Morphology of Powders
3.2. Phase and Microstructure Characterization of the As-Prepared Ti2AlC/TiAl Composite
3.3. Mechanical Properties of the As-Prepared Ti2AlC/TiAl Composite
4. Strengthening and Toughening Mechanism
5. Conclusions
- (1)
- The ultrasonic dispersion achieves the transformation of graphene nanosheets from multi-layer to few-layer, and the ultrasonic mechanical stirring ensured the uniform distribution of few-layer graphene nanosheets in composite powders;
- (2)
- The as-prepared composite is mainly composed of rod-shaped Ti2AlC particles with the lengths of about 15 μm and thicknesses of about 5 μm, as well as a TiAl matrix, and the formation of rod-shaped morphology with the long axis along the (0001) plane is due to the fact that the growth rate of Ti2AlC parallel to the (0001) plane is much higher than the growth rate along the [0001] direction;
- (3)
- The compressive stress and strain of the as-prepared Ti2AlC/TiAl composite reach 1451.2 MPa and 19.7%, respectively, and the Vickers hardness is about 400~500 HV, which maintain relatively good mechanical properties compared with some Ti2AlC/TiAl composites using graphite as carbon source;
- (4)
- The strengthening mechanism of the as-prepared Ti2AlC/TiAl composites is primarily due to the load transfer strengthening, refinement strengthening and Orowan strengthening, and the toughness mechanism is mainly attributed to the deformation and fracture of Ti2AlC particles, i.e., lamellae kinking and laminated tearing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Tang, B.; Zhao, S.; Wang, W.Y.; Chen, X.; Zhu, L.; Li, J. Evading the strength-ductility trade-off at room temperature and achieving ultrahigh plasticity at 800 °C in a TiAl alloy. Acta Mater. 2022, 225, 117585. [Google Scholar] [CrossRef]
- Wang, L.; Liang, X.; Jiang, F.; Ouyang, S.; Liu, B.; Liu, Y. Phase transformation and deformation behavior of a TiAl-Nb composite under quasi-static and dynamic loadings. Mater. Sci. Eng. A 2022, 829, 142155. [Google Scholar] [CrossRef]
- Xu, R.R.; Li, H.; Li, M.Q. Flow softening mechanism in isothermal compression of β-solidifying γ-TiAl alloy. Mater. Des. 2020, 186, 108328. [Google Scholar] [CrossRef]
- Duan, Z.; Song, X.; Han, Y.; Pei, W.; Chen, H. Enhancing high-temperature strength and ductility of γ-TiAl matrix composites with controllable dual alloy structure. Mater. Sci. Eng. A 2021, 823, 141723. [Google Scholar] [CrossRef]
- Ye, X.C.; Xiao, K.Q.; Cao, R.X.; Wu, H.; Zhao, G.; Li, B. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting. Vacuum 2019, 163, 186–193. [Google Scholar] [CrossRef]
- Qu, S.J.; Tang, S.Q.; Feng, A.H.; Feng, C.; Shen, J.; Chen, D.L. Microstructural evolution and high-temperature oxidation mechanisms of a titanium aluminide based alloy. Acta Mater. 2018, 148, 300–310. [Google Scholar] [CrossRef]
- Ma, Y.; Cuiuri, D.; Li, H.; Pan, Z.; Shen, C. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process. Mater. Sci. Eng. A 2016, 657, 86–95. [Google Scholar] [CrossRef]
- Tian, S.W.; He, A.R.; Liu, J.H.; Zhang, Y.F.; Yang, Y.G.; Zhang, Y.; Jiang, H.T. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment. Mater. Charact. 2021, 178, 111196. [Google Scholar]
- Yue, H.; Peng, H.; Li, R.; Qi, K.; Zhang, L.; Lin, J.; Su, Y. Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting. Mater. Sci. Eng. A 2021, 803, 140473. [Google Scholar] [CrossRef]
- Shaaban, A.; Signori, L.J.; Nakashima, H.; Takeyama, M. Effects of the addition of transition metals on phase equilibria and phase transformations in TiAl system in between 1473 and 1073K. J. Alloys Compd. 2021, 878, 160392. [Google Scholar] [CrossRef]
- Naveed, M.; Renteria, A.F.; Weiß, S. Role of alloying elements during thermocyclic oxidation of β/γ-TiAl alloys at high temperatures. J. Alloys Compd. 2017, 691, 489–497. [Google Scholar] [CrossRef]
- Duan, B.; Yang, Y.; He, S.; Feng, Q.; Mao, L.; Zhang, X.; Jiao, L.; Lu, X.; Chen, G.; Li, C. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations. J. Alloys Compd. 2022, 909, 164811. [Google Scholar] [CrossRef]
- Huber, D.; Werner, R.; Clemens, H. Stockinger, Influence of process parameter variation during thermo-mechanical processing of an intermetallic β-stabilized γ-TiAl based alloy. Mater. Charact. 2015, 109, 116–121. [Google Scholar] [CrossRef]
- Kan, W.; Chen, B.; Jin, C.; Peng, H.; Lin, J. Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting. Mater. Des. 2018, 160, 611–623. [Google Scholar] [CrossRef]
- Zhu, B.; Xue, X.; Kou, H.; Li, X.; Li, J. The cavitation of high Nb-containing TiAl alloys during tensile tests around BDTT. Mater. Sci. Eng. A 2018, 729, 86–93. [Google Scholar] [CrossRef]
- Li, W.; Yang, Y.; Li, M.; Liu, J.; Cai, D.; Wei, Q.; Yan, C.; Shi, Y. Enhanced mechanical property with refined microstructure of a novel γ-TiAl/TiB2 metal matrix composite (MMC) processed via hot isostatic press. Mater. Des. 2018, 141, 57–66. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Chen, X.; Qiu, J.; Wang, Y.; Liu, B.; Liu, Y.; Rashad, M.; Pan, F. Mechanical, tribological and electrochemical corrosion properties of in-situ synthesized Al2O3/TiAl composites. Intermetallics 2020, 120, 106758. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Chen, X.; Ran, C.; Wang, Y.; Liu, B.; Liu, Y.; Rashad, M.; Pan, F. Grinding mechanism and mechanical properties of the in-situ synthesized Al2O3/TiAl composites. Ceram. Int. 2019, 45, 12113–12121. [Google Scholar] [CrossRef]
- Wu, H.; Leng, J.; Teng, X.; Fan, G.; Geng, L.; Liu, Z. Strain partitioning behavior of in situ Ti5Si3/TiAl composites. J. Alloys Compd. 2018, 744, 182–186. [Google Scholar] [CrossRef]
- Li, A.B.; Cui, X.P.; Wang, G.S.; Qu, W.; Li, F.; Zhang, X.X.; Gan, W.C.; Geng, L.; Meng, S.H. Fabrication of in situ Ti5Si3/TiAl composites with controlled quasi-network architecture using reactive infiltration. Mater. Lett. 2016, 185, 351–354. [Google Scholar] [CrossRef]
- Benitez, R.; Kan, W.H.; Gao, H.L.; O’Neal, M.; Proust, G.; Srivastava, A.; Radovic, M. Mechanical properties and microstructure evolution of Ti2AlC under compression in 25–1100 °C temperature range. Acta Mater. 2020, 189, 154–165. [Google Scholar] [CrossRef]
- Liu, P.; Xie, J.P.; Wang, A.Q.; Ma, D.Q.; Mao, Z.P. An interatomic potential for accurately describing the atomic-scale deformation behaviors of Ti2AlC crystal, Comput. Mater. Sci. 2020, 182, 109757. [Google Scholar]
- Zhan, Z.Q.; Chen, Y.X.; Radovic, M.; Srivastava, A. Non-classical crystallographic slip in a ternary carbide-Ti2AlC. Mater. Res. Lett. 2020, 8, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Hou, B.; Wang, A.Q.; Xie, J.P.; Wang, Z.B. Balancing the strength and ductility of Ti2AlC/TiAl composite with a bioinspired micro-nano laminated architecture. Mater. Des. 2022, 220C, 110851. [Google Scholar] [CrossRef]
- Ma, T.; Li, Q.; Wang, Y.; Wang, X.; Dong, D.; Zhu, D. Microstructure and mechanical properties of micro-nano Ti2AlC-reinforced TiAl composites. Intermetallics 2022, 146, 107563. [Google Scholar] [CrossRef]
- Yang, C.; Wang, F.; Ai, T.; Zhu, J. Microstructure and mechanical properties of in situ TiAl/Ti2AlC composites prepared by reactive hot pressing. Ceram. Int. 2014, 40, 8165–8171. [Google Scholar] [CrossRef]
- Gao, Y.; Kou, S.; Dai, J.; Wang, Z.; Shu, S.; Zhang, S.; Qiu, F.; Jiang, Q. Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles. Mater. Sci. Eng. A 2021, 823, 141772. [Google Scholar] [CrossRef]
- Song, X.J.; Cui, H.Z.; Hou, N.; Wei, N.; Han, Y.; Tian, J.; Song, Q. Lamellar structure and effect of Ti2AlC on properties of prepared in-situ TiAl matrix composites. Ceram. Int. 2016, 42, 13586–13592. [Google Scholar] [CrossRef]
- Fang, H.Z.; Wang, S.; Chen, R.R.; Xu, Q.; Yan, Y.D.; Su, Y.Q.; Guo, J.J. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy. Nanoscale 2021, 13, 12565–12576. [Google Scholar] [CrossRef]
- Wei, L.X.; Liu, J.Q.; Wu, X.L.; Liu, X.Y.; Lv, X.W.; Liu, Y.L. In situ fabrication of Ti-Al/Ti2AlC composite by hot-press sintering. J. Alloys Compd. 2020, 813, 152200. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, L.; Dong, D.; Wang, X.; Liu, Y.; Chen, Z.; Wei, Z. Microstructure and compression behavior of in-situ synthesized Ti2AlC reinforced Ti-48Al-2Cr alloy with carbon nanotubes addition. J. Alloys Compd. 2021, 862, 158646. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Wu, A.V.D.K.H. Synthesis of Ti2AlC by spark plasma sintering of TiAl-carbon nanotube powder mixture. J. Alloys Compd. 2010, 490, 155–159. [Google Scholar] [CrossRef]
- Wang, G.X.; Yang, J.; Park, J.; Gou, X.L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192–8195. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, X.; Zhai, W.; Yao, J.; Song, S.; Zhang, Q. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 2014, 67, 168–177. [Google Scholar] [CrossRef]
- Wu, M.Y.; Mi, G.B.; Li, P.J.; Huang, X.; Cao, C.X. Study on interface reaction between multilayer graphene and TiAl alloy. Mater. Lett. 2022, 310, 131515. [Google Scholar] [CrossRef]
- Shu, S.; Qiu, F.; Lü, S.; Jin, S.; Jiang, Q. Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Mater. Sci. Eng. A 2012, 539, 344–348. [Google Scholar] [CrossRef]
- Chen, R.; Fang, H.; Chen, X.; Su, Y.; Ding, H.; Guo, J.; Fu, H. Formation of TiC/Ti2AlC and α2+γ in in-situ TiAl composites with different solidification paths. Intermetallics 2017, 81, 9–15. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, R.; Zhang, T.; Zhang, F.; Kou, H.; Li, J. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys. Mater. Char. 2017, 124, 1–7. [Google Scholar] [CrossRef]
- Hou, B.; Liu, P.; Wang, A.; Xie, J. Fabrication, microstructure and compressive properties of Ti2AlC/TiAl composite with a bioinspired laminated structure. Vacuum 2022, 201, 111124. [Google Scholar] [CrossRef]
- Bai, Y.L.; He, X.D.; Li, Y.B.; Zhu, C.C.; Zhang, S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process. J. Mater. Res. 2009, 24, 2528–2535. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Qiu, F.; Lin, Y.; Wang, Y.; Wang, J.; Jiang, Q. Effect of B4C size on the fabrication and compression properties of in situ TiB2-Ti2AlC/TiAl composites. J. Alloys Compd. 2013, 551, 88–91. [Google Scholar] [CrossRef]
- Song, X.J.; Cui, H.Z.; Han, Y.; Ding, L.; Song, Q. Ti2Al (C, N) solid solution reinforcing TiAl-based composites: Evolution of a core-shell structure, interfaces, and mechanical properties. ACS Appl. Mater. Interfaces 2018, 10, 16783–16792. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, B.; Wang, A.; Liu, P.; Xie, J. Investigation on the In Situ Ti2AlC/TiAl Composite with a Homogenous Architecture by Adding Graphene Nanosheets. Materials 2022, 15, 5766. https://doi.org/10.3390/ma15165766
Hou B, Wang A, Liu P, Xie J. Investigation on the In Situ Ti2AlC/TiAl Composite with a Homogenous Architecture by Adding Graphene Nanosheets. Materials. 2022; 15(16):5766. https://doi.org/10.3390/ma15165766
Chicago/Turabian StyleHou, Bo, Aiqin Wang, Pei Liu, and Jingpei Xie. 2022. "Investigation on the In Situ Ti2AlC/TiAl Composite with a Homogenous Architecture by Adding Graphene Nanosheets" Materials 15, no. 16: 5766. https://doi.org/10.3390/ma15165766
APA StyleHou, B., Wang, A., Liu, P., & Xie, J. (2022). Investigation on the In Situ Ti2AlC/TiAl Composite with a Homogenous Architecture by Adding Graphene Nanosheets. Materials, 15(16), 5766. https://doi.org/10.3390/ma15165766