Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Database
2.2. GEP Modeling
2.3. Evaluation Criteria
3. Results and Discussion
3.1. Effect of Genetic Variables
3.2. Performance of the Developed Models
3.2.1. Statistical Evaluation
3.2.2. Comparison of Regression Slopes and Error Analysis
3.2.3. Predicted-to-Experimental Ratio
3.2.4. GEP Formulations
3.3. Sensitivity and Parametric Analysis
4. Conclusions
- The optimum statistical indices were acquired after 11 trials based on variable genetic parameters. These values for the training and validation datasets in the case of the ultimately selected model (trial 5) were RMSE (4.538 and 4.953) MPa, MAE (3.216 and 3.348) MPa, and R2 (0.919 and 0.906), respectively. Furthermore, the MAE values of the selected models show a mean error of 5.93 percent (training) and 6.17 percent (validation). These values are substantially lower, suggesting that the defined GEP models for forecasting compressive strength of MSC are reliable for use in future.
- The Taylor diagram shows the robustness of all the models; however, it reveals the superiority of trial 5. Other statistical performance metrics, such as predicted-to-experimental ratio for the optimum trial and the slope of the regression line between experimental and anticipated outcomes, were employed to supplement the accuracy analysis of the best GEP model. The best model yielded 0.9347 (training) and 0.9108 (validation) regression slopes, which are closer to unity (i.e., ideal slope), reflecting the reliability of the developed model. The predicted/experimental ratio manifested that 85 percent and 83 percent of the values were within 10% of deviation from the actual experimental results.
- The MATLAB code extracted from the final GEP model was used to create a mathematical equation with easily determinable input parameters to evaluate the compressive strength of MSC, obviating the need for time-consuming and expensive sample testing and thus affecting the cost-effectiveness of civil engineering projects. It was also determined that water–cement ratio, water–binder ratio, compressive strength of cement, tensile strength of cement, curing period and stone powder percentage are the six variables among the eleven effectively contributing to compressive strength.
- The sensitivity analysis showed that the water-to-cement ratio is the most influential parameter followed by duration and percentage replacement of stone powder content, equaling 46.22, 25.43, and 13.55, respectively, in contributing to the compressive strength. The parametric analysis revealed that the compressive strength of concrete linearly changes with the tensile and compressive strength of cement. The increase in compressive strength of MSC was steeper during the first 100 days, which also validates the model in terms of its coherence with the literature. The increase in the percentage of stone powder decreased the compressive strength of the MSC. Maximum magnitude of compressive strength was obtained at a water–cement ratio of 0.30.
- The model was based on the available literature, which covers specific ranges of the input variables. More robust models can be developed based on the literature from multiple sources covering a wider range.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Z.; Wang, S.; Liu, Y.; Li, B.; Jia, Z.; Zhang, Y.; Wang, J. The hydration, pore structure and strength of cement-based material prepared with waste soaking solution from acetic acid treatment of regenerated aggregates. J. Clean. Prod. 2019, 235, 866–874. [Google Scholar] [CrossRef]
- Caijun, S.; Yake, L.; Jiake, Z.; Wengui, L.; Linlin, C.; Zhaobin, X. Performance enhancement of recycled concrete aggregate. A Rev. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar]
- Guan, M.; Liu, W.; Lai, M.; Du, H.; Cui, J.; Gan, Y. Seismic behaviour of innovative composite walls with high-strength manufactured sand concrete. Eng. Struct. 2019, 195, 182–199. [Google Scholar] [CrossRef]
- Raman, S.N.; Ngo, T.; Mendis, P.; Mahmud, H. High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand. Constr. Build. Mater. 2011, 25, 3123–3130. [Google Scholar] [CrossRef]
- Pilegis, M.; Gardner, D.; Lark, R. An investigation into the use of manufactured sand as a 100% replacement for fine aggregate in concrete. Materials 2016, 9, 440. [Google Scholar] [CrossRef]
- Yang, R.; Yu, R.; Shui, Z.; Guo, C.; Wu, S.; Gao, X.; Peng, S. The physical and chemical impact of manufactured sand as a partial replacement material in ultra-high performance concrete (uhpc). Cem. Concr. Compos. 2019, 99, 203–213. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Application of the csh phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry. Materials 2021, 14, 6514. [Google Scholar] [CrossRef]
- Golewski, G.L.; Gil, D.M. Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing. Materials 2021, 14, 319. [Google Scholar] [CrossRef]
- Suchorab, Z.; Franus, M.; Barnat-Hunek, D. Properties of fibrous concrete made with plastic optical fibers from e-waste. Materials 2020, 13, 2414. [Google Scholar] [CrossRef]
- Kováčik, J.; Marsavina, L.; Linul, E. Poisson’s ratio of closed-cell aluminium foams. Materials 2018, 11, 1904. [Google Scholar] [CrossRef]
- ASTM C. 1602/C 1602m-18 Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Wang, Y.; Zhang, S.; Niu, D.; Su, L.; Luo, D. Effects of silica fume and blast furnace slag on the mechanical properties and chloride ion distribution of coral aggregate concrete. Constr. Build. Mater. 2019, 214, 648–658. [Google Scholar] [CrossRef]
- Singh, S.; Nagar, R.; Agrawal, V. A review on properties of sustainable concrete using granite dust as replacement for river sand. J. Clean. Prod. 2016, 126, 74–87. [Google Scholar] [CrossRef]
- Joudi-Bahri, I.; Lecomte, A.; Ouezdou, M.B.; Achour, T. Use of limestone sands and fillers in concrete without superplasticizer. Cem. Concr. Compos. 2012, 34, 771–780. [Google Scholar] [CrossRef]
- Ahn, H.J.; Lee, J. Short-term evaluation of crack sealing and filling. Constr. Build. Mater. 2016, 113, 843–850. [Google Scholar] [CrossRef]
- Ji, T.; Chen, C.-Y.; Zhuang, Y.-Z.; Chen, J.-F. A mix proportion design method of manufactured sand concrete based on minimum paste theory. Constr. Build. Mater. 2013, 44, 422–426. [Google Scholar] [CrossRef]
- Zhao, S.B.; Ding, X.X.; Li, C.Y. Bond-slip relation of plain steel bar in concrete with machine-made sand. Appl. Mech. Mater. 2012, 238, 142–146. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Zhou, M. Effect of limestone fines content in manufactured sand on durability of low-and high-strength concretes. Constr. Build. Mater. 2009, 23, 2846–2850. [Google Scholar] [CrossRef]
- Guan, M.; Lai, Z.; Xiao, Q.; Du, H.; Zhang, K. Bond behavior of concrete-filled steel tube columns using manufactured sand (ms-cft). Eng. Struct. 2019, 187, 199–208. [Google Scholar] [CrossRef]
- Shen, W.; Liu, Y.; Wang, Z.; Cao, L.; Wu, D.; Wang, Y.; Ji, X. Influence of manufactured sand’s characteristics on its concrete performance. Constr. Build. Mater. 2018, 172, 574–583. [Google Scholar] [CrossRef]
- Li, B.; Ke, G.; Zhou, M. Influence of manufactured sand characteristics on strength and abrasion resistance of pavement cement concrete. Constr. Build. Mater. 2011, 25, 3849–3853. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Kontoni, D.-P.N.; Ebid, A.M.; Dabbaghi, F.; Soleymani, A.; Jahangir, H.; Nehdi, M.L. Multi-objective optimization of sustainable concrete containing fly ash based on environmental and mechanical considerations. Buildings 2022, 12, 948. [Google Scholar] [CrossRef]
- Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H. Machine learning in concrete strength simulations: Multi-nation data analytics. Constr. Build. Mater. 2014, 73, 771–780. [Google Scholar] [CrossRef]
- DeRousseau, M.; Laftchiev, E.; Kasprzyk, J.; Rajagopalan, B.; Srubar, W., III. A comparison of machine learning methods for predicting the compressive strength of field-placed concrete. Constr. Build. Mater. 2019, 228, 116661. [Google Scholar] [CrossRef]
- Ly, H.-B.; Pham, B.T.; Dao, D.V.; Le, V.M.; Le, L.M.; Le, T.-T. Improvement of anfis model for prediction of compressive strength of manufactured sand concrete. Appl. Sci. 2019, 9, 3841. [Google Scholar] [CrossRef]
- Dao, D.V.; Trinh, S.H.; Ly, H.-B.; Pham, B.T. Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Appl. Sci. 2019, 9, 1113. [Google Scholar] [CrossRef]
- Feng, D.-C.; Liu, Z.-T.; Wang, X.-D.; Chen, Y.; Chang, J.-Q.; Wei, D.-F.; Jiang, Z.-M. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020, 230, 117000. [Google Scholar] [CrossRef]
- Duan, Z.-H.; Kou, S.-C.; Poon, C.-S. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr. Build. Mater. 2013, 40, 1200–1206. [Google Scholar] [CrossRef]
- Biswas, R.; Samui, P.; Rai, B. Determination of compressive strength using relevance vector machine and emotional neural network. Asian J. Civ. Eng. 2019, 20, 1109–1118. [Google Scholar] [CrossRef]
- Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear svm prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. Available online: https://www.sciencedirect.com/science/article/pii/S0950061819324638 (accessed on 14 June 2022). [CrossRef]
- Ren, Q.; Ding, L.; Dai, X.; Jiang, Z.; de Schutter, G. Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method. J. Mater. Civ. Eng. 2021, 33, 04021135. [Google Scholar] [CrossRef]
- Sarıdemir, M. Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming. Expert Syst. Appl. 2011, 38, 14257–14268. [Google Scholar] [CrossRef]
- Özcan, F. Gene expression programming based formulations for splitting tensile strength of concrete. Constr. Build. Mater. 2012, 26, 404–410. [Google Scholar] [CrossRef]
- Nazari, A.; Azimzadegan, T. Prediction the effects of zno2 nanoparticles on splitting tensile strength and water absorption of high strength concrete. Mater. Res. 2012, 15, 440–454. [Google Scholar] [CrossRef]
- Severcan, M.H. Prediction of splitting tensile strength from the compressive strength of concrete using gep. Neural Comput. Appl. 2012, 21, 1937–1945. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.; Ding, X.; Zhao, M.; Li, C.; Pei, S. Dataset of tensile strength development of concrete with manufactured sand. Data Brief 2017, 11, 469–472. [Google Scholar] [CrossRef]
- Ding, X.; Li, C.; Xu, Y.; Li, F.; Zhao, S. Dataset of long-term compressive strength of concrete with manufactured sand. Data Brief 2016, 6, 959–964. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, X.; Zhao, M.; Li, C.; Pei, S. Experimental study on tensile strength development of concrete with manufactured sand. Constr. Build. Mater. 2017, 138, 247–253. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, X.; Li, C. Method of mix proportion design for concrete with machine-made sand. In Proceedings of the 2011 International Conference on Transportation, Mechanical and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011. [Google Scholar]
- Koza, J. On the Programming of Computersby Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Khan, K.; Salami, B.A.; Iqbal, M.; Amin, M.N.; Ahmed, F.; Jalal, F.E. Compressive strength estimation of fly ash/slag based green concrete by deploying artificial intelligence models. Materials 2022, 15, 3722. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, D.; Jalal, F.E.; Javed, M.F. Computational ai prediction models for residual tensile strength of gfrp bars aged in the alkaline concrete environment. Ocean. Eng. 2021, 232, 109134. Available online: https://www.sciencedirect.com/science/article/pii/S0029801821005680 (accessed on 17 June 2022). [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Khan, K.; Iqbal, M.; Napiah, M.B.; Zoorob, S.E.; Klemeš, J.J.; Bokhari, A.; Rafiq, W. Effective use of recycled waste pet in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network. J. Clean. Prod. 2022, 130840. Available online: https://www.sciencedirect.com/science/article/pii/S0959652622004784 (accessed on 17 June 2022). [CrossRef]
- Amin, M.N.; Iqbal, M.; Khan, K.; Qadir, M.G.; Shalabi, F.I.; Jamal, A. Ensemble tree-based approach towards flexural strength prediction of frp reinforced concrete beams. Polymers 2022, 14, 1303. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhao, Q.; Zhang, D.; Jalal, F.E.; Jamal, A. Evaluation of tensile strength degradation of gfrp rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct. 2021, 54, 1–20. [Google Scholar] [CrossRef]
- Amin, M.N.; Iqbal, M.; Jamal, A.; Ullah, S.; Khan, K.; Abu-Arab, A.M.; Al-Ahmad, Q.; Khan, S. Gep tree-based prediction model for interfacial bond strength of externally bonded frp laminates on grooves with concrete prism. Polymers 2022, 14, 2016. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Javed, M.F.; Jamhiri, B. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: Ann, anfis and gep. J. Environ. Manag. 2021, 289, 112420. [Google Scholar] [CrossRef]
- Bardhan, A.; Kardani, N.; GuhaRay, A.; Burman, A.; Samui, P.; Zhang, Y. Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment. J. Rock Mech. Geotech. Eng. 2021, 13, 1398–1412. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Javed, M.F.; Rauf, M.; Azim, I.; Ashraf, M.; Yang, J.; Liu, Q.-F. Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Sci. Total Environ. 2021, 780, 146524. [Google Scholar] [CrossRef]
- Faradonbeh, R.S.; Hasanipanah, M.; Amnieh, H.B.; Armaghani, D.J.; Monjezi, M. Development of gp and gep models to estimate an environmental issue induced by blasting operation. Environ. Monit. Assess. 2018, 190, 351. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, H.; Song, C.; Wang, Z. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement 2022, 194, 110993. [Google Scholar] [CrossRef]
- Ali Khan, M.; Zafar, A.; Akbar, A.; Javed, M.F.; Mosavi, A. Application of gene expression programming (gep) for the prediction of compressive strength of geopolymer concrete. Materials 2021, 14, 1106. [Google Scholar] [CrossRef]
- Iqbal, M.; Onyelowe, K.C.; Jalal, F.E. Smart computing models of california bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multiscale Multidiscip. Modeling Exp. Des. 2021, 4, 207–225. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Iqbal, M.F.; Javed, M.F.; Nazar, S.; Wang, F.; Liu, Q.-F. Semi-analytical model for compressive arch action capacity of rc frame structures. Structures 2020, 27, 1231–1245. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Iqbal, M.; Jalal, F.E.; Onyia, M.E.; Onuoha, I.C. Application of 3-algorithm ann programming to predict the strength performance of hydrated-lime activated rice husk ash treated soil. Multiscale Multidiscip. Model. Exp. Des. 2021, 4, 259–274. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed, M.F. Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp. Geotech. 2021, 30, 100608. Available online: https://www.sciencedirect.com/science/article/pii/S2214391221000982 (accessed on 17 June 2022). [CrossRef]
- Azim, I.; Yang, J.; Javed, M.F.; Iqbal, M.F.; Mahmood, Z.; Wang, F.; Liu, Q.-F. Prediction model for compressive arch action capacity of rc frame structures under column removal scenario using gene expression programming. Structures 2020, 25, 212–228. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Iqbal, M.F.; Mahmood, Z.; Javed, M.F.; Wang, F.; Liu, Q.-F. Prediction of catenary action capacity of rc beam-column substructures under a missing column scenario using evolutionary algorithm. KSCE J. Civ. Eng. 2021, 25, 891–905. [Google Scholar] [CrossRef]
- Liu, Q.-F.; Iqbal, M.F.; Yang, J.; Lu, X.-Y.; Zhang, P.; Rauf, M. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Constr. Build. Mater. 2020, 268, 121082. [Google Scholar] [CrossRef]
- Hanandeh, S.; Ardah, A.; Abu-Farsakh, M. Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula. Transp. Geotech. 2020, 24, 100358. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, Q.-f.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef]
- Popovics, S.; Ujhelyi, J. Contribution to the concrete strength versus water-cement ratio relationship. J. Mater. Civ. Eng. 2008, 20, 459–463. [Google Scholar] [CrossRef]
- Yaşar, E.; Erdoğan, Y.; Kılıç, A. Effect of limestone aggregate type and water–cement ratio on concrete strength. Mater. Lett. 2004, 58, 772–777. [Google Scholar] [CrossRef]
Descriptive Statistics | fce (MPa) | fct (MPa) | T (Day) | Dmax (mm) | SPC (%) | FM | w/b | w/c | W (kg/m3) | S (%) | Slp (mm) | Compressive Strength fc’ (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 48.34 | 8.26 | 82.11 | 31.37 | 7.79 | 3.06 | 0.43 | 0.47 | 172.68 | 36.74 | 87.79 | 54.24 |
Standard Error | 0.23 | 0.03 | 6.18 | 0.73 | 0.28 | 0.02 | 0.01 | 0.00 | 1.26 | 0.26 | 3.65 | 0.96 |
Median | 46.80 | 8.00 | 28.00 | 31.50 | 7.00 | 3.19 | 0.45 | 0.45 | 180.00 | 36.00 | 60.00 | 55.40 |
Mode | 46.80 | 8.00 | 28.00 | 31.50 | 13.00 | 3.34 | 0.45 | 0.45 | 180.00 | 36.00 | 50.00 | 68.00 |
Standard Deviation | 3.77 | 0.53 | 102.49 | 12.16 | 4.64 | 0.25 | 0.08 | 0.08 | 20.96 | 4.33 | 60.60 | 16.00 |
Sample Variance | 14.20 | 0.28 | 10,504.05 | 147.95 | 21.53 | 0.06 | 0.01 | 0.01 | 439.22 | 18.73 | 3671.81 | 256.00 |
Kurtosis | 0.36 | 0.23 | 1.54 | 11.31 | −0.94 | 0.24 | −0.93 | 0.53 | 6.41 | −0.75 | −0.37 | −0.72 |
Skewness | 0.11 | 0.07 | 1.66 | 3.45 | 0.10 | −0.84 | −0.06 | 0.68 | −0.81 | 0.28 | 0.89 | −0.27 |
Range | 17.00 | 2.50 | 385.00 | 60.00 | 20.00 | 1.04 | 0.31 | 0.36 | 187.00 | 16.00 | 249.00 | 68.80 |
Minimum | 38.20 | 6.90 | 3.00 | 20.00 | 0.00 | 2.30 | 0.25 | 0.31 | 104.00 | 28.00 | 11.00 | 18.40 |
Maximum | 55.20 | 9.40 | 388.00 | 80.00 | 20.00 | 3.34 | 0.56 | 0.67 | 291.00 | 44.00 | 260.00 | 87.20 |
Count | 275 | 275 | 275 | 275 | 275 | 275 | 275 | 275 | 275 | 275 | 275 | 275.00 |
Confidence Level (95.0%) | 0.45 | 0.06 | 12.17 | 1.44 | 0.55 | 0.03 | 0.01 | 0.01 | 2.49 | 0.51 | 7.19 | 1.90 |
fce | fct | T | Dmax | SPC | FM | w/b | w/c | W | S | slp | CS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
fce | 1 | |||||||||||
fct | 0.88 | 1 | ||||||||||
T | −0.26 | −0.33 | 1 | |||||||||
Dmax | 0.20 | −0.04 | 0.01 | 1 | ||||||||
SPC | −0.17 | −0.12 | 0.08 | 0.45 | 1 | |||||||
FM | −0.25 | −0.07 | 0.06 | −0.20 | −0.08 | 1 | ||||||
w/b | −0.13 | −0.05 | 0.10 | 0.30 | 0.46 | 0.23 | 1 | |||||
w/c | 0.22 | 0.06 | −0.02 | 0.63 | 0.27 | −0.15 | 0.74 | 1 | ||||
W | −0.34 | −0.12 | 0.13 | −0.61 | −0.04 | 0.35 | 0.12 | −0.41 | 1 | |||
S | −0.03 | −0.03 | 0.09 | −0.37 | −0.22 | −0.04 | 0.42 | 0.36 | 0.21 | 1 | ||
slp | 0.06 | 0.08 | 0.02 | −0.27 | −0.37 | −0.06 | −0.19 | −0.03 | −0.10 | 0.29 | 1 | |
CS | −0.14 | −0.20 | 0.46 | −0.40 | −0.36 | −0.06 | −0.66 | −0.59 | 0.09 | −0.16 | 0.16 | 1 |
Trial No. | Used Variables | No. of Chromosomes | Head Size | Number of Genes | Constants per Gene | No. of Literals | Program Size | Training Dataset | Validation Dataset | Overall R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Best Fitness | RMSE | MAE | R2 | Best Fitness | RMSE | MAE | R2 | |||||||||
1 | 11 | 30 | 8 | 3 | 10 | 15 | 45 | 167.5 | 4.970 | 3.664 | 0.902 | 144.080 | 5.940 | 4.439 | 0.866 | 0.884 |
2 | 7 | 50 | 8 | 3 | 10 | 13 | 37 | 173.9 | 4.749 | 3.371 | 0.910 | 165.180 | 5.054 | 3.444 | 0.902 | 0.906 |
3 | 9 | 100 | 8 | 3 | 10 | 15 | 37 | 164.0 | 5.098 | 3.839 | 0.897 | 151.070 | 5.619 | 3.856 | 0.879 | 0.888 |
4 | 6 | 150 | 8 | 3 | 10 | 14 | 33 | 155.5 | 5.430 | 3.858 | 0.883 | 146.890 | 5.807 | 4.160 | 0.872 | 0.878 |
5 | 6 | 200 | 8 | 3 | 10 | 13 | 37 | 180.5 | 4.538 | 3.216 | 0.919 | 167.970 | 4.953 | 3.348 | 0.906 | 0.912 |
6 | 6 | 200 | 9 | 3 | 10 | 12 | 39 | 172.6 | 4.793 | 3.532 | 0.909 | 149.420 | 5.692 | 4.079 | 0.878 | 0.894 |
7 | 9 | 200 | 10 | 3 | 10 | 18 | 44 | 161.9 | 5.175 | 3.866 | 0.894 | 125.360 | 6.976 | 4.735 | 0.822 | 0.858 |
8 | 7 | 200 | 11 | 3 | 10 | 18 | 46 | 163.9 | 5.100 | 3.366 | 0.897 | 144.350 | 5.927 | 4.055 | 0.869 | 0.883 |
9 | 9 | 200 | 12 | 3 | 10 | 18 | 50 | 163.5 | 5.114 | 3.777 | 0.896 | 146.180 | 5.840 | 4.158 | 0.870 | 0.883 |
10 | 7 | 200 | 8 | 4 | 10 | 21 | 55 | 171.5 | 4.830 | 3.456 | 0.907 | 147.920 | 5.760 | 3.845 | 0.875 | 0.891 |
11 | 9 | 200 | 8 | 5 | 10 | 22 | 64 | 191.3 | 4.226 | 3.054 | 0.929 | 149.470 | 5.689 | 3.960 | 0.877 | 0.903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Salami, B.A.; Jamal, A.; Amin, M.N.; Usman, M.; Al-Faiad, M.A.; Abu-Arab, A.M.; Iqbal, M. Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model. Materials 2022, 15, 5823. https://doi.org/10.3390/ma15175823
Khan K, Salami BA, Jamal A, Amin MN, Usman M, Al-Faiad MA, Abu-Arab AM, Iqbal M. Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model. Materials. 2022; 15(17):5823. https://doi.org/10.3390/ma15175823
Chicago/Turabian StyleKhan, Kaffayatullah, Babatunde Abiodun Salami, Arshad Jamal, Muhammad Nasir Amin, Muhammad Usman, Majdi Adel Al-Faiad, Abdullah M. Abu-Arab, and Mudassir Iqbal. 2022. "Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model" Materials 15, no. 17: 5823. https://doi.org/10.3390/ma15175823
APA StyleKhan, K., Salami, B. A., Jamal, A., Amin, M. N., Usman, M., Al-Faiad, M. A., Abu-Arab, A. M., & Iqbal, M. (2022). Prediction Models for Estimating Compressive Strength of Concrete Made of Manufactured Sand Using Gene Expression Programming Model. Materials, 15(17), 5823. https://doi.org/10.3390/ma15175823