A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of PAA
2.3. Preparation of Spinning Solution
2.4. Preparation of Electrospun Nanofiber Films (ENFs)
2.5. Preparation of ECNFs
2.6. Characterization
2.7. Conductivity Measurements
3. Results and Discussion
3.1. Characterization
3.2. Conductivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Wachsman, E.D.; Lee, K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, S.T.; Cao, R.G.; Choi, N.S.; Liu, M.L.; Lee, K.T.; Cho, J. Metal-air batteries with high energy density: Li-Air versus Zn-Air. Adv. Energy Mater. 2011, 1, 34–50. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, Y.; Baek, J.B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef]
- Yu, D.; Xue, Y.; Dai, L. Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 2012, 3, 2863–2870. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Xu, X.X.; Hu, B.C.; Liang, H.W.; Lin, Y.; Chen, L.F.; Yu, S.H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. Int. Ed. 2015, 54, 8179–8183. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, D.; Feng, X.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 2010, 49, 2565–2569. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, L.J.; Xu, Z.; Yan, D.Y.; Xiao, G.Y. Hierarchically porous carbons fabricated by dual pore-forming approach for the oxygen reduction reaction. Carbon 2022, 189, 634–641. [Google Scholar] [CrossRef]
- Jiang, H.; Gu, J.X.; Zheng, X.S.; Liu, M.; Qiu, X.Q.; Wang, L.B.; Li, W.Z.; Chen, Z.F.; Ji, X.B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energ. Environ. Sci. 2019, 12, 322–333. [Google Scholar] [CrossRef]
- Yang, D.S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130. [Google Scholar] [CrossRef]
- Yeh, M.H.; Leu, Y.A.; Chiang, W.H.; Li, Y.S.; Chen, G.L.; Li, T.J.; Chang, L.Y.; Lin, L.Y.; Lin, J.J.; Ho, K.C. Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells Heteroatom doping level effect on tri-iodide reduction reaction. J. Power Sources 2018, 375, 29–36. [Google Scholar] [CrossRef]
- Li, W.Q.; Yang, D.G.; Chen, H.B.; Gao, Y.; Li, H.M. Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochim. Acta 2015, 165, 191–197. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, J.X.; Jia, J.C.; Hu, X.; Yang, H.J.; Jia, M.L.; Wen, Z.H. The fluorine-doped and defects engineered carbon nanosheets as advanced electrocatalysts for oxygen electroreduction. Appl. Catal. B 2021, 284, 119721. [Google Scholar] [CrossRef]
- Cao, S.; Shang, W.Z.; Li, G.L.; Lu, Z.F.; Wang, X.; Yan, Y.; Hao, C.; Wang, S.L.; Sun, G.Q. Defect-rich and metal-free N, S co-doped 3D interconnected mesoporous carbon material as an advanced electrocatalyst towards oxygen reduction reaction. Carbon 2021, 184, 127–135. [Google Scholar] [CrossRef]
- Liu, S.; Wang, G.F.; Wang, Z.G. Study of the conductivity of nitrogen doped tetrahedral amorphous carbon films. J. Non-Cryst. Solids 2007, 353, 2796–2798. [Google Scholar] [CrossRef]
- Suslova, E.V.; Arkhipova, E.A.; Kalashnik, A.V.; Ivanov, A.S.; Savilov, S.V.; Xia, J.; Lunin, V.V. Effect of the functionalization of nitrogen-doped carbon nanotubes on electrical conductivity. Russ. J. Phys. Chem. A 2019, 93, 1952–1956. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Y.; Xu, Z.L.; Abouali, S.; Akbari, M.; He, Y.B.; Kang, F.; Kim, J.K. Correlation between atomic structure and electrochemical performance of anodes. Adv. Energy Mater. 2014, 4, 1301448. [Google Scholar] [CrossRef]
- Yang, K.S.; Edie, D.D.; Lim, D.Y.; Kim, Y.M.; Choi, Y.O. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon 2003, 41, 2039–2046. [Google Scholar] [CrossRef]
- Inagaki, M.; Ohta, N.; Hishiyama, Y. Aromatic polyimides as carbon precursors. Carbon 2013, 61, 1–21. [Google Scholar] [CrossRef]
- Kim, C.; Choi, Y.O.; Lee, W.J.; Yang, K.S. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim. Acta 2004, 50, 883–887. [Google Scholar] [CrossRef]
- Yan, H.; Mahanta, N.K.; Wang, B.J.; Wang, S.S.; Abramson, A.R.; Cakmak, M. Structural evolution in graphitization of nanofibers and mats from electrospun polyimide–mesophase pitch blends. Carbon 2014, 71, 303–318. [Google Scholar] [CrossRef]
- Mani, D.; Shanmugam, R.; Srinivasan, V.; Kothurkar, N.K.; Rangarajan, M.; Raju, V. Carbonization of electrospun polyimidef-multiwalled carbon nanotubes nanofiber webs by RF-induction heating. Nanosci. Nanotechnol. Lett. 2015, 7, 521–528. [Google Scholar] [CrossRef]
- Kim, C.; Cho, Y.J.; Yun, W.Y.; Ngoc, B.T.N.; Yang, K.S.; Chang, D.R.; Lee, J.W.; Kojima, M.; Kim, Y.A.; Endo, M. Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Commun. 2007, 142, 20–23. [Google Scholar] [CrossRef]
- Ishii, S.; Okutsu, T.; Ueda, S.; Takano, Y. Transport properties of multi-walled carbon nanotubes grown by boron addition method. Phys. Stat. Sol. C 2008, 5, 31–34. [Google Scholar] [CrossRef]
- Wen, Y.; Lu, Y.G.; Xiao, H.; Qin, X.Y. Further investigation on boric acid catalytic graphitization of polyacrylonitrile carbon fibers Mechanism and mechanical properties. Mater. Des. 2012, 36, 728–734. [Google Scholar] [CrossRef]
- Chang, J.J.; He, M.; Niu, H.Q.; Sui, G.; Wu, D.Z. Structures and properties of polyimidepolyacrylonitrile blend fibers during stabilization process. Polymer 2016, 89, 102–111. [Google Scholar] [CrossRef]
- Duan, G.; Fang, H.; Huang, C.; Jiang, S.H.; Hou, H.G. Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J. Mater. Sci. 2018, 53, 15096–15106. [Google Scholar] [CrossRef]
- Asensio, J.A.; Borro’S, S.; Gomen-Romero, P. Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. Inc. J. Polym. Sci. A Polym. Chem. 2002, 40, 3703–3710. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.F.; He, R.H.; Berg, R.W.; Hjuler, H.A.; Bjerrum, N.J. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion. 2004, 168, 177–185. [Google Scholar] [CrossRef]
- Arai, Y.J.; Sparks, D.L. ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interface Sci. 2001, 241, 317–326. [Google Scholar] [CrossRef]
- Zhou, Z.P.; Liu, K.M.; Lai, C.L.; Zhang, L.F.; Li, J.H.; Hou, H.Q.; Reneker, D.H.; Fong, H. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 2010, 51, 2360–2367. [Google Scholar] [CrossRef]
- Kuznetsov, A.A.; Tsegelskaya, A.Y.; Belov, M.Y.; Berendyaev, V.I.; Lavrov, S.V.; Semenova, G.K.; Izyumnikov, A.L.; Kozlova, N.V.; Kotov, B.V. Acid-catalyzed reactions in polyimide synthesis. Macromol. Symp. 1998, 128, 203–219. [Google Scholar] [CrossRef]
- Suarez-Garci, F.; Villar-Rodil, S.; Blanco, C.G.; Martinez-Alonso, A.; Tascon, J.M.D. Effect of phosphoric acid on chemical transformations during nomex pyrolysis. Chem. Mater. 2004, 16, 2639–2647. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 2000, 87, 4531–4547. [Google Scholar] [CrossRef]
- Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192. [Google Scholar] [CrossRef]
- Tan, H.B.; Zhao, Y.J.; Xia, W.; Zhao, J.C.; Xu, X.T.; Wood, K.; Sugahara, Y.; Yamauchi, Y.; Tang, J. Phosphorus- and Nitrogen-doped carbon nanosheets constructed with monolayered mesoporous architectures. Chem. Mater. 2020, 32, 4248–4256. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.M.; Wang, K.L.; Jin, Q.Z.; Lai, C.L.; Wang, R.X.; Cao, S.L.; Han, J.; Zhang, Z.C.; Su, J.Z.; et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater. 2021, 11, 2003911. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Socha, R.P.; Gurgul, J.; Wisniewski, M. XPS and NMR studies of phosphoric acid activated carbons. Carbon 2008, 46, 2113–2123. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Morallon, E.; Cazorla-Amoros, D. On the deactivation of N-doped carbon materials active sites during oxygen reduction reaction. Carbon 2022, 189, 548–560. [Google Scholar] [CrossRef]
- Lai, L.F.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.H.; Gong, H.; Shen, Z.X.; Lin, J.Y.; Ruoff, R.S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar] [CrossRef]
- Ning, X.M.; Li, Y.H.; Ming, J.Y.; Wang, Q.; Wang, H.J.; Cao, Y.H.; Peng, F.; Yang, Y.H.; Yu, H. Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem. Sci. 2019, 10, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.R.; Zhang, H.M.; Liu, S.W.; Zhang, X.; Wu, T.X.; Ge, X.; Zang, Y.P.; Zhao, H.J.; Wang, G.Z. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 4095–4101. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Han, N.K.; Ryu, J.H.; Park, D.U.; Choi, J.H.; Jeong, Y.G. Fabrication and electrochemical characterization of polyimide-derived carbon nanofibers for self-standing supercapacitor electrode materials. J. Appl. Polym. Sci. 2019, 136, 47846. [Google Scholar] [CrossRef]
Tp,I/°C (Imidization) | Ti,C/°C (Cyclization) | Tp,C/°C (Cyclization) | |
---|---|---|---|
ENFs-0 | 209 | 309 | 339 |
ENFs-15 | 187 | 278 | 310 |
ENFs-30 | 175 | 268 | 300 |
Atomic Concentration % | ||||
---|---|---|---|---|
C 1s | N 1s | O 1s | P 2p | |
ENFs-0 | 90.12 | 4.06 | 5.82 | - |
ENFs-15 | 88.40 | 4.33 | 6.29 | 0.98 |
ENFs-30 | 88.36 | 4.69 | 5.97 | 0.98 |
ENFs-0 | ENFs-15 | ENFs-30 | ||||
---|---|---|---|---|---|---|
Position (eV) | At. (%) | Position (eV) | At. (%) | Position (eV) | At. (%) | |
N 1s | 389.2 | 0.77 | 398.2 | 0.56 | 398.5 | 0.77 |
400.7 | 1.94 | 400.9 | 2.85 | 400.8 | 3.16 | |
402.4 | 1.35 | 402.4 | 0.92 | 403.0 | 0.76 | |
P 2p | - | - | 129.6 | 0.07 | 129.6 | 0.17 |
- | - | 132.4 | 0.85 | 132.0 | 0.76 | |
- | - | 134.2 | 0.06 | 136.0 | 0.05 |
2θ/° | d002/nm | Lc/nm | Lc/d002 | SBET/m2·g−1 | |
---|---|---|---|---|---|
ENFs-0 | 25.1 | 0.3542 | 1.54 | 4.35 | 9.1 |
ENFs-15 | 24.4 | 0.3648 | 1.85 | 5.07 | 7.0 |
ENFs-30 | 24.6 | 0.3615 | 1.75 | 4.84 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Chi, Y.; Liu, X.; Xia, X.; Chen, Y.; Xu, J.; Song, Y. A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films. Materials 2022, 15, 5955. https://doi.org/10.3390/ma15175955
Chen T, Chi Y, Liu X, Xia X, Chen Y, Xu J, Song Y. A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films. Materials. 2022; 15(17):5955. https://doi.org/10.3390/ma15175955
Chicago/Turabian StyleChen, Tongzhou, Yongbo Chi, Xingyao Liu, Xiwen Xia, Yousi Chen, Jian Xu, and Yujie Song. 2022. "A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films" Materials 15, no. 17: 5955. https://doi.org/10.3390/ma15175955
APA StyleChen, T., Chi, Y., Liu, X., Xia, X., Chen, Y., Xu, J., & Song, Y. (2022). A Simple Method for Preparation of Highly Conductive Nitrogen/Phosphorus-Doped Carbon Nanofiber Films. Materials, 15(17), 5955. https://doi.org/10.3390/ma15175955