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Abstract: A universal method for modeling and characterizing non-circular particles is developed.
The n-point correlation functions (n = 1, 2 and 3) are efficiently computed with a GPU parallel
computing procedure. An algorithm for dynamic packing of impenetrable non-circular particles is
developed based on the fast estimation of overlap information using a one-point correlation function.
The packing algorithm is independent of particle shape and proved to be reliable by examples of
polygons and super-ellipses. In addition, penetrable packings are generated in an efficient and precise
way. Using a two-point correlation function, these non-circular packs are accurately characterized
and compared in terms of features such as penetrable and impenetrable, packing fraction and particle
shape. In addition, three-point correlation functions are also illustrated and discussed.

Keywords: non-circular particle; n-point correlation function; dynamic packing; inter-particle over-
lapping; microstructure characterization

1. Introduction

Particulate materials are the most widely used heterogeneous materials in the engi-
neering practice [1]. Typical two-phase composites can be seen as particulate or skeletal
material [2], which can be geometrically considered as impenetrable particle model and
penetrable particle model. Take cementitious materials, for example. Cement paste, mortar
or aggregate can be simulated as two-phase particulate material at different scales [3–6].
The particulate structure can be either a solid phase [7] (impenetrable model) or a porous
phase [8] (penetrable model) accordingly.

1.1. Packing of Particulate Model

Impenetrable particle packing is generally called “packing problem”, the final par-
ticulate structure of which contains no overlap between particles. The target particulate
structure in this paper is that the particles are randomly and discretely distributed, sur-
rounded by the other phase. Therefore, the particulate phase itself is not mechanically
stable. For this kind of packing problem, the algorithm of random sequential addition [9]
(RSA) is the most commonly used method of random static packing based on Monte Carlo
sampling mechanism. RSA refers to a process where particles are randomly and sequen-
tially introduced into a system without overlap to the previous ones. It is a fundamental
method for particle packing. However, in the final stage, the elapsed time is unpredictable,
and it also has a relatively low “saturated” packing fraction, especially for mono-size
particles. i.e., the packing fraction of a saturated random packing for spheres was found to
be φ = 0.382 [10] and for disks φ = 0.547. To obtain a higher packing fraction, an optimized
packing approach is often used in modeling the particulate system [11–18]; most of these
works are based on mathematical modeling of the relations between geometric objects and
thus reduce the optimal packing problem to a nonlinear programming problem. However,
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the objective of this approach is to obtain the densest packing system, regardless of consider-
ing the real physical movements of particles. There are varieties of packing algorithms that
include particle movement and also get a relatively high packing structure, for example,
the Discrete Element Method (DEM) [19], the Molecular Dynamics method (MD) [20], the
Relaxation Iteration algorithm (RI) [7,21], etc. Compared with other methods, the DEM is
able to simulate the real motion of the particles with forces and torques and provides an
explicit means of the time-dependent process of the microstructure evolution process.

Penetrable packing models are easy to generate because neither overlap detection
nor particle motion is involved. It can be generated similar to the RSA method without
overlapping detection. Based on probability theory, the particle number is pre-calculated
according to the targeted packing fraction. However, the resultant packing fraction always
fluctuates due to the limited size of system. Percolation thresholds are studied by repeatedly
generating the penetrable particles as the porous phase [5,22–24], however, the real porosity
was not calculated and controlled due to computation cost.

1.2. Overlap Determination for Non-Circular Particles

Particle shape is one of the most important factors that determine the macroscopic
properties. In recent years, researchers have extended their attention to non-spherical
particles, including 2D and 3D, i.e., ellipses/ellipsoids, super-ellipses/super-quadrics,
polygons/polyhedrons, composite particles, discretized particles, etc. The DEM origi-
nally developed by Cundall and Strack [19] has been used worldwide to study many
different shaped particles. In this method, the overlap between particles is considered
to represent the particle deformations, which is used to estimate the elastic, plastic and
frictional contact forces between particles. Contact detection and overlap determination
for disks/spheres are simple and efficient. However, for non-spherical particles, both the
contact detection and the overlap determination are complicated, highly dependent on the
specific shape characteristic.

As reviewed in [25,26], composite particles and discretized particles are all able to
simulate any non-spherical particles, or any shape theoretically. However, the resolution of
these two methods is dependent on the number of units. In practice, it is computationally
expensive if we use these two methods to build a well approximated shape. A combi-
nation of super-ellipses/super-quadrics and polygons/polyhedrons represents most of
the common non-circular/non-spherical particles. Contact detection between particles for
these models was well solved by the geometric potential method [27] and the separation
axis theorem [28], respectively. Once two particles are confirmed to contact, the following
step is to determine the overlap information, including the overlap magnitude, the action
point and the normal direction. However, none of these features can be readily defined
and obtained by a unified approach due to lack of sound contact theories. Many existing
contact models specify the features independently, as we summarized in Table 1.

Table 1. Selected methods on overlap determination of non-spherical particles.

Method Model Magnitude Action Point Normal Direction

Intersection [29,30] Ellipse Distance Midpoint of
intersection line

Perpendicular to the
intersection line

Geometric potential [31–33] Super-ellipse
Super-quadric Distance

Midpoint of two points
with lowest

geometric potential

Connecting two points
with lowest

geometric potential

Common normal [34,35] Super-quadric Distance
Midpoint of two

surface points sharing a
common normal

Connecting two points
sharing a common normal

Intersection [36] Polygon Distance Midpoint of
intersection line

Perpendicular to the
intersection line
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Table 1. Cont.

Method Model Magnitude Action Point Normal Direction

Energy-based normal contact
model [37] Polygon Area

Midpoint of two
intersecting points for
corner-corner contact

A direction that can
decrease the contact energy

with maximum rate

Intersection [38,39] Polyhedron Volume Centroid of
overlap volume

Perpendicular to the plane
that is taken as the

least-squares fit of hull
intersection curve

Inner potential
particles [40,41]

Polygon
Polyhedron Distance Analytic center of

linear inequalities
Gradient vector of an inner

potential particle

Orientation discretization
database solution [42]

Polygon, Ellipse,
Ellipsoid and others.

Area(2D)
Volume(3D)

Average of centers of
overlap cells

Averaged normal vector of
the cell at the surface of

the particle

1.3. Characterization of Packs

The particulate system is typically described by various statistical descriptors. Over
the past several decades, various descriptors have been proposed to characterize the struc-
ture. Among them, the n-point correlation functions are able to encompass all the details of
the particulate structure [43]. The most common correlation function to characterize partic-
ulate structure is the one-point correlation function, also known as the packing fraction in a
physical perspective, or the area fraction in 2D and the volume fraction in 3D. Although it
is the simplest correlation function, many well-known bounds and prediction models con-
tain only this sole information: for example, the Hashin–Shtirkman (H-S) bounds [44,45],
the Mori–Tanaka model [46], the Maxwell–Wagner model [47] and so on. Higher-order
bounds for effective permittivity with higher-order correlation functions were derived by
Beran [48] and simplified by Torquato [49] and Miltion [50], respectively. Compared with
the Hashin–Shtirkman bounds, these higher order bounds added a microstructural parame-
ter ζ. Beran and Molneux [51], McCoy [52] and Milton and Phan-Thien [53] derived higher
order bounds for effective shear and bulk moduli with an additional microstructural pa-
rameter η. Both ζ and η are triple integrals involving one-, two- and three-point correlation
functions, which means that these higher-order bounds contain far more microstructural
information than lower-order bounds such as H-S bounds, and enable one to characterize
the microstructure more accurately [54].

1.4. A Universal Method for Modeling and Characterizing

In this paper, one-, two- and three-point correlation functions are computed accurately
with the GPU-based parallel method. The one-point correlation function is the probability
of finding a given phase at any location. For a particulate system, it can be calculated
by judging all points’ location. This process is highly parallelizable, so the GPU-based
parallel method will increase the computing speed dramatically. With the advantage
of a highly efficient calculation of the one-point correlation function, a novel method is
introduced to estimate the comprehensive overlap information between two particles
in the dynamic packing of impenetrable particles. This method is described in detail
in non-circular models, polygons and super-ellipses. The polygons are composed of
vertices and have a unique characteristic of shape corners, while the super-ellipse model
is described by a quadric curve, |x/a|2m + |y/b|2m = 1, where m is the shape parameter
characterizing the geometries, a and b are semiaxes. In addition, a penetrable particle
model with a precise packing fraction can be obtained with high efficiency. The two-point
correlation functions are mainly used to characterize the generated packs because the
function curves can be directly compared. The three-point correlation functions are also
illustrated in characterization.
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2. Method Description
2.1. Impenetrable Packing Model
2.1.1. Governing Equations

As a well-established dynamic packing method, the DEM has been successfully ap-
plied in modeling non-circular/non-spherical particle [25,26,55]. The DEM provides us
with an effective way to simulate and analyze the movement of a particulate system; thus,
the basic principle of the DEM is utilized in this paper. In the DEM, any particle can have
two types of motion: translational and rotational, which are determined by Newton’s
second law of motion as given below:

mi
dvi
dt

=
kc

∑
j=1

(
Fn,ij + Ft,ij

)
, (1)

Ii
dωi
dt

=
kc

∑
j=1

(
Mn,ij + Mt,ij

)
. (2)

where mi, Ii, vi and ωi are the mass, inertia, translational and angular velocities of particle i,
respectively, and kc is the number of particles in collision with the particle. As our targeted
particulate structure is that the particles are all randomly and discretely distributed, thus in
the dynamic packing process, gravity is not considered. The forces considered in this paper
are normal force Fn,ij and tangential force Ft,ij. The torques acting on particle i by particle j
are consisted of two parts: Mn,ij, generated by the normal force, and Mt,ij, generated by the
tangential force that caused particle i to rotate. In addition, the normal force Fn,ij are also
consisted of two parts: the normal elastic force Fcn,ij and the viscous damping force Fdn,ij,
and the Fdn,ij is used to dissipates the energy of the system.

Fn,ij = Fcn,ij + Fdn,ij, (3)

Similarly, the tangential force Ft,ij consists of the tangential elastic force Fct,ij and the
tangential damping force Fdt,ij,

Ft,ij = Fct,ij + Fdt,ij. (4)

According to Coulomb’s law, Ft,ij = min
{(

Fct,ij + Fdt,ij

)
, µ
∣∣Fn,ij

∣∣}, where µ is the
sliding friction coefficient. The equations used to calculate the particle-particle interaction
forces and torques are listed in Table 2.

Table 2. Components of forces and torques acting on particle.

Forces and Torques Symbols Equations

Normal elastic force Fcn,ij −kn,ijδn,ijnij

Normal damping force Fdn,ij −γn

(
vij·nij

)
·nij

Tangential elastic force Fct,ij −kt,ijδt,ijtij

(∣∣∣Ft,ij

∣∣∣ ≤ µ
∣∣∣Fn,ij

∣∣∣)
Tangential damping force Fdt,ij −γt

(
vij·tij

)
·tij

(∣∣∣Ft,ij

∣∣∣ ≤ µ
∣∣∣Fn,ij

∣∣∣)
Coulomb friction force ft,ij −µ

∣∣∣Fn,ij

∣∣∣·tij

(∣∣∣Ft,ij

∣∣∣ > µ
∣∣∣Fn,ij

∣∣∣)
Torque by normal force Mn,ij Rc,ij ×

(
Fcn,ij + Fdn,ij

)
Torque by tangential force Mt,ij Rc,ij ×

(
Fct,ij + Fdt,ij

)

For symbols in this table, k and γ are the spring coefficient and viscous damping
coefficient for the contact model, respectively, and the subscripts of n or t indicate the
variables are in the normal or tangential directions. They are assumed to be constants
during the collisions of particles.
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As summarized above in Table 1, for different models, methods of determining overlap
information varied considerably. The orientation discretization database solution [42]
almost provides a universal method for the different shaped particles, but the databases
take time to build and not suitable for many different shapes. Another approach to describe
a particle of arbitrary shape is digitization [56], which will take a huge computational effort
if accurate results are ensured. We propose a new way of determining overlap information
based on the review above. The key features of overlap information (i.e., magnitude, action
point and normal direction) are listed in Table 3, and the corresponding contact models are
shown in Figure 1.

Table 3. Contact overlap features used in this paper.

Magnitude Action Point Normal Direction

Area (Volume in 3D):
Ratio of sampling points

Centroid:
Average of sample points

Pass the action point and
parallel with the line

connecting two centroids
of particles
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Figure 1. Contact model of non-circular particles: (a) Super-ellipse a/b = 1.5, m = 1.5; (b) Regular triangle.

Based on the features, we determine the normal elastic force. For disks or spheres, the
overlap magnitude is defined as a distance δn,ij = Ri + Rj − Rij. But for non-circular/non-
spherical particles, it is far more effective when using area or volume (in 3D) [55,57].
Hence, we define the overlap magnitude as a function of the overlap area So, which is
δn,ij =

√
2So/π. Thus, the normal elastic force Fcn,ij is defined as:

Fcn,ij = −kn,ij
√

2So/πnij. (5)

According to the real motion of the particle, it is more reasonable to define the normal
damping force Fdn,ij on the basis of the relative velocity vij in the action point pc, which is
calculated according to Figure 2a.

vij = vPc ,j − vPc ,i = vj − vi + ωjRc,ji −ωiRc,ij, (6)

therefore, we obtain the normal damping force,

Fdn,ij = −γn
(
vij·nij

)
·nij. (7)
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Figure 2. (a) Relative velocity vij in the action point pc; (b) Resolution of the relative velocity.

In addition, the tangential elastic force Fct,ij is defined on the basis of the relative
velocity vij and the time step ∆t, and the displacement in the tangential direction is vt,ij·∆t
in a single time step. According to the resolution of the relative velocity in Figure 2b,

Fct,ij = −kt,ijδt,ijtij = −kt,ij
[
vij −

(
vij·nij

)
· nij

]
∆t, (8)

Similarly, the tangential damping force can be defined in the opposite direction,

Fdt,ij = −γt
(
vij·tij

)
·tij = −γt

[
vij −

(
vij·nij

)
· nij

]
. (9)

2.1.2. Determination of Overlap Area

As the one-point correlation function is computed with the GPU parallel method,
the overlap area can be estimated with high efficiency. Once two particles are detected to
overlap, we set a rectangle box to cover them completely, and uniformly generate sampling
points, as can be seen from Figure 3. Then all the sampling points are classified by judging
their locations. The portion of the points that land in both particles, as shown in Figure 3b,
are employed to estimate the overlap information. In this work, the number of the sampling
points is not less than 106 to guarantee the precision. Then we execute the kernels on the
GPU, when a kernel is launched, a grid of threads that are organized in a 3D hierarchy
is generated, with each gird being organized into array of thread blocks, and each block
containing up to 1024 threads. Therefore, all the sampling points are allocated and judged
in millions of threads (i.e., the number of computing cores Nthds = 1024× 1024 in the case
of 2D block and 2D grid). By contrast, each computer has a limited number of CPU cores.
To illustrate the parallel speedup ratio of the GPU to the CPU, we tested the speed of the
one-point correlation function for the packing of a regular pentagon. An ordinary computer
was used, i.e., the CPU is AMD RYZEN 7 3800X, and “GPU” is NVIDIA GeForce RTX 2070.
The results are listed in Table 4.

What is worth mentioning is that all points on the “layer” are also classified into the
overlap region, to guarantee that, as long as two particles collide theoretically, the overlap
will be detected. According to the proportion of points in the overlap region, the overlap
area So is obtained.

For the non-circular/non-spherical model, a reasonable choice of action point should
be the centroid. Under normal circumstances, working out the centroid of the overlapping
area/volume is computationally expensive. However, in our method, the overlap region
consisted of a set of points, the average location of which is exactly the centroid. Therefore,
it can be immediately determined once the overlap points are identified.
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Figure 3. (a) A rectangle box surrounding two overlapping particles; (b) Point sampling details based
on one-point correlation function: the red dots indicate the overlapped ones, and the black dot is
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Table 4. Total consumption times of the CPU and GPU in calculation of one-point correlation function
for packing system of regular pentagon.

Number of Points 105 106 107

tGPU (s) 0.024 s 0.031 s 0.462 s
tCPU (s) 0.482 s 0.625 s 5.972 s

Note: the packing system is closely related to the execution time. In this test, the packing fraction φa = 0.5, total
particle number Np = 254.

2.1.3. Dynamic Packing Scheme

The flowchart of the dynamic packing scheme on non-spherical particles in this work
is shown in Figure 4a.
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Figure 4. An example of dynamic packing super-ellipses (packing fraction of 80%, container = 100 × 100,
Deq = 5, a/b = 1.5 and m = 1.5) and polygon (regular pentagon). (a) Flow chart for the packing
process; (b) Initial state of packing, highly penetrable, particle number Np = 407; (c) Final state of
packing, particle number Np = 451 and 450 (including periodic ones) for super-ellipse and regular
pentagon, respectively.
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We set the initial material parameters including: the particle number, the function
parameters, the mass, moment of inertia, the particle size and direction angles, etc. In
order to eliminate the wall effect, periodic boundary conditions are applied in this paper.
First, we generate the initial packings without the overlapping constraints, as shown in
Figure 4b. Then direct contact detection between the two particles can be conducted by the
geometric potential method and the separation axis theorem for the super-ellipses and the
polygons, respectively. For the determined overlapped particles, we estimate the overlap
area (volume in 3D) and centroid with the GPU-based parallel method. Forces and torques
can be obtained by the equations list above. The positions are calculated by the equations
of motion, which can be integrated by the Verlet scheme [58] as follows:

vi

(
t +

∆t
2

)
= vi

(
t− ∆t

2

)
+

Fi(t)
mi

∆t, (10)

xi(t + ∆t) = xi(t) + vi

(
t +

∆t
2

)
∆t, (11)

ωi

(
t +

∆t
2

)
= ωi

(
t− ∆t

2

)
+

Mi(t)
Ii

∆t, (12)

θi(t + ∆t) = θi(t) + ωi

(
t +

∆t
2

)
∆t. (13)

When the particle information is updated, it goes back to the procedure of contact
detection, until no overlap is detected. Finally, we store all the positions and direction
angles. The results are visualized as Figure 4c.

2.2. Penetrable Packing Model

By using the Poisson limit theorem in statistics, the total inclusion rate for a penetrable
system has the quantitative relationship between the inclusion rate and the inclusion
number [8]. In this paper, these inclusions can be expressed by particles; thus, the packing
fraction φ and the particle number Np have the following relationships when Np = ∞.

φ = 1− e−Np . (14)

Therefore, the penetrable models for the various packing fraction can be generated.
However, as the particle number is limited, the real packing fraction is only an approximate
value, fluctuating around theoretical one. For the continuum percolation models, the pore
phase can be simplified to penetrable particles as the porous phase, and by repeatedly
generating penetrable models, the percolation threshold of different non-spherical models
can be derived. Considering the huge computational cost, the accuracy of the real packing
fraction was not considered. In this work, the penetrable packing models are generated
efficiently with an accurate packing fraction.

The best approach to acquire the real packing fraction is systematic point sampling,
which is equivalent to the one-point correlation function. In our approach, due to the high
efficiency of the one-point correlation function, one can repeatedly generate penetrable
packings and at the same time calculate the real packing faction, until the one within close
tolerance appears. The flowchart of the packing algorithm is shown in Figure 5a.

For example, a penetrable super-ellipse and a regular square with a packing fraction
of 0.8 are generated with different precision, the time elapsed in increasing as upgrading
precision, as shown in Table 5.
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Figure 5. (a) Flowchart of a highly efficient packing with accurate packing fraction; (b) Examples of
penetrable packing models with a packing fraction φ = 0.8 ± e, where the precision e = 10−5. For both
generations, the particle number (Np = 819) is the same because the equivalent diameter Deq is used
for non-circular particles.

Table 5. The relationship between precision and elapsed time.

Precision (−) 10−2 10−3 10−4 10−5

tsuperellipse (s) 0.13 0.78 6.46 43.25
tsquare (s) 0.06 0.21 2.71 18.52

3. n-Point Correlation Functions

The n-point correlation function is a generalized definition of the correlation functions.
The higher-order correlation functions are able to provide more information about the
geometric features of a generation, for example, the standard two-point correlation function,
the three-point correlation function, and various other two-point correlation functions such
as Lineal-Path Function, Chord-Length Density Function, Pore-Size Functions and so on.
In this work, only the standard one-, two- and three-point correlation functions, which are
included in higher-order parameters ζ and η, are concerned.

The n-point correlation function is the probability that the n given points with the
locations x1, x2, . . . , xn will be in the same phase i,

S(i)
n (x1, x2, . . . , xn) = P

{
I(i)(x1) = 1, I(i)(x2) = 1, . . . , I(i)(xn) = 1

}
, (15)

and it can be expressed as the expectation (or average) of the multiplication of the indicator
functions at the n locations,

S(i)
n (x1, x2, . . . , xn) = 〈I(i)(x1)I(i)(x2) · · · I(i)(xn)〉, (16)

where the angular bracket 〈· · · 〉 denotes the expectation or the ensemble average, I(i)

represents indicator function for phase i,

I(i)(x) =
{

1, x ∈ Vi,
0, x ∈ Vi,

(17)
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where Vi is the region occupied by phase i with the packing fraction φi. One can define the
one-, two- and three-point correlation functions when n = 1, 2 and 3:

S(i)
1 (x) = 〈I(i)(x)〉 = P

{
I(i)(x) = 1

}
, (18)

S(i)
2 (x1, x2) = 〈I(i)(x1, x2)〉 = P

{
I(i)(x1) = 1, I(i)(x2) = 1

}
, (19)

S(i)
3 (x1, x2, x3) = 〈I(i)(x1, x2, x3)〉 = P

{
I(i)(x1) = 1, I(i)(x2) = 1, I(i)(x3) = 1

}
. (20)

For example, for a two-phase composite material, the gray phase represents the
“aggregate”, while the white phase is the matrix. Schematic representation of the one-, two-
and three-point correlation functions are shown in Figure 6a. Saa is another form of S(i)

2 (r)
when i represents the aggregate phase. In addition, Smm means that phase i of interest is
the matrix, but there exists another function Sam, which means that one point lands on the
aggregate, and the other point lands in the matrix. Therefore, it is obvious that:

Saa + Smm + Sam = 1 . (21)
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sampling: uniformly arrayed sampling points; (c) Sampling lines and sampling triangles for two-
and three-point correlation function, respectively.

Similarly, Saaa means S(i)
3 (r1, r2, θ) when the phase i of interest is the aggregate. In

this work, particles in the realizations are randomly distributed and the periodic boundary
conditions are considered. It is reasonable to assume all generations are statistically homo-
geneous and isotropic; therefore, these functions can be obtained by the random sampling
technique. These correlation functions can be calculated as follows.

The one-point correlation function Sa can be calculated by systematic point sampling
method, and the points can be generated as both randomly distributed or uniformly arrayed.
Considering the overlap area calculation that was mentioned above and was shown in
Figure 3b, the uniformly arrayed points are used as the sampling points. Moreover, the
number of points in each sampling is 106–108 accordingly.

The two-point correlation function Saa(r) is the probability of the two points at the
phase a. The result of Saa(r) is not a single number, because there is a probability value for
each length r. Theoretically r = [0, ∞], for the purpose of comparison, only the selected
values of r are calculated. For example, if one wants to compute ζ and η, the r value often
started at an extremely small value [54]. In our work, the start point of the segment is
uniformly arrayed, and the end point is determined according to r and a random angle.
The number of sampling lines Nline is chosen 105–107 accordingly. When r = 0 and r = ∞,
the limiting values are obtained:

S(i)
2 (0) = φi, (22)
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lim
r→∞

S(i)
2 (r) = φ2

i . (23)

The three-point correlation function Saaa(r1, r2, θ) is the probability of the three points
at the aggregate phase. The sampling triangle can be determined by r1, r2 and θ. The-
oretically r1, r2 = [0, ∞], θ = [0, π]. Saaa(r1, r2, θ) is not commonly used because it is
computationally expensive. For example, when r1, r2 and θ are all divided into 100 values,
there will be 1003 different patterns of the sampling triangle; for each pattern, the number
of the sampling number N3pt in this work is 105–107 accordingly. In addition, the limiting
values are obtained when r1, r2 → 0 and r1, r2 → ∞, θ 6= 0:

lim
r1,r2→0

S(i)
3 (r1, r2, θ) = φi, (24)

lim
r1,r2→∞,θ 6=0

S(i)
3 (r1, r2, θ) = φ3

i . (25)

4. Discussion

Based on the packing algorithm, the various non-circular packing systems are gen-
erated. The n-point correlation functions describe the probabilities of the different phase
encounters and other geometric features and aim to encompass all details of the packing
system, i.e., the two-point correlation function has been extensively used in the characteri-
zation of short-range information. In what follows, we characterize the packing systems
with the different packing fraction and the particle shape using the two-point correlation
functions. In addition, the three-point correlation function is illustrated and discussed.

4.1. Packing Fraction

We generated the realizations with the packing fraction φa = 0.1 to φa = 0.8 using the
packing method described above in this work. Figure 7a illustrates examples of the gen-
erations for the super-ellipse (a/b, m = 2) with the packing fraction φa = 0.1, 0.4 and 0.8.
Figure 7b correspondingly presents the penetrable ones.
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Figure 7. (a) Examples of impenetrable packs of super-ellipse, a/b = 1, m = 2; (b) Examples of
penetrable packings for super-ellipse, a/b = 1, m = 2; (c) Saa(r) for impenetrable super-ellipse, with
various packing fraction; (d) Saa(r) for penetrable super-ellipse, with various packing fraction.
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The two-point correlation function Saa(r) of the particulate phase for the super-ellipse
with the packing fraction φa = 0.1 ∼ 0.8 is shown in Figure 7c,d. When r = 0, only two
types of the function exist: Saa and Smm, at this time Saa + Smm = 1 which is actually a
one-point correlation function. As r grows, Saa is decreased due to the emergence of Sam.
By comparing Figure 7c,d, we can clearly see that for impenetrable models, the decay of Saa
is faster, and obvious oscillations begin to show up when r ≥ Deq. At that point, the decay
corresponds to their long-ranger values, while the penetrable results did not show clear
oscillations. It is worth noting that when the packing fraction is very low, i.e., φa = 0.1,
Saa results are basically the same for the impenetrable and the penetrable packing models,
because the generations are similar, as shown in Figure 7a. In addition, the speed at which
the fluctuations level off is different for Saa in the impenetrable system.

4.2. Particle Shape

To study the effect of the particle shape of Saa(r), we generated a series of packing
models with the same packing fraction φa = 0.5. For simplicity without loss of generality,
we used the special cases of the super-ellipse. First, we let m = 1, super-ellipse is equivalent
to ellipse, we compared Saa(r) for different aspect ratio κ. Then we let κ = 1, and computed
Saa(r) for the different shape parameter m. The results are shown in Figure 8a, a growing κ
led to a faster decay, and the fluctuations were smaller. There will be an obvious difference
when κ is changing from 1 to 5, while when κ is fixed, as we see in Figure 8b, the overall
pattern of Saa(r) is similar and the slope before first trough of wave is almost identical, but
a visible difference appears near the first peak of wave.

Then we compared Saa(r) of the different regular polygons: triangle, cube and hexagon.
As we can observe in Figure 8c, Saa(r) of the regular cube has the largest trough, because in
this paper, the equivalent circular diameter Deq is used for non-circular particles, and the
regular square has the longest line segment of these three shapes. Moreover, the regular
square has the fastest decay. We also computed Saa(r) in penetrable models, and an example
is shown in Figure 8d. A relatively smaller difference can be observed compared with the
impenetrable ones.

Roundness, also called circularity, is a 2D measure of how closely the shape of an object
approaches that of a mathematically perfect circle, which is defined as the perimeter ratio
of the particle and the circle with the same area [59]. The roundness of the super-ellipse
could be any value only by changing the aspect ratio κ, as shown in Table 6.

Table 6. The relationship between precision and elapsed time.

Roundness 0.777560 0.886227 0.929950 0.952313 1

κ of Ellipses 3.417562 2.283670 1.883470 1.675994 1
Regular polygons Triangle Square Pentagon Hexagon Circle

Therefore, it is reasonable to compare the two particles with the same roundness, i.e.,
the regular square and the ellipse with an aspect ratio κ = 2.283670. Saa(r) are calculated
for both impenetrable and penetrable models, and the resulting comparisons are shown
in Figure 9a,b. We can see a clear difference in the impenetrable model and a visible
distinction in the penetrable model, which means the two-point correlation functions are
able to describe more morphological features besides roundness.
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Figure 8. 𝑆𝑎𝑎(𝑟) of different particle shapes: (a) Selected aspect ratio 𝜅 from 1 to 5; (b) Selected 

shape parameter 𝑚 from 1 to 50; (c) Selected regular polygons, from triangle to circle, which can be 

treated as a polygon with infinite sides; (d) Selected penetrable models: from triangle to circle. 

Figure 8. Saa(r) of different particle shapes: (a) Selected aspect ratio κ from 1 to 5; (b) Selected shape
parameter m from 1 to 50; (c) Selected regular polygons, from triangle to circle, which can be treated
as a polygon with infinite sides; (d) Selected penetrable models: from triangle to circle.
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4.3. Three-Point Correlation Function

The three-point correlation functions Saaa(r1, r2, θ) for the generations of regular
squares with the packing fraction φa = 0.7 are presented in Figure 10.
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We only show some selected values of θ for illustration. It can be observed that the
one- and the two-point correlation function are contained within the three-point correlation
function, and the function can be degenerated. When r1 = r2 = 0, Saaa(r1, r2, θ) degenerates
to the one-point correlation function Sa. We let θ = 0, r1 = r2 6= 0, as shown in Figure 10.
The zig zag diagonal line is a special case of two-point correlation function, and it has
the steepest slop. In this function, the two end points of r1 and r2 coincide and have to
be judged twice. According to Equation (21), it is obvious that for the different phase of
interest, Saaa(r1, r2, θ) in two-phase materials,

Saaa + Saam + Samm + Smmm = 1, (26)

and in this situation, when it degenerates to Saa(r),

Saa + Sam + Sam + Smm = 1, (27)

the Sam is doubled, which explains the fast decay of Saa and the zig zag line afterward.
When r1 = 0 or r2 = 0, it degenerates to the standard two-point correlation function Saa(r).
It can be observed that the two-point correlation function Saa is only a small section of the
three-point correlation function Saaa(r1, r2, θ), even for the one selected θ.

When calculating the function values for S(i)
3 (r1, r2, θ), N3pt random sampling triangles

are used. Each sampling triangle has Nr1 × Nr2 × Nθ shapes. The accuracies are often
verified by their degeneracies because the fundamentals of computing the one-, two-
and three-point correlation functions are the same, that is to determine a single point’s
location. By comparing Saaa(r) to Saa(r), as shown in Figure 8c, the three-point correlation
characterizes the structure more comprehensively, while the two-point correlation can
describe the obvious features, i.e., particle shape.
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5. Conclusions

The n-point correlation functions, including the one-, two- and three-point correlations
in this paper, are utilized for modeling and characterizing a non-spherical packing system.

A dynamic packing algorithm for impenetrable non-circular particles was developed
based on the DEM. In this algorithm, a novel method of determining overlap information
(i.e., overlap area and centroid) for non-circular particles was developed by means of
efficiently calculating the one-point correlation function. In addition, a penetrable non-
spherical packing algorithm with high precision and efficiency was proposed via the
one-point correlation function, and it is applicable to arbitrary shape in principle.

With the packing algorithms, packs of non-circular particles, both impenetrable and
penetrable, with a different packing fraction (φ = 0.1 − 0.8) and various geometry shapes
(regular polygons and super-ellipses), have been generated. The two-point correlation
function are chosen as a statistical descriptor in this work for characterizing the packs.
For the impenetrable models, clear differences can be observed with different packing
fractions or various geometry shapes, even if the roundness is the same. The differences
in corresponding penetrable models are less pronounced. The three-point correlation
function is illustrated in three selected θ. It characterizes far more details than two-point
correlation function. Moreover, with the efficient computation of the one-, two- and
three-point correlations, an effective material behavior of the particulate systems can
be predicted by third-order bounds, which will provide us a straightforward route to
quantitative characterization.
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