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Abstract: The mechanical properties of anisotropic materials are generally characterized based on
the orthotropy or transverse isotropy. However, the two-dimensional plane stress problems cannot
comprehensively characterize the anisotropy of materials. In this study, based on the theory of
elasticity and the transformation of the three-dimensional space coordinate system, combined with
the projection relationship of the Cauchy stress tensor of an arbitrary section, the transformation
relationship of the elastic modulus, shear modulus, and stress–strain between the orthogonal and
load coordinate systems are obtained. The orthotropic Johnson-Cook (JC) constitutive model of
AA7050-T7451 aluminum alloy is modified by fitting, and the constitutive relationship at any spatial
angle is theoretically calculated by combining the obtained spatial coordinate transformation matrix.
The generated spatial constitutive model is verified and modified through experiments. The results
demonstrate that the theoretical mechanical properties and the modified spatial constitutive model
can accurately reflect the effect of the spatial angle on the material stress distribution.

Keywords: AA7050-T7451; anisotropy; coordinate transformation matrix; Johnson-Cook (JC)
constitutive model; spatial constitutive model

1. Introduction

Aluminum alloys are the most extensively used materials in industrial and civil appli-
cations and weapon manufacture, mainly due to their excellent properties, including high
strength-to-weight ratio, low density, high-temperature resistance, and excellent corrosion
resistance [1,2]. AA7050-T7451 aluminum alloy, which includes certain anisotropy because
it is a typical poly crystalline alloy material, is typically used in aerospace applications for
critical aircraft components [3–5]. Under different material pretreatment conditions, due
to the different existence modes of micro-atoms (such as hydrogen) in the material, the
grains in the material will produce different micro-effects, such as dislocation, twinning
and other phenomena [6], so that the micro-grain of the material has complicated changes.
Finally, the materials show different mechanical properties. Constitutive models have
been effectively employed to characterize the mechanical properties of materials during
plastic deformation [7,8]. Constitutive material modeling directly affects the accuracy of
the theoretical study and finite element analyses [9]. Therefore, it is crucial to propose valid
constitutive formulations that can describe the anisotropic characteristics for predicting the
mechanical properties of materials.

The differences in the mechanical properties of anisotropic materials are generally man-
ifested by the elastic modulus, Poisson’s ratio, and strength, in different directions [10–12].
Therefore, classical elastoplastic mechanics based on homogeneous, continuous, and
isotropic assumptions cannot correctly reflect anisotropic mechanical behavior. The elasto-
plastic constitutive strength theory and the numerical analysis of anisotropic materials
have been extensively researched. Plunkett et al. [13] proposed yield functions describ-
ing the anisotropic behavior of orthotropic sheet metal under tension and compression.
Oana et al. [14] established a new isotropic criterion that well describes the yielding of
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randomly oriented face-centered polycrystalline metallic materials and extended this crite-
rion to describe the orthotropy using generalized stress invariants. To describe the plastic
anisotropy of metallic alloys, Cardoso et al. [15] developed a yield function that delivered
an accurate prediction of directional stresses. Kazimierz et al. [16] studied a mathemati-
cal method for describing orthotropic material cutting based on the fracture theory and
included the work of separation (fracture toughness) in addition to the material plasticity
and friction. Meng et al. [17] established a modified JC constitutive model considering the
forming direction, based on the dynamic impact shear test of AA7050-T7451 aluminum
alloy in the typical forming direction (rolling direction (RD), transverse direction (TD), and
normal direction (ND)).

The above studies were based on the orthotropic characteristics (RD, TD, ND) of
materials because of the complexity of anisotropic mechanical behavior. In order to further
study the anisotropy of materials, some scholars characterized the anisotropy of different
orientations in a specific plane. Zhang et al. [18] accurately described the tensile stress–
strain curves of anisotropic (along a certain angle to the rolling direction) aluminum alloy
sheets using the three-parameter Barlat yield criterion. Aboubakr et al. [19] investigated
the effect of the rolling orientation on the mechanical, in-plane anisotropy, and gamma
ray shielding properties of Al-Cu-Li-Mg-X alloy. Based on the three-parameter Barlat
yield criterion, Liu et al. [20] proposed a new five-parameter yield criteria in which two
transverse shear stresses were added.

Although extensive research has been conducted on the anisotropy of materials, and
yield criteria for describing their mechanical behavior have been proposed, the spatial con-
ditions of orthotropy and transverse isotropy are yet to be resolved. The two-dimensional
plane stress problem cannot comprehensively characterize the anisotropy of materials
because three-dimensional characterization of the anisotropy cannot be realized.

Based on the theory of elasticity and the conversion of the space coordinate system,
this study aims to obtain a theoretical method for comprehensively characterizing the
anisotropy by introducing three-dimensional space angle variables. Quasi-static loading
tests and dynamic impact compression/shear tests are performed on specimens in the
typical forming direction (ND, TD, and RD) and space angle (RD-30◦-ND, RD-45◦-ND,
RD-60◦-ND). The quasi-static and high-strain-rate mechanical responses at different rates,
directions, and temperatures are analyzed, and the proposed theoretical method is verified.
Finally, the least squares method is used for fitting and modifying the constitutive material
parameters, and a JC constitutive model that includes the spatial angle is established
by combining the coordinate transformation matrix. The modified material constitutive
model will be applied to the theoretical research and finite element simulation of material
mechanical properties.

2. Theoretical Research on Anisotropy
2.1. Coordinate-System Conversion Matrix

The main form of metal plastic deformation is the crystal slip, which proceeds along
a certain crystal plane and direction [21]. The strongest interatomic binding force has the
least probability of disorder in the arrangement of atoms; hence, crystal slip preferentially
occurs in the crystal plane with the highest atomic density and the crystal orientation
with the densest atomic arrangement [22]. According to plastic mechanics, until the stress
acting on the slip surface and direction reaches the critical value, the slip will proceed
along a specific direction. AA7050-T7451 aluminum alloy is a typical face-centered cubic
lattice, which consists of four groups of preferred slip surfaces [23–26]. As there are three
preferred sliding directions for each slip surface, AA7050-T7451 has 12 slip systems and
384 slip states [27,28]. Based on the above analysis, it can be concluded that the simple
two-dimensional plane stress problem cannot accurately characterize the anisotropy. In
order to comprehensively characterize material anisotropy, a constitutive model that can
characterize the mechanical parameters in each direction of the three-dimensional space
must be established.
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In the mechanical properties of anisotropic materials, the differences are mainly mani-
fested by the elastic modulus, shear modulus, and stress. When anisotropic materials are
subjected to non-orthotropic loads, the assumptions of orthotropy and transverse isotropy
can no longer satisfy the descriptions of their stress parameters. Therefore, a load coor-
dinate system must be established to characterize the mechanical parameters, under the
load direction. An orthogonal (material) coordinate system was established with the x, y,
and z axes of the TD, RD, and ND, respectively. A load coordinate system was created
by considering the load direction as the z’ axis; thus, the three axes of it are not along the
elastic direction (TD, RD and ND). The positional relationship between the axes of the
orthogonal and load coordinate systems is shown in Figure 1; α, β, and γ represent the
angle between the x, y, and z axes of the load coordinate system (ox′y′z′) and orthogonal
coordinate system (oxyz), respectively, while li, mi, and ni represent the directional cosine
between the coordinate axes. To characterize the mechanical properties in any direction of
the three-dimensional space, the transformation relationship between the load and material
coordinate systems must be obtained, and the orthotropic mechanical parameters in the
material coordinate system and coordinate transformation matrix must be combined [29].
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Figure 1. Positional relationship and directional cosine between the axes of the orthogonal and load
coordinate systems.

According to the theory of elasticity, the stress vector Fn of any oblique section can
be uniquely determined by nine stress components in the elastic body, also known as
the Cauchy stress tensor [30]. Figure 2 illustrates the stress components (positive stress
components σxx, σyy and σzz, and the shear stress components) of the Cauchy tensor that
completely describe the stress state at an arbitrary point in an elastic body. The normal
stress component represents the tensile or compressive stress on the corresponding section.
As per the equivalent law of the shearing stress, the shear stress can be expressed by τxy,
τyz and τzx [31,32]. The expression for the stress tensor σ is as follows:

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 =

σxx τxy τzx
τxy σyy τyz
τzx τyz σzz

 (1)

Therefore, the stress state of any cross-section can be characterized by the stress pa-
rameters in the orthogonal state. The intermediate variable is given by the positional
relationship between the cross-section and orthogonal coordinate system, i.e., the trans-
formation relationship between the load and orthogonal coordinate systems. Using the
above transformation matrix, the stress parameters obtained in the orthogonal state can
be transformed into the stress state of an arbitrary cross-section, which can be used to
characterize the mechanical parameters in three-dimensional space [33–35].
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Considering the normal direction of an oblique section ABC as the z′ axis of the new
coordinate system, the stress components Xv, Yv, and Zv on the section along the original
coordinate axis can be expressed as follows:

Xv = σxl3 + τxym3 + τxzn3
Yv = τyx + σym3 + τyzn3

Zv = τzxl3 + τzym3 + σzn3

(2)

Projecting Xv, Yv, and Zv onto the z′ axis, the normal stress σz′ of ABC can be obtained
as follows:

σz′ = Xvl3 + Yvm3 + Zvn3 = σxl32 + σym3
2 + σzn3

2 + 2τxyl3m3 + 2τyzm3n3 + 2τzxn3l3 (3)

When the tetrahedral differential body OABC tends to be infinitely small, the x′ and y′

axes are in the oblique section, ABC. Therefore, the projection of Xv, Yv, and Zv on the x′

and y′ axes indicates the shear stress of the oblique differential body section.

τx′z′ = τz′x′ = Xvl1 + Yvm1 + Zvn1
= σxl1l3 + σym1m3 + σzn1n3 + τxy(l3m1 + l1m3) + τyz(m1n3 + m3n1) + τzx(l1n3 + l3n1)

(4)

τy′z′ = τz′y′ = Xvl12 + Yvm2 + Zvn2
= σxl2l3 + σym2m3 + σzn2n3 + τxy(l2m3 + l3m2) + τyz(m2n3 + m3n2) + τzx(l2n3 + l3n2)

(5)

The stress tensor of the oblique section, ABC, in the new coordinate system, ox′y′z′,
can be expressed as [

σ′
]
=

 σx′ τx′y′ τx′z′

τy′x′ σy′ τy′z′

τz′x′ τz′y′ σz′

 (6)

The transformation matrix of the stress tensor from the original coordinate system
oxyz to the new coordinate system ox′y′z′ can be obtained by combining Equations (2)–(6).[

σ′
]
= [A][σ][A]T (7)

where [A] =

l1 m1 n1
l2 m2 n2
l3 m3 n3

 is the coordinate transformation matrix.
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Therefore, the stress in the load coordinate system can be obtained by combining the
mechanical parameters of the orthogonal coordinate system and the coordinate transfor-
mation matrix. Thus, the breakthrough from orthotropy to anisotropy characterization in
three-dimensional space can be realized.

2.2. Mechanical Properties of the Anisotropy

The transformation of the stress state between the coordinate systems can be realized
using the transformation matrix between the load and the orthogonal coordinate systems.
As previously mentioned, the difference in the mechanical characteristics of anisotropic
materials is mainly manifested by the elastic modulus, shear modulus, and stress–strain
parameters; therefore, the transformation relationships of the strain, elastic modulus, and
shear modulus between the orthogonal coordinate system and load coordinate system can
be further analyzed using the transformation matrix.

In the material coordinate system oxyz, the stress–strain relationship of anisotropic
materials can be expressed as follows:

[ε] = [S][σ] (8)

According to the theory of elasticity and the transformation relationship of the space
coordinate system, the stress–strain relationship in the load coordinate system can be
obtained as follows: [

ε′
]
= [T][S][σ] = [T][S][T]T

[
σ′
]
=
[
S′
][

σ′
]

(9)

where [ε′] is the strain vector in the load coordinate system, [T] is the flexibility conversion
matrix, [S] is the anisotropic flexibility matrix, [σ] is the stress vector in the material
coordinate system, [σ′] is the stress vector in the load coordinate system, [S′] = [T][S][T]T

is the equivalent anisotropic flexibility matrix in the load coordinate system, [T] and [S]
are expressed by Equations (10) and (11), respectively.

[T] =



l12 m1
2 n1

2 l1m1 m1n1 n1l1
l22 m2

2 n2
2 l2m2 m2n2 n2l2

l32 m3
2 n3

2 l3m3 m3n3 n3l3
2l1l2 2m1m2 2n1n2 l1m2 + l2m1 m1n2 + m2n1 n1l2 + n2l1
2l2l3 2m2m3 2n2n3 l2m3 + l3m2 m2n3 + m3n2 n2l3 + n3l2
2l2l3 2m3m1 2n3n1 l3m1 + l1m3 m3n1 + m1n3 n3l1 + n1l3

 (10)

[S] =



s11 s12 s13 s14 s15 s16
s22 s23 s24 s25 s26

s33 s34 s35 s36
s44 s45 s46

s55 s56
s66

 (11)

The elastic modulus E and shear elastic modulus G of the tetragonal system in an
arbitrary direction can be obtained as follows [36]:

E−1 =
(

R1
4 + R2

4
)

S11 + R3
4S33 +

(
R1

2 + R2
4
)

R3
2(2S13 + S44) + R1

2R2
2(2S12 + S66) (12)

G−1 = 2S11
[
R1
(
1− R1

2)+ R2
2(1− R2

2)]+ 2S33R3
2(1− R3

2)− 4S12R1
2R2

2 − 4S13
(

R1
2R3

2 + R2
2R3

2)
+ 1

2 S44
(
2− R1

2 − 4R2
2R3

2 − R2
2 − 4R1

2R3
2)+ 1

2 S66
(
1− R3

2 − 4R1
2R2

2) (13)

where Ri is the direction cosine of the load coordinate system relative to the orthogonal
coordinate system, and Sij is the flexibility coefficient of the material.
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The experimental data (elastic modulus, Poisson’s ratio, shear modulus, and stress–
strain) in different directions of anisotropic material specimens were obtained through
correlative experiments. The theoretical values corresponding to the load coordinate system,
which can be experimentally verified, were obtained by combining the transformation
matrix. Subsequently, the constitutive equation that can comprehensively characterize the
anisotropic mechanical characteristics was stablished and corrected.

3. Experimental
3.1. Specimen Preparation

Pre-stretched AA7050-T7451 sheets were used in this study. In order to obtain the
mechanical parameters of the material coordinate system, the specimens were sampled
along the typical forming directions (RD, TD, and ND) of the sheet. A specific angle plane
was selected for sampling to verify the theoretically derived results; the sampling direction
is depicted in Figure 3. In Figure 3a, the specimen directions for impact compression and
shear are respectively defined along their loading directions, namely, the axis direction of
the cylinder and the thickness direction of the shear specimen. As shown in Figure 3b, the
angle plane was selected based on the TD-RD plane at a certain angle γ (γ = 0◦, 30◦, 45◦,
60◦, 90◦), which was defined as the RD-γ-TD plane. Cylindrical specimens were processed
by wire-cutting in the RD-γ-TD plane; specimens at 0◦ and 90◦ constituted the ND and
RD samples, respectively. Quasi-static compression tests were carried out at 25 ◦C (room
temperature), and specimens sized Ø10 × 20 mm were sampled in the RD, TD, and ND,
respectively. Impact compression and impact shear tests were performed using samples
sized Ø5 × 4 mm and 40 × 23.5 ×2 mm (L × D × H), respectively.
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3.2. Experimental Setup and Principle

Dynamic impact compression and shear tests were performed using a split Hopkinson
pressure bar (SHPB) device, which is a typical method for obtaining the dynamic mechanical
properties [37]. The elastic incident and reflected waves were measured by an input bar
strain gauge. Further, the elastic incident wave was measured by an output bar strain gauge
and was amplified by a dynamic strain gauge. The waveform data were collected and
stored using a digital data recorder. Finally, the dynamic–mechanical property data were
obtained according to the one-dimensional stress wave theory [38,39]. As the ultrahigh
strain rate in the actual cutting process cannot be achieved by the SHPB device during
the impact shearing process, a dynamic impact shearing “bar-tube” device was used to
enhance the SHPB. The SHPB test equipment and “bar-tube” device are depicted in Figure 4.
An intelligent temperature-controlled electric heating furnace was used for heating the
specimens at a maximum temperature of 800 ◦C and temperature control precision of ±1 ◦C.
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At room temperature (25 ◦C), quasistatic compression tests were carried out on speci-
mens (Ø10 × 20 mm) in different directions (RD, ND, TD) at a strain rate of 1.6 × 10−3 s−1.
Dynamic impact shear tests at strain rates of 1.0 × 104, 2.0 × 104, and 3.0 × 104 s−1 were
conducted on shear specimens with different orientations (RD, ND, TD). Further, dynamic
impact compression tests were performed on cylindrical specimens (Ø5 × 4 mm) in differ-
ent directions (RD, ND, TD, and RD-γ-TD) at strain rates of 0.1 × 104, 0.2 × 104, 0.4 × 104,
and 0.6 × 104 s−1, respectively. In order to obtain the mechanical properties at high temper-
ature, impact compression tests were conducted at a strain rate of 0.4 × 104 s−1, at 100, 200,
300, 350, 400, and 450 ◦C, respectively. Each group of experiments was repeated thrice, and
the experimental results were averaged to ensure accuracy.



Materials 2022, 15, 5998 8 of 18

4. Results and Discussion
4.1. Establishment of a Anisotropic Constitutive Model

As displayed in Figure 5, based on the selection of the angle plane in this study, the
load coordinate system under angle γ was established as per Figures 1 and 3b. According to
the positional relationship between the orthogonal and load coordinate systems, the cosine
of each direction was obtained and substituted into the coordinate system transformation
matrix [A]. As depicted in Equation (14), the stress relationship expression between the
load and orthogonal coordinate systems can be obtained by substituting the transformation
matrix [A] of the obtained coordinate system in Equation (7).

[
σ′
]
=

 σxx τxycosγ τxysinγ + τxycosγ
τyxcosγ σyycos2γ σysinγcosγ + τyzcosγ

τyxsinγ + τxzcosγ
(
σyy + τyzcosγ

)
cosγ σyysin2γ + σzzcos2γ + 2τzycosγsinγ

 (14)
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The normal stress at 0° (ND) and 90° (RD) is σzz and σyy, respectively, in the above 
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equation in the orthogonal coordinate system, which can accurately express the stress–
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where A, B, C, n, and m represent the initial yield stress, strain hardening modulus, hard-
ening index, strain-rate sensitivity coefficient, and thermal softening coefficient, respec-
tively; T, Tr, and Tm represent the deformation temperature, room temperature, and melt-
ing temperature of the material, respectively; σ, ε, and 𝜀𝜀̇ are the stress, strain, and refer-
ence strain rate, respectively [43]. 
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The normal stress at 0◦ (ND) and 90◦ (RD) is σzz and σyy, respectively, in the above
equation. The stress in the orthogonal coordinate system is directly related to the accuracy
of the theoretical stress value in the load coordinate system. Therefore, the constitutive
equation in the orthogonal coordinate system, which can accurately express the stress–strain
relationship of each direction in this system, must be established and modified.

The constitutive equation of a material describes the stress–strain relationship of
the material under different loading conditions [40,41]. The empirical Johnson–Cook
constitutive model was applied to describe the stress–strain relationship of ferrous and
nonferrous metals, under conditions of high-strain rate and considerable deformation. In
addition, the structure of the JC constitutive model is simple and convenient; it introduces
the strain strengthening, strain-rate strengthening, and thermal softening parameters of the
material [42], and can be expressed as follows:

σ = (A + Bεn)
(
1 + C ln

.
ε
)[

1−
(

T − Tr

Tm − Tr

)m]
(15)

where A, B, C, n, and m represent the initial yield stress, strain hardening modulus, harden-
ing index, strain-rate sensitivity coefficient, and thermal softening coefficient, respectively;
T, Tr, and Tm represent the deformation temperature, room temperature, and melting
temperature of the material, respectively; σ, ε, and

.
ε are the stress, strain, and reference

strain rate, respectively [43].
For anisotropic materials, the constitutive model should be constructed in the typical

forming direction and fitted in the orthogonal coordinate system. If the modified JC consti-
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tutive model can accurately characterize the stress–strain relationship of the material in the
orthogonal coordinate system, the stress–strain constitutive relationship in the load coordi-
nate system at an arbitrary angle γ can be obtained by combining Equations (14) and (15):

σγ =
(

σRDsin2γ + σNDcos2γ + 2τcosγsinγ
)

(16)

4.2. Anisotropic Mechanical Property Analysis of AA7075-T7451

In order to modify the constitutive model and verify the anisotropy in three-dimensional
space, dynamic impact compression tests were performed at different strain rates and
temperatures for the specimens, in different directions. The stress–strain curves of the
dynamic impact compression tests in the 0.1 × 104–0.6 × 104 s−1 strain-rate range were
obtained, as depicted in Figure 6. When the strain was less than 0.02, the material was in the
elastic deformation stage, and the stress increased rapidly because of the minor deformation
caused by work hardening. With the increase in strain, thermal softening effect occurred in
the material, and along with work hardening caused a significant decrease in the stress rate.
When the work hardening and thermal softening effect gradually attained equilibrium,
the stress exhibited a stable change stage. With the increase in strain rate, the maximum
corresponding strain increased from 0.08 to 0.35. Meanwhile, the maximum stress in the
stable stage also exhibited an upward trend, from 653 to 847 MPa.
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Materials 2022, 15, 5998 10 of 18

At the same strain rate, the stresses at different angles γ, differed in the elastic, plastic
deformation, and stable stages. As the material stress fluctuation was less in the stable
deformation stage, the stress corresponding to the initial strain in the stable stage was
selected [44]. The influence of angle γ on the stress was analyzed by comparing the stability
stress under different loading conditions. Comparing the stability stresses at different strain
rates, the variation trend of the stress with angle γ was as follows: The stress decreased
with the increase in angle γ and reached a minimum when γ = 45◦. As γ continued to
increase, the stress increased after reaching a minimum value. Therefore, in the 0–90◦ range,
the stress initially decreased and then increased with γ.

Figure 7 illustrates the stress–strain curves of AA7050-T7451 at different temperatures,
for a strain rate of 0.4 × 104 s−1. When the temperature increased from room temperature
to 200 ◦C, the height of the specimen decreased by only 0.72 mm, and the stress decreased
from 755 to 733 MPa; therefore, the effect of the temperature on the stress of the material
was less when the temperature was below 200 ◦C. When the temperature reached 300 ◦C,
the stress decreased sharply, and the flow stress was only 60–70% of that at 200 ◦C. The
specimen height decreased by 0.85 mm, compared to that at 200 ◦C, and the specimens
exhibited obvious damage. The thermal activation increases the atomic kinetic energy in
the alloy, when the deformation temperature is increased to a certain value, resulting the
rapid softening. Further, the critical shear stress of the alloy slip systems decreases, and the
dislocation slip can easily overcome the hindrance effect at lower stress [45]. Therefore, the
flow stress of AA7050-T7451 decreases with the increase in temperature.
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Different from the mechanical curves under different strain rates, the initial strain of
the stable deformation stage at different temperatures was approximately 0.2; therefore,
the stress value at a strain of 0.2 was selected as the stability stress (σ0.2) to analyze the
variation trend, under different deformation temperatures. From Figure 7b, it can be
observed that the variation in stress with temperature is consistent in the RD direction.
When the temperature was below 300 ◦C, the stress of 0–90◦ specimens initially decreased
and then increased, at the same temperature. The stress of the 45◦ specimen was the least,
consistent with that at room temperature. Thus, the steady-state stress in each direction
exhibited obvious anisotropy during the dominant stage of work hardening. Loading
the materials at angles of 30◦, 45◦, and 60◦ reduced the stress, particularly, the minimum
stress required for the 45◦ specimen deformation. The main reason is because the grain slip
system in the material is anisotropic, and the preferred slip system direction is that with
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the highest atomic density or densest atomic arrangement. Therefore, it can be concluded
that AA7050-T7451 material has the densest atomic arrangement in the direction of 45◦,
resulting in preferential slip orientation in this direction. The thermal softening effect was
dominant at temperatures beyond 300 ◦C. With the increase in deformation temperature,
the kinetic energy of the atoms in the material increased, and the crystal slip directions
were no longer obvious.

In conclusion, the stress of AA7050-T7451 material is not only related to the strain
rate, strain, and temperature, but also to the angle of its forming direction. Therefore, it is
necessary to construct and modify the constitutive equation to include the spatial angle
function, for describing the mechanical properties of the material.

4.3. Modification of the Constitutive Model
4.3.1. Constitutive Model in the Orthogonal Coordinate System

In order to introduce the spatial angle function and obtain the constitutive model of
the anisotropy in three-dimensional space, the stress–strain curves in the RD, TD, and ND
were initially fitted and modified. The constitutive equation that can accurately characterize
the stress relationship in the orthogonal coordinate system was obtained. The parameters
of the JC model A, B, C, and n were fitted and modified using the experimental stress–strain
curve along with least squares method, as shown in Table 1.

Table 1. Correction values of the JC constitutive parameters A, B, C, and n.

Forming Directions A (MPa) B (MPa) C n

ND 365 516 0.042 0.26
TD 357 490 0.04 0.3
RD 342 452 0.029 0.26

As the single thermal softening coefficient m cannot satisfy the mechanical charac-
teristic curve of AA7050-T7451 at high temperature, the thermal softening effect term Kt
was polynomial fitted for accurately describing the rheological properties of the material at
high temperature [46].

Kt = σ/(A + Bεn)
(
1 + C ln

.
ε
)

(17)

Using the stress–strain curve of the high-temperature impact compression test, Kt
at different temperatures can be obtained, i.e., Kt can be calculated by substituting the
stress with a strain rate of 0.4 × 104 s−1 and strain of 0.1 at different temperatures in
Equation (16). If the number of polynomials is high, the expression will be complicated,
and if the number of times is less, the fitting effect will be poor. Therefore, fifth-degree
polynomial fitting with a simple expression and good fitting effect was used to fit the
result, as shown in Figure 8. When the temperature was below 300 ◦C, the thermal
softening coefficient decreased gradually with the increase in temperature, decreasing by
approximately 0.13 only; in addition, the thermal softening coefficients in the TD, RD, and
ND directions were considerably different. Sharp softening occurred at 300 ◦C, and the
thermal softening coefficient dropped sharply to approximately 0.45; although the thermal
softening coefficients in all the directions were different, the difference was not significant.
After 300 ◦C, the thermal softening coefficient exhibited a small downward trend with the
change in temperature, decreasing by 0.05 only, for a temperature increase of approximately
150 ◦C. Thus, the fitting curves can better reflect the mechanical properties of AA7050-T7451
material at high temperature.

Therefore, by fitting and modifying the parameters of the JC constitutive model, a
constitutive equation that can accurately describe the mechanical properties of AA7050-
T7451 was obtained, under different strain rates, temperatures, and forming directions (ND,
RD, and TD): 

σND =
(
365 + 516ε0.27)(1 + 0.042 ln

.
ε
)
Kt−ND

σRD =
(
342 + 452ε0.26)(1 + 0.029 ln

.
ε
)
Kt−RD

σTD =
(
357 + 490ε0.3)(1 + 0.04 ln

.
ε
)
Kt−TD

(18)
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Kt =


ND : 0.9− 0.002t + 3.23× 10−5t2 − 2× 10−7t3 + 5.9× 10−10t4 − 5.1× 10−13t5

RD : 1.2− 0.016t + 2.22× 10−4t2 − 1.22× 10−6t3 + 2.8× 10−9t4 − 2.3× 10−12t5

TD : 0.98− 0.006t + 9.13× 10−5t2 − 5.43× 10−7t3 + 1.29× 10−10t4 − 1.07× 10−13t5
(19)
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4.3.2. Verification of the Elastic Modulus and Shear Modulus

In order to verify the feasibility of the theoretical method, the elastic modulus, shear
modulus, and Poisson’s ratio of the typical forming direction (orthogonal coordinate
system) were obtained, through the dynamic impact compression and shear tests. The
angles between the orthogonal and load coordinate systems were α = 0, β = 0, and γ. The
anisotropic flexibility matrix of AA7050-T7451 aluminum alloy material was calculated
as follows:

[S] =



0.0135 −0.0128 −0.0106
−0.0152 0.0143 −0.01187
−0.0171 −0.0162 0.0134

0.04115
0.0455

0.0446

 (20)

According to the flexibility matrix [S] of AA7050-T7451 and combining
Equations (12) and (13), the change trends of the theoretical values of the elastic mod-
ulus and shear modulus with the change in γ were obtained, as shown in Figure 9. As γ
increased, the theoretical elastic modulus and shear modulus values initially decreased and
then increased, and the minimum value appeared at 45◦. This trend was approximately the
same as that of the stress change in the impact compression test, shown in Figures 6 and 7.
The change trends of the theoretical values of the elastic modulus and shear modulus were
the same as that of the experimental values, verifying the accuracy of the theory and the
method for characterizing the three-dimensional space anisotropy.
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Figure 9. Elastic modulus and shear modulus with the change in γ: (a) elastic modulus,
(b) shear modulus.

4.3.3. Modification of the Spatial Constitutive Model

By comparing the experimental and theoretical values of the elastic modulus and
shear modulus, respectively, the accuracy of the theoretical method for characterizing
the three-dimensional mechanical parameters was preliminarily verified. To completely
characterize the anisotropy of materials in three dimensions, the stress state should be
characterized and verified to establish a constitutive relationship containing the spatial
angle. In order to further verify the accuracy of the theoretical method, the theoretical value
was verified using the results of the dynamic impact compression test. The stress obtained
by dynamic impact compression is the normal stress σz

′, in the load coordinate system. The
stresses in the stable stage depicted in the stress–strain curves at different strain rates in
different directions were selected and verified. The verification results are presented in
Figure 10.
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Figure 10. Comparison and verification of the theoretical and experimental values of the stress
in the load coordinate system. (a) Test verification at different strain rates. (b) Test verification at
different temperatures.

In Figure 10, the verification results demonstrate that under different strain rates and
temperature conditions, the change trend of the obtained theoretical values under different
loading conditions is consistent with the test results. A certain gap existed between the
theoretical value of the stress and the experimental value at various angles. Although the
error was large, the ratio between the theoretical and experimental values was within a
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range of 0.85–0.90 because the theoretically calculated stress values did not consider the
effects of the material preforming processes on the anisotropy. Therefore, a correction
factor k needs to be included, which accurately characterizes the mechanical properties
of the anisotropy of AA7050-T7451 aluminum alloy in three-dimensional space. The
final expression for the stress–strain constitutive equation in the load coordinate system
as follows:

σγ = k
(

σRDsin2γ + σNDcos2γ + 2τcosγsinγ
)

(21)

The stress–strain curves at arbitrary angles γ, α = 0, and β = 0 in three-dimensional
space were predicted by combining Equations (18)–(20), and they are displayed in Figure 11.
The accuracy of the constitutive equation containing the spatial angle was verified by pre-
dicting the strain curves at different temperatures and strain rates; the error was within 5%.
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4.3.4. Simulation Modeling of Dynamic Shock Compression Process

In order to further verify the accuracy of the constructed model, the deform module
finite element geometric modeling is carried out according to the size and parameters of the
SHPB test device. As shown in Figure 12, in order to reduce the amount of calculation of
simulated deformation, the finite element model only retains the incident rod, the specimen
and the transmission rod.

The finite element model does not consider the deformation of the device, and the
incident rod and transmission rod are defined as rigid bodies. According to the parameters
of the JC constitutive model and the material characteristic parameters of 7050-T7451, the
mechanical response behavior of the specimen under load is set. Due to the complex
changes of field variables in the material during dynamic impact compression, the tetrahe-
dral constant strain element of DEFORM software is used to realize the adaptive meshing
of regional field variables. Set the transmission rod to be fixed, and set the end surface of
the test piece in contact with the transmission rod to be fixed. The initial incident velocity
of the incident rod is set according to the impact rod velocity corresponding to the actual
strain rate to strike the specimen. At the same time, the ambient temperature and heat
conduction parameters of the specimen are set according to the material and temperature
test parameters. Considering the calculation accuracy and efficiency, the friction factor is
set to 0.4, the incremental steps are set to 10, and the analysis steps are set to 100.

Through the software post-processing module, the simulated data are processed and
analyzed to obtain the changes of stress field, strain field and temperature field under
different loading conditions. Figure 13 shows the equivalent stress nephogram of samples
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with different angles under the temperature of 200 ◦C and strain rate of 4000 s−1 when
the strain is 0.2 during compression deformation. The results show that the maximum
stress appears at the edge of the end face of the specimen, which is consistent with the edge
spalling of the main failure form of the test specimen.
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sample damage.
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Figure 14 shows a comparison curve of test values, simulation values and calculated
values of materials under different forming angles. By comparing the curves, it can be
concluded that the maximum errors of the calculation and simulation results in the plastic
deformation stage are 13.3%, 9.2%, and the maximum errors in the elastic stage are 16.6%.
The constitutive relation mainly describes the plastic deformation behavior of materials
under different loading conditions; thus, the prediction error in the elastic stage is large.
However, the error is still within 20%. Therefore, considering the existence of uncontrollable
errors in experimental measurement and simulation, the spatial modified constitutive
model has high prediction accuracy. It can accurately describe the dynamic compression
mechanical behavior of AA7050-T7451 under different forming angles in space.
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5. Conclusions

In this work, theoretical expressions for E, G, and the stress σ, which can characterize
the mechanical properties of the spatial and orthogonal coordinates at arbitrary angles α,
β, and γ, were obtained and verified. The theoretical variations of E, G and σ with spatial
angles γ were consistent with the experimental results. A coordinate transformation matrix
[A] was obtained using projection relation and the theoretical expressions of σ between
orthogonal and load coordinate systems. It was verified in the Results section that the
stresses of TD, ND, RD under high strain rate and temperature can be accurately forecasted
by the modified orthogonal constitutive model.

Combining the [A] with a modified orthogonal constitutive model, a spatial JC consti-
tutive equation that includes the spatial angle γ was proposed for describing the dynamic
mechanical properties of materials at different spatial angles (γ). The ratio between the
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theoretical and experimental stress under different loading conditions was within the
0.85–0.90 range because the influence of the preforming processes on the anisotropy was
ignored. Therefore, the spatial JC constitutive equation was modified by introducing a
correction factor k (0.86), and the results demonstrated and verified the accuracy of the
theory and the method for characterizing the three-dimensional space anisotropy.
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