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Abstract: In this study, the self-healing properties of mortars mixed with a crystalline admixture
(CA) and superabsorbent polymer (SAP) were investigated. By conducting uniaxial compressive
strength tests on the mortar samples, the effects of the two admixtures and different admixture ratios
on the initial compressive strength and strength repair ability at different curing ages of the mortar
after pre-cracking were investigated. To verify the results, optical microscopy, scanning electron
microscopy, and X-ray diffraction were used for microscopic observation of the cracks and their
healing products. The results of this study show that CA, which generates dense substances through
chemical reactions, has obvious advantages in the self-healing of microcracks and has a greater
effect on the flexural strength of mortar compared with SAP, which can effectively fill wider cracks,
reduce the width of cracks through physical expansion, and has a greater impact on the compressive
strength of mortar compared with CA. Compared with ordinary mortar, mortar mixed with CA
only, and mortar mixed with SAP only, the appropriate amounts of both CA and SAP can effectively
combine the advantageous effects of CA and SAP and optimise the self-healing effect of mortar so
that its self-healing rate reaches 103%. The self-healing filler, consisting mainly of calcium silicate and
calcium carbonate, is generated in cracks and enhances the repair strength of the mortar so that the
strength of the mortar reaches 46 MPa.

Keywords: crystalline admixture; superabsorbent polymer; self-healing; strength recovery

1. Introduction

Concrete is widely used in infrastructure construction because of its advantageous
characteristics, such as high strength, low price, and high durability. However, in practice,
cement-based materials often deteriorate in performance, even becoming damaged before
their expected service life, owing to poor structural design, construction defects, and
physical, chemical, or biological erosion caused by various environments. To ensure
strength and improve service life, cracks in concrete must be repaired. The conventional
solution is to use manual repairs, but the time and economic costs are enormous. The
annual direct cost of maintaining concrete roads owing to corrosion in the United States
is approximately $4 billion [1]. In Europe, nearly 50% of the construction budget is spent
on maintenance and repair of existing structural concrete facilities [2]. Moreover, while
the manufacturing cost of concrete ranges from $65 to 80/m3, the cost of crack repair and
maintenance can reach $147/m3 [3]. In addition to the high repair costs, this repair method
is also problematic in terms of durability, which is limited to 10–15 years [4]. Additionally,
the manual repair method can only address surface cracks, and internal cracks are difficult
to repair [5].

With the continuous promotion of concrete in engineering applications, scholars and
engineers have gradually advanced their research and understanding of concrete and have
found that concrete possesses a certain degree of self-healing properties. However, the
self-healing properties of concrete can only repair some minor cracks [6–8]. Moreover,
the controllability is not strong, and there is a certain randomness [9], which makes it
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difficult to meet the actual needs of the project. To exploit the self-healing properties of
concrete completely, some scholars have added crystalline admixtures (CAs) to improve
the self-healing ability. The addition of CA can stimulate the self-healing process and
enhance the hydration and recrystallisation processes in the presence of water, including
further hydration of unhydrated cement and carbonation of dissolved calcium ions leached
from the concrete matrix [10–16]. CA contains some activating groups that combine with
calcium ions in the concrete matrix to form unstable complexes that can form modified
calcium silicate with unhydrated cement and water. Reddy and Ravitheja [17] found
that adding CA can increase the compressive strength of pre-cracked concrete. They
were able to increase the compressive strength by approximately 11.45% compared with
the control concrete. This was achieved by the filling of cracks with calcium silicate
hydrate and calcite. Chandraiah and Reddy [18] found that CAs play a positive role in
the recovery of compressive strength during crack repair, and the addition of crystalline
mixtures can effectively reduce the depth of penetration and decrease the permeability
coefficient [19]. CA, as a concrete healing admixture, has certain shortcomings, such as the
ability to repair cracks of small width only, longer repair times, and a decrease in the initial
compressive strength.

Superabsorbent polymers (SAP) are cross-linked polyelectrolytes containing a hy-
drophilic network structure of covalent bonds capable of absorbing hundreds of times their
dry weight in aqueous solutions (or other solutions) [20–22]. SAP has efficient internal cur-
ing properties and can significantly reduce or even eliminate the self-shrinkage of concrete,
improve the performance of concrete, and freely design the shape and size distribution of
pores [23]. The addition of SAP to cementitious materials effectively reduces fluid leakage
in concrete [24,25]. Mönnig et al. [26] found that SAP can leave a system of entrained air
voids in concrete and can improve the freeze–thaw resistance and durability of concrete. In
the event of concrete damage, SAP physically fills the cracks by rapidly absorbing water,
reducing the size of cracks, and creating favourable conditions for repairing concrete. The
research of scholars on SAP in concrete self-healing in recent years is shown in Table 1.
SAP has the obvious advantage of physically filling cracks; however, in this process, SAP
expands and shrinks, leaving some tiny pores, which affects the compressive strength of
the concrete. Some engineering cases and experimental research results have also shown
that cracks in concrete cannot completely self-heal when only SAP is added as it inevitably
affects the compressive strength of the concrete [27,28]. Currently, there are limited studies
on the strength of concrete with added SAP after the self-repair of cracks. In order to make
the use of CA and SAP more relevant to engineering practice, the repair rate of the strength
of mortar and the apparent conditions of crack repair are investigated in this paper.

Table 1. Research about SAP.

Reference No. Test Result

[29] Water flow test
The in-house made SAPs with a particle size
between 400 and 600 µm performed the best

with regard to crack closure.

[30] Water flow test Larger SAP sizes improved the
self-sealing capability.

[31] X-ray tomography

The mix with 2.2% superplasticizer at 40%
damage level had a full recovery from cracks
(i.e., healing). This is due to forces from the

SAPs’ expansion which closes cracks.

[32] rapid permeability test (RPT)
The crack healing efficiency of a SAP-added

specimen was quite satisfactory, but the
complete repair was hard to achieve.

In this study, based on the different effects of CA and SAP in the self-healing process of
concrete, we analysed the effects of matching the admixture amount while adding CA and
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SAP simultaneously on the self-healing performance and post-repair strength. We focused
on the coupling mechanism of CA and SAP on the self-healing properties of concrete to
improve the self-healing performance in terms of strength and impermeability.

2. Materials and Methods

Experimental materials were selected from ordinary Portland cement (P. O 42.5R),
standard sand (particle size 0.08–0.16 mm, SiO2 content >96%), and SAP manufactured by
Jinan Huadi Industry and Trade Co., Ltd. SAP (Jinan, China), which is a product of sodium
hydroxide and polyacrylic acid neutralization and has a particle diameter of approximately
0.15 mm. CA is a synthetic cementitious material with a particle size of about 0.04 mm,
containing mainly reactive chemical materials such as OPC and fine silica. The chemical
compositions of the cement and CA are listed in Table 2.

Table 2. Main chemical composition of cement and CA.

Oxide Content (%wt) OPC CA

CaO 64.84 57.50
SiO2 20.14 15.32

Al2O3 4.94 5.18
Fe2O3 3.83 2.48
Na2O 0.25 1.83
K2O 0.88 0.80
SO3 3.02 2.90

MgO 1.34 13.20

The samples required for all experiments were designed and prepared with a water–
cement ratio of 0.5 [32]. The fit ratios of the components for different experimental samples
are listed in Table 3. The control samples were named Group O. The samples mixed with
CA alone were named Group A. The samples mixed with only SAP were named Group B.
The samples mixed with CA and SAP at different dosing ratios were designated as Groups
C, D, and E. The amount of SAP is relatively low, which is because if the SAP content is
too high its influence on the strength of the mortar is relatively large [33]. For each doping
ratio, nine 40 × 40 × 40 mm3 and three 40 × 40 × 160 mm3 specimens were prepared for
different experimental analyses. The materials were mixed in a mixer at low speed for 30 s
in a dry state. After adding water, mixing was continued at low speed for 1 min, followed
by mixing at high speed for 1.5 min. The finished mortar was poured into the mould
and demoulded for 24 h. Finally, the demoulded specimens were cured in a standard
maintenance room at 20 ± 2 ◦C at a relative humidity of more than 95% for 28 days.

A YAW-300H universal testing machine (Jinan Henrui Jin Testing Machine Co., LTD,
Jinan, China) was used to test the compressive strength of the square specimens after
28 days of curing. The compression rate was controlled at 2.4 KN/s. The specimens that
developed cracks after compression were cured in water at a temperature of 20 ± 2 ◦C [34].
The specimens were tested again for compressive strength after pre-cracking and curing
for 3, 7, and 28 days.

The cracked specimens were wrapped with plastic film and then placed in water at a
temperature of 20 ± 2 ◦C. The recovery of cracks was observed via optical microscopy after
3, 7, and 28 days of curing.

In order to detect the healing products at the cracks, specimens were taken from the
cracks of the repaired samples and made into thin slices and powders to observe the micro-
scopic morphology of the healing products at the cracks by scanning electron microscopy
(SEM) and X-ray diffraction (XRD), respectively. In this study, samples of the healing
products at the cracks were obtained from the control group and specimens containing
only CA, only SAP, and both CA and SAP. Moreover, the mechanism of the action of CA
and SAP in the self-healing process of concrete was investigated by comparative analysis.
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Table 3. Dosage of different mortar specimen components.

Mortar
Sand Cement CA CA/C SAP SAP/C Water

(g) (g) (g) (%) (g) (%) (g)

O 1800 900 450

A
A1 1800 895.5 4.5 0.5 450
A2 1800 891 9 1 450
A3 1800 882 18 2 450

B
B1 1800 900 1.8 0.2 450
B2 1800 900 4.5 0.5 450
B3 1800 900 9 1 450

C
C1 1800 895.5 4.5 0.5 1.8 0.2 450
C2 1800 895.5 4.5 0.5 4.5 0.5 450
C3 1800 895.5 4.5 0.5 9 1 450

D
D1 1800 891 9 1 1.8 0.2 450
D2 1800 891 9 1 4.5 0.5 450
D3 1800 891 9 1 9 1 450

E
E1 1800 882 18 2 1.8 0.2 450
E2 1800 882 18 2 4.5 0.5 450
E3 1800 882 18 2 9 1 450

3. Results and Discussion
3.1. Material Properties
3.1.1. Compressive Strength

Compressive strength, which is a basic mechanical property of concrete, is a common
index used to characterise the performance of concrete. The experimental results of the
28-day compressive strength of different specimens are shown in Figure 1. As shown in
the figure, there is a small reduction in the compressive strength of specimens in Group A
compared with the control mortar because the addition of CA to the cement results in
the consumption of cement and water during the hydration process, according to ACI
Committee 212 [35], thereby affecting the hydration of cement to some extent and resulting
in reduced mortar strength. ACI 212 reports that silicates of tricalcium are CA-reacted
cement-based compounds, and other authors point out the reactive nature of the calcium
hydroxide [17]. According to the ACI Committee 212 report, the general process follows
Equation (1) [35], in which tricalcium silicates and water react with a crystalline MXRX
promoter, where M represents some metal ions and R represents some reactive groups.
MxRx is primarily an unstable complex containing calcium ions, thus forming modified
calcium silicate hydrates and pore blocking precipitates with cement and water. Addition-
ally, the peak compressive strength was obtained when the amount of CA incorporated
in the cement was between 0.5% and 2%. The compressive strength of the mortar spec-
imens in Group B decreased with an increase in the SAP admixture content. However,
the compressive strength of mortar was higher than that of the control group when the
amount of SAP admixture was 0.2%. Thus, peak compressive strength was observed
when the amount of SAP admixture in the cement was between 0 and 0.2%. Because SAP
absorbs water and expands when there is excess water in the mortar, and when there is
a shortage of water inside the mortar, SAP releases the water inside it and promotes the
hydration of the cement inside the mortar. [36,37]. However, with the increase in SAP
content, microporosity increases in the process of releasing water, thereby reducing the
compressive strength of the mortar [33,38]. The compressive strength of Groups C, D, and
E showed an overall decreasing trend with the increase in admixture content. When the
SAP admixture content was 0.2% (C1, D1, E1), the compressive strength of the mortar was
close to that of the control group and exceeded that of Group A. This was because of the
release of water from SAP during the reaction of CA. This reduced the adverse effect of CA
on the hydration reaction of cement. However, the products of the CA reaction filled the
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micropores formed by the release of water from SAP. These reaction processes improved
the hydration of the cement in Groups C1, D1, and E1 and increased the compressive
strength of the mortar. It can be seen that by adding appropriate amounts of CA and SAP
at the same time, the advantageous effects of CA and SAP can be combined effectively to
improve the compressive strength of mortar. Furthermore, it can be observed from the
figure that no peak compressive strength was observed when the CA content was between
0.5% and 2% when a defined amount of SAP was incorporated. This is owing to the stress
concentration of micropores formed by the release of water from SAP. Moreover, SAP has a
greater effect on the compressive strength of mortar than CA.

3CaO− SiO2 + MxRx + H2O→ CaxSixOxR− (H2O)x + MxCaRx − (H2O)x (1)

Calcium silicate + crystalline enhancer + water→modified calcium silicate hydrate + pore
blocking precipitate
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3.1.2. Flexural Strength

Considering the different stress positions and states, the effect of mixing CA and SAP
on the flexural strength of mortar was further investigated in this study. The experimental
results of the 28-day flexural strength tests of different specimens are shown in Figure 2. As
shown in the figure, the trend of the flexural strength of different specimens is basically
the same as that of the compressive strength. However, the main difference is that when
both CA and SAP are added, the peak flexural strength occurs when the CA content ranges
from 0.5% to 2% depending on the determined SAP admixture content. Improved flexural
strength was observed in mortar containing 0.2% SAP and 1% CA. This is because CA
affects the hydration reaction of cement and reduces the joint strength of mortar. Moreover,
CA has a greater effect on the flexural strength of mortar than SAP.
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3.1.3. Repair Strength

To reveal the effect of CA and SAP at different ratios on the self-healing performance of
concrete, mortars with different curing ages after pre-cracking were subjected to compres-
sion experiments to measure the repair strength and strength repair rate. The experimental
results of compressive strength and the calculated results of strength repair rate of different
samples at different curing ages are shown in Figures 3 and 4, respectively. As shown in
Figures 3a and 4a, in the early healing stage after 3 d of pre-cracking curing, the compressive
strength of mortar was high when CA content was low, and peak compressive strength was
not observed when CA content was between 0.5% and 2%. This is because as the amount of
CA increases, it reacts with more cement and has a negative impact on the mortar strength.
The mortar mixed with 0.2% SAP also achieved higher strength than the control group
in the early healing stage, but the strength repair rate of all specimens in Group B mixed
with only SAP was lower because SAP fills the cracks by physical expansion during the
crack repair process [20,39,40] and has little effect on strength repair. When CA and SAP
are mixed with the mortar simultaneously, the specimens mixed with 1% CA and 0.2%
SAP had the highest strength and the highest strength repair rate in the early healing stage.
This is because in the self-healing process of mortar, SAP reduces the width of cracks by
expansion, enabling CA to have a better repairing effect on tiny cracks [32] and enhancing
the strength of the mortar. The addition of CA and SAP at an appropriate ratio can improve
the self-healing effect of mortar [30].

The repair strength and strength repair rates of different samples after 7 d of pre-
cracking care are shown in Figures 3b and 4b. As shown in the figure, the overall highest
repair strength and strength repair rate were observed in Group A specimens because the
role of CA in crack repair gradually became obvious in the middle of the healing stage
and became the main factor for compressive strength repair. The overall compressive
strength and strength repair rates of Group B specimens were lower because SAP filled
the cracks by physical expansion and had a more obvious advantage in the early healing
stage where large cracks existed [41]. However, the effect was not obvious in the middle
healing stage, where only micro cracks existed. When CA and SAP were mixed in the
mortar simultaneously, 0.2% SAP content had a more obvious advantage in strength repair
compared with other specimen doses.
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The repair strength and strength repair rate of different samples after 28 d of pre-
cracking care are shown in Figures 3c and 4c. As shown in the figure, the strength repair
rates of specimens in Groups A1 and A2 reached 107.8% and 106.1%, respectively, and the
repair strength of specimens in Group A2 exceeded the initial compressive strength of the
control group. This is because CA increases the mortar density during the reaction and
obtains the product for repairing cracks. This finding is similar to some existing research
results, which state that a certain amount of CA can improve the strength repair rate by
more than 100% [42]. The difference is that the repair strength and strength repair rate of
the A3 group specimens are lower in the final healing stage because of mixing excessive
CA, which does not react, thereby reducing the strength of mortar during the crack repair
process. The Group B specimens did not show satisfactory results in terms of compressive
strength repair. In the samples mixed with CA and SAP simultaneously, by controlling
the SAP content at 0.2%, we were able to obtain an improved repair strength and strength
repair rate. The specimen in Group C1 mixed with 0.5% CA showed the maximum repair
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strength in the final healing stage at 28 days. The low strength repair rate was owing to the
higher initial compressive strength.

Based on the above analysis, the initial compressive and flexural strengths of different
samples, and the strength repair ability shown at different curing ages after pre-cracking,
it is apparent that the condition of the crack repair varies with the timing of maintenance
and is dependent on the dopants used. Most possibly, this is the result of the production
rate of the mortar healing product during the various reactions. The optimal amounts of
0.5% CA and 0.2% SAP can effectively combine the physical expansion of SAP to reduce
the crack width and the chemical reaction products of CA to fill the tiny cracks. This not
only improves the healing effect of the mortar but also enhances its repair strength and
thereby improving its mechanical properties.
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3.2. Healing Products
3.2.1. Crack Healing Pattern

The self-healing performance of mortar can be judged visually by observing the
healing state of cracks on the specimen surface. The recovery of cracks on the surface of
each specimen group observed via a stereo microscope is shown in Figures 5–8. As shown
in Figure 5, the penetration cracks in the control specimens showed very limited crack
repair after 3, 7, and 28 d of in-water curing. This is because ordinary mortar can only repair
cracks by further hydration of the internal unhydrated cement. This process has a limited
effect and can only repair very small cracks. As shown in Figure 6, penetration cracks in
specimens mixed with only CA were repaired to some extent by maintenance in water for
3, 7, and 28 days. The repair of cracks with tiny widths was more satisfactory. As shown
in Figure 6a, when the crack is about 70 microns, the crack is well repaired. However,
the repair of cracks with larger widths was poor, as shown in Figure 6b when the crack is
150 microns, it is difficult for the crack to be repaired. This indicates that the crystalline
dopant fills the cracks through the chemical reaction to generate products, and the effect is
obvious for cracks with small widths. However, this effect on cracks with larger widths is
limited. As shown in Figure 7, in specimens containing only SAP, the penetration cracks
were repaired to some extent by maintenance in water for 3, 7, and 28 days. Compared
with the specimens mixed with only CA, it can be observed that the effect of SAP is more
obvious for cracks with a width of more than 200 microns. More than half of the crack
width can be repaired by 28 days of maintenance in water because SAP fills the cracks by
absorbing water and expanding, thereby reducing the width of the cracks and resulting in
a better healing effect. As shown in Figure 8, for specimens mixed with CA and SAP, the
penetration cracks were repaired by curing in water for 3, 7, and 28 days. Compared with
the specimens mixed with only CA or SAP, it can be observed that the specimens mixed
with CA and SAP showed excellent self-healing performance in the full cycle of self-healing
for the same large width cracks, with the cracks almost filled after 28 days maintenance in
water. This is a combination of the advantages of CA and SAP in the self-healing process
of mortar: SAP absorbs water and expands to fill the wide cracks, whereas CA reacts to
generate products that fill the tiny cracks. Thus, the mortar is denser, which improves its
self-healing effect.
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3.2.2. Microscopic Analysis Results

To further investigate the mechanism of property changes after healing, the morpholo-
gies of the healing products were observed using SEM, and the chemical compositions of
the healing products were observed using XRD. This information was used to determine
the type of healing product. The morphologies of the mortar healing products obtained by
adding CA only (S1), SAP only (S2), and both CA and SAP (S3) are shown in Figures 9–11
(red circle). As shown in the figure, the healing products are needle-like crystals, which
agrees with the findings of Wang et al. [43]. Additionally, it can be observed from the figure
that the mortar healing products obtained by mixing with only CA were denser, the mortar
healing products obtained by mixing with only SAP were agglomerated into spherical
shapes and sparse, and the mortar healing products obtained by mixing with CA and
SAP were also agglomerated into spherical shapes, but denser. Based on the needle-like
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crystalline morphology, the healing product is judged to be calcium silicate. By comparing
the spherical crystals shown in Figures 10 and 11, it is judged that the healing products are
preferentially generated on the surface of SAP, and the difference in the degree of denseness
is the effect of the chemical reaction products of CA. This is consistent with the dense
crystals generated by CA, as shown in Figure 9, reflecting the effect of coupling CA and
SAP with complementary advantages.
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The XRD analysis results of the healing products of the control group (X1) and the
specimens mixed with CA and SAP simultaneously (X2) are shown in Figures 12 and 13,
respectively. As shown in the figure, the control healing product contained mainly calcium
hydroxide and calcium carbonate. The healing products of the CA and SAP groups were
calcium carbonate and calcium silicate. It is evident that compared with the control group,
the CA and SAP groups have no peak in the interval represented by calcium hydroxide in
the XRD analysis graph, whereas the interval represented by calcium silicate has a peak,
and the peak representing calcium carbonate has a shift to the left in the 25–30 interval. In
addition, SAP does not produce a chemical reaction in mortar, indicating that the crystalline
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admixture consumes calcium hydroxide and produces calcium silicate during the chemical
reaction, and the combination of CA and SAP forms a denser calcium carbonate. In addition
to the SEM and XRD analysis results, it can be observed that there is a large amount of
silicate ions, which fill the cracks by combining with free calcium ions to form calcium
silicate inside the mortar. At the surface of the cracks, the combination of water and carbon
dioxide in the air produces large amounts of carbonate ions that can combine with free
calcium ions to form calcium carbonate products. Therefore, the self-healing product in
the mortar cracks is primarily calcium silicate, whereas the self-healing products on the
crack surface are mainly calcium silicate and calcium carbonate. The working principle of
the coupling action between CA and SAP is shown in Figure 14. SAP reduces the internal
crack width by expansion to provide better conditions for the CA reaction, which produces
calcium silicate to fill the internal cracks. Meanwhile, carbon dioxide in the air and water
form carbonate ions with calcium ions in the specimen to form calcium carbonate that
covers the crack surface.
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4. Conclusions

In this study, the effects of two dopants with different mechanisms of action and
dosages on the mechanical and self-healing properties of mortar were investigated by
adding CA and SAP in different amounts independently and together. The specimens
were cured by pre-cracking and then placed in water for 3, 7, and 28 days. The effects
of CA and SAP at different ages and the recovery of mechanical properties of the mortar
were investigated. Additionally, microscopic observation and identification of the repair of
mortar cracks and the generated filling products were performed using optical microscopy,
SEM, and XRD. The conclusions drawn from the experiments are as follows:

1. SAP has a greater effect on the compressive strength of mortar compared with CA,
whereas CA has a greater effect on the flexural strength of mortar compared with SAP.
Mixing CA and SAP simultaneously and controlling the dosing ratio can effectively
combine the advantageous effects of CA and SAP to improve the mortar strength.

2. SAP can effectively reduce the width of cracks through physical expansion, whereas
CA can fill microcracks through chemical reactions to produce a dense material.
Compared with the control mortar, mortar mixed with only CA, and mortar mixed
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with only SAP, mortar mixed with appropriate amounts of CA (0.5%) and SAP (0.2%)
can optimise the self-healing effect and enhance the repair strength so that the strength
of mortar after repair reaches 46 MPa and the strength repair rate reaches 103%.

3. It was observed by optical microscopy that CA has obvious advantages in the self-
healing of microcracks. However, this effect is limited to wider cracks. SAP can fill
wider cracks effectively, but not completely. The self-healing performance of mortar
can be improved by combining the advantages of CA and SAP.

4. From the SEM and XRD analyses, it can be determined that the self-healing filler
generated in the cracks is primarily calcium silicate, whereas the healing products
generated on the crack surface are primarily calcium silicate and calcium carbonate in
the mortar mixed with CA and SAP.
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