Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Micromorphology and Microstructure
3.2. Microwave Absorption Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, B.; Wang, X.; Cao, W.; Shi, H.; Lu, M.; Wang, G.; Jin, H.; Wang, W.; Yuan, J.; Cao, M. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754–5761. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, L.M.; Wu, H.J. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective. J. Phys. D-Appl. Phys. 2021, 54, 37. [Google Scholar] [CrossRef]
- Shen, J.Y.; Zhang, D.F.; Wu, Q.B.; Wang, Y.; Gao, H.; Yu, J.L.; Zeng, G.X.; Zhang, H.Y. Pyrolysis-controlled FeCoNi@hard carbon composites with facilitated impedance matching for strong electromagnetic wave response. J. Mater. Chem. C 2021, 9, 13447–13459. [Google Scholar] [CrossRef]
- Li, M.H.; Fan, X.M.; Xu, H.L.; Ye, F.; Xue, J.M.; Li, X.Q.; Cheng, L.F. Controllable synthesis of mesoporous carbon hollow microsphere twined by CNT for enhanced microwave absorption performance. J. Mater. Sci. Technol. 2020, 59, 164–172. [Google Scholar] [CrossRef]
- Hua, A.; Li, Y.; Pan, D.S.; Luan, J.; Wang, Y.; He, J.; Tang, S.F.; Geng, D.Y.; Ma, S.; Liu, W.; et al. Enhanced wideband microwave absorption of hollow carbon nanowires derived from a template of Al4C3@C nanowires. Carbon 2020, 161, 252–258. [Google Scholar] [CrossRef]
- Xu, H.L.; Yin, X.W.; Li, X.L.; Li, M.H.; Zhang, L.T.; Cheng, L.F. Thermal stability and dielectric properties of 2D Ti2C MXenes via annealing under a gas mixture of Ar and H2 atmosphere. Funct. Compos. Struct. 2019, 1, 8. [Google Scholar] [CrossRef]
- Li, Y.X.; Fu, R.; Wang, X.D.; Guo, X.L. Preparation of core-shell nanostructured black nano-TiO2 by sol-gel method combined with Mg reduction. J. Mater. Res. 2018, 33, 4173–4181. [Google Scholar] [CrossRef]
- Zhou, X.J.; Wen, J.W.; Wang, Z.N.; Ma, X.H.; Wu, H.J. Size-controllable porous flower-like NiCo2O fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. J. Colloid Interface Sci. 2021, 602, 834–845. [Google Scholar] [CrossRef]
- Sadeghi, R.; Sharifi, A.; Orlowska, M.; Huynen, I. Investigation of Microwave Absorption Performance of CoFe2O4/NiFe2O4/Carbon Fiber Composite Coated with Polypyrrole in X-Band Frequency. Micromachines 2020, 11, 13. [Google Scholar] [CrossRef]
- Ozah, S.; Bhattacharyya, N.S. Development of BaAlxFe12-xO19-NPR nanocomposite as an efficient absorbing material in the X-band. J. Magn. Magn. Mater. 2015, 374, 516–524. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Guo, Y.; Ali, R.; Tian, W.; Liu, Y.F.; Zhang, L.; Wang, X.; Zhang, L.B.; Yin, L.J.; Su, H.; et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloy. Compd. 2020, 828, 9. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.; Li, D.; Yang, B.; Li, L.; Zhao, X.; Zuo, L. Enhanced electromagnetic wave absorption properties of Ni2MnGa microparticles due to continuous dual-absorption peaks. J. Alloy. Compd. 2020, 816, 152588. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Zhou, W.C.; Li, R.; Mu, Y.; Qing, Y.C. Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating. J. Alloy. Compd. 2015, 637, 10–15. [Google Scholar] [CrossRef]
- Zare, Y.; Shams, M.H.; Jazirehpour, M. Tailoring complex permittivity and permeability to enhance microwave absorption properties of FeCo alloy particles through adjusting hydrazine reduction process parameters. Mater. Res. Express 2020, 7, 036516. [Google Scholar] [CrossRef]
- Liu, L.L.; Kuang, D.T.; Hou, L.Z.; Luo, H.; Deng, L.W.; Wang, S.L. Synthesis and microwave absorption performance of layered hard carbon embedded with ZnO nanoparticles. J. Alloy. Compd. 2022, 895, 12. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Xu, Y.G.; Yuan, L.M.; Gai, J.; Zhang, D.Y. Microwave Absorption and Shielding Property of Composites with FeSiAl and Carbonous Materials as Filler. J. Mater. Sci. Technol. 2012, 28, 913–919. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, X.Z.; Guo, Y.; Mu, C.H.; Zhou, P.H.; Yin, L.J.; Zhang, L.B.; Zhang, L.; Lu, H.P.; Jian, X.; et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 2021, 173, 185–193. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.L.; Shen, Y.; Bi, H.; Liang, W.F.; Yang, R.B. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloy. Compd. 2013, 548, 18–22. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.J.; Zhao, F. Study on the electromagnetic properties and microwave absorbing mechanism of flaky FeSiAl alloy based on annealing and phosphate coating. Mater. Res. Express 2021, 8, 13. [Google Scholar] [CrossRef]
- Lei, C.L.; Du, Y.W. Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites. J. Alloy. Compd. 2020, 822, 6. [Google Scholar] [CrossRef]
- Feng, Y.B.; Tang, C.M.; Qiu, T. Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2013, 178, 1005–1011. [Google Scholar] [CrossRef]
- Feng, L.; Li, W.C.; Wang, Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy. J. Magn. Magn. Mater. 2022, 541, 7. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.X.; Bai, Z.H.; Sun, P.H.; Tang, S.Y.; Han, K.J.; Zuo, Y.P.; Wang, F.; Yang, N.T.; Bian, C. Surface modification engineering of iron-silicon-aluminum alloys: Microstructure evolution investigation and microwave absorption enhancement. J. Alloy. Compd. 2022, 909, 8. [Google Scholar] [CrossRef]
- He, J.; Deng, L.; Liu, S.; Yan, S.; Luo, H.; Li, Y.; He, L.; Huang, S. Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl. J. Magn. Magn. Mater. 2017, 444, 49–53. [Google Scholar] [CrossRef]
- Kercher, A.K.; Nagle, D.C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon 2003, 41, 15–27. [Google Scholar] [CrossRef]
- Li, D.; He, C.; Wu, R.; Xu, H.; Zhang, F. The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties. Materials 2022, 15, 4274. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, Z.; Hussain, G.; Zhou, L.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Shi, X.; Huang, M.; Li, X.; Zeng, Q.; Che, R. Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale 2021, 13, 2136–2156. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.B.; Jia, Y.S.; Yang, B.; Liu, S.J.; Zhao, X.; Li, L.W.; Zuo, L. Significant high-frequency electromagnetic wave absorption performance of Ni2+xMn1-xGa alloys. J. Mater. Sci. 2018, 53, 11779–11790. [Google Scholar] [CrossRef]
- Yan, X.; Mu, X.Y.; Zhang, Q.S.; Ma, Z.W.; Song, C.L.; Hu, B. A Study on the Static Magnetic and Electromagnetic Properties of Silica-Coated Carbonyl Iron Powder after Heat Treatment for Improving Thermal Stability. Materials 2022, 15, 11. [Google Scholar] [CrossRef]
- Kuang, D.; Wang, S.; Hou, L.; Luo, H.; Deng, L.; Chen, C.; Song, M.; Mead, J.L.; Huang, H. A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology 2020, 32, 105701. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.; Hou, L.; Wang, S.; Luo, H.; Deng, L.; He, J.; Song, M. Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber. Appl. Surf. Sci. 2019, 493, 1083–1089. [Google Scholar] [CrossRef]
- Kuang, D.; Hou, L.; Wang, S.; Luo, H.; Deng, L.; Mead, J.L.; Huang, H.; Song, M. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon 2019, 153, 52–61. [Google Scholar] [CrossRef]
- Kuang, D.; Wang, S.; Hou, L.; Luo, H.; Deng, L.; Song, M.; He, J.; Huang, H. Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles. MRS Bull. 2020, 126, 110837. [Google Scholar] [CrossRef]
S0 | S1 | S2 | S3 | S4 | |
---|---|---|---|---|---|
FeSiAl (wt%) | 100 | 56.2 | 38.7 | 30.0 | 24.3 |
HC (wt%) | 0 | 43.8 | 61.7 | 70.0 | 75.7 |
Mr (emu/g) | 116.0 | 64.4 | 58.1 | 50.2 | 40.3 |
Absorber | Content (wt%) | Carbon (wt%) | RLmin (dB) | tm (mm) | Δf (GHz) (RL ≤ −10 dB) | Reference |
---|---|---|---|---|---|---|
S0 | 25 | 0 | −32.16 | 5 | 2 | This work |
S1 | 25 | 43.8 | −22.28 | 2.5 | 2.56 | This work |
S2 | 25 | 61.7 | −21.21 | 2.5 | 12.32 | This work |
S3 | 25 | 70 | −36.10 | 3 | 11.7 | This work |
S4 | 25 | 75.7 | −18.70 | 2 | 6.32 | This work |
FeSiAl/graphite | 40 | 10 | −14 | 4 | 6.5 | [18] |
FeSiAl/graphite | 40 | 20 | −23 | 3.5 | 13.3 | [18] |
FeSiAl@C | −15.68 | 4 | 2 | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Liu, Y.; Kuang, D.; Lu, J.; Yang, J.; Peng, X.; Wu, A. Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties. Materials 2022, 15, 6068. https://doi.org/10.3390/ma15176068
Sun X, Liu Y, Kuang D, Lu J, Yang J, Peng X, Wu A. Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties. Materials. 2022; 15(17):6068. https://doi.org/10.3390/ma15176068
Chicago/Turabian StyleSun, Xiaogang, Yi Liu, Daitao Kuang, Jun Lu, Junyi Yang, Xiaomin Peng, and Anru Wu. 2022. "Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties" Materials 15, no. 17: 6068. https://doi.org/10.3390/ma15176068
APA StyleSun, X., Liu, Y., Kuang, D., Lu, J., Yang, J., Peng, X., & Wu, A. (2022). Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties. Materials, 15(17), 6068. https://doi.org/10.3390/ma15176068