Correlation between Nonlinear Optical Effects and Structural Features of Aurone-Based Methacrylic Polymeric Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. SHG and THG Experiments
2.3. Corona Poling Technique
2.4. Theoretical Calculations
3. Results and Discussion
3.1. Spectroscopic Studies
3.2. Nonlinear Optical Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Oh, M.-C.; Chu, W.-S.; Shin, J.-S.; Kim, J.-W.; Kim, K.-J.; Seo, J.-K.; Lee, H.-K.; Noh, Y.-O.; Lee, H.-J. Polymeric optical waveguide devices exploiting special properties of polymer materials. Opt. Commun. 2016, 362, 3–12. [Google Scholar] [CrossRef]
- Jung, Y.S.; Jung, W.; Tuller, H.L.; Ross, C.A. Nanowire Conductive Polymer Gas Sensor Patterned Using Self-Assembled Block Copolymer Lithography. Nano Lett. 2008, 8, 3776–3780. [Google Scholar] [CrossRef] [PubMed]
- Peters, G.M.; Tovar, J.D. Pendant Photochromic Conjugated Polymers Incorporating a Highly Functionalizable Thieno [3,4-b] thiophene Switching Motif. J. Am. Chem. Soc. 2019, 141, 3146–3152. [Google Scholar] [CrossRef] [PubMed]
- Hagen, R.; Bieringer, T. Photoaddressable Polymers for Optical Data Storage. Adv. Mater. 2001, 13, 1805–1810. [Google Scholar] [CrossRef]
- Garnier, F.; Hajlaoui, R.; Yassar, A.; Srivastava, P. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science 1994, 265, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B. Optical properties of coumarins containing copolymers. Opt. Mater. 2015, 47, 18–23. [Google Scholar] [CrossRef]
- Marder, S.R.; Kippelen, B.; Jen, A.K.Y.; Peyghambarian, N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 1997, 388, 845–851. [Google Scholar] [CrossRef]
- Gindre, D.; Iliopoulos, K.; Krupka, O.; Evrard, M.; Champigny, E.; Sallé, M. Coumarin-Containing Polymers for High Density Non-Linear Optical Data Storage. Molecules 2016, 21, 147. [Google Scholar] [CrossRef]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4176. [Google Scholar] [CrossRef]
- Yu, H.; Kobayashi, T. Photoresponsive Block Copolymers Containing Azobenzenes and Other Chromophores. Molecules 2010, 15, 570–603. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Shevchenko, A. Azopolymer-based micro- and nanopatterning for photonic applications. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 163–182. [Google Scholar] [CrossRef]
- Koynov, K.; Bahtiar, A.A.; Bubeck, C.; Mühling, B.; Meier, H. Effect of Donor−Acceptor Substitution on the Nonlinear Optical Properties of Oligo(1,4-phenyleneethynylene)s Studied by Third Harmonic Generation Spectroscopy. J. Phys. Chem. B 2005, 109, 10184–10188. [Google Scholar] [CrossRef] [PubMed]
- Derkowska-Zielinska, B.; Skowronski, L.; Kozlowski, T.; Smokal, V.; Kysil, A.; Biitseva, A.; Krupka, O. Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Opt. Mater. 2015, 49, 325–329. [Google Scholar] [CrossRef]
- Sekkat, Z.; Knoll, W. Photoreactive Organic Thin Films; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Kajzar, F.; Krupka, O.; Pawlik, G.; Mitus, A.; Rau, I. Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer. Mol. Cryst. Liq. Cryst. 2010, 522, 180–190. [Google Scholar] [CrossRef]
- Kobatake, S.; Yamada, T.; Uchida, K.; Kato, N.; Irie, M. Photochromism of 1,2-Bis(2,5-dimethyl-3-thienyl)perfluoro- cyclopentene in a Single Crystalline Phase. J. Am. Chem. Soc. 1999, 121, 2380–2386. [Google Scholar] [CrossRef]
- Kohno, Y.; Tamura, Y.; Natsushima, R. Simple full-color rewritable film with photochromic fulgide derivatives. J. Photochem. Photobiol. A Chem. 2009, 201, 98–101. [Google Scholar] [CrossRef]
- Derkowska-Zielinska, B.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Skowronski, L. Optical properties of disperse dyes doped poly(methyl methacrylate). Mol. Cryst. Liq. Cryst. 2016, 639, 87–93. [Google Scholar] [CrossRef]
- Smokal, V.; Derkowska, B.; Czaplicki, R.; Krupka, O.; Kolendo, A.; Sahraoui, B. Nonlinear optical properties of thiazolidinone derivatives. Opt. Mater. 2009, 31, 554–557. [Google Scholar] [CrossRef]
- El Ouazzani, H.; Iliopoulos, K.; Pranaitis, M.; Krupka, O.; Smokal, V.; Kolendo, A.; Sahraoui, B. Second- and Third-Order Nonlinearities of Novel Push−Pull Azobenzene Polymers. J. Phys. Chem. B 2011, 115, 1944–1949. [Google Scholar] [CrossRef] [Green Version]
- Guichaoua, D.; Kulyk, B.; Smokal, V.; Migalska-Zalas, A.; Kharchenko, O.; Krupka, O.; Kolendo, O.; Sahraoui, B. UV irradiation induce NLO modulation in photochromic styrylquinoline-based polymers: Computational and experimental studies. Org. Electron. 2018, 66, 175–182. [Google Scholar] [CrossRef]
- Smokal, V.; Kharchenko, O.; Karabets, Y.; Iukhymenko, N.; Kysil, A.; Krupka, O.; Kolendo, A. Photochemical activities of polymers with aurone fragment. Mol. Cryst. Liq. Cryst. 2018, 672, 11–17. [Google Scholar] [CrossRef]
- Herman, W.N.; Hayden, L.M. Maker fringes revisited: Second-harmonic generation from birefringent or absorbing materials. J. Opt. Soc. Am. B 1995, 12, 416–427. [Google Scholar] [CrossRef]
- Jerphagnon, J.; Kurtz, S.K. Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals. J. Appl. Phys. 1970, 41, 1667–1681. [Google Scholar] [CrossRef]
- Sahraoui, B.; Luc, J.; Meghea, A.; Czaplicki, R.; Fillaut, J.-L.; Migalska-Zalas, A. Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes. J. Opt. A Pure Appl. Opt. 2009, 11, 024005. [Google Scholar] [CrossRef]
- Mydlova, L.; Taboukhat, S.; Waszkowska, K.; Ibrahim, N.; Migalska-Zalas, A.; Sahraoui, B.; Frère, P.; Makowska-Janusik, M. Selected molecules based on (-1-cyanovinyl)benzonitrile as new materials for NLO applications-Experimental and computational studies. J. Mol. Liq. 2020, 314, 113622. [Google Scholar] [CrossRef]
- Tahir, H.; Kosar, N.; Ayub, K.; Mahmood, T. Outstanding NLO response of thermodynamically stable single and multiple alkaline earth metals doped C20 fullerene. J. Mol. Liq. 2020, 305, 112875. [Google Scholar] [CrossRef]
- Homocianu, M.; Airinei, A.; Hamciuc, C.; Ipate, A.-M. Nonlinear optical properties (NLO) and metal ions sensing responses of a polymer containing 1,3,4-oxadiazole and bisphenol A units. J. Mol. Liq. 2019, 281, 141–149. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, UK, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Gordon, M.S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a Decade Later. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [Google Scholar] [CrossRef]
- Lee, G.J.; Cha, S.W.; Jeon, S.J.; Jin, J.I.; Yoon, J.S. Second-order nonlinear optical properties of unpoled bent molecules in powder and in vacuum-deposited film. J. Korean Phys. Soc. 2001, 39, 912–915. [Google Scholar]
- Kubodera, K.; Kobayashi, H. Determination of Third-Order Nonlinear Optical Susceptibilities for Organic Materials by Third-Harmonic Generation. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1990, 182, 103–113. [Google Scholar] [CrossRef]
- Kajzar, F.; Okada-Shudo, Y.; Meritt, C.; Kafafi, Z. Second- and third-order non-linear optical properties of multilayered structures and composites of C60 with electron donors. Synth. Met. 2001, 117, 189–193. [Google Scholar] [CrossRef]
- Wang, X.H.; West, D.P.; McKeown, N.B.; King, T.A. Determining the cubic susceptibility χ(3) of films or glasses by the Maker fringe method: A representative study of spin-coated films of copper phthalocyanine derivation. J. Opt. Soc. Am. B 1998, 15, 1895–1903. [Google Scholar] [CrossRef]
- Waszkowska, K.; Krupka, O.; Kharchenko, O.; Figà, V.; Smokal, V.; Kutsevol, N.; Sahraoui, B. Influence of ZnO nanoparticles on nonlinear optical properties. Appl. Nanosci. 2020, 10, 4977–4982. [Google Scholar] [CrossRef]
- Cojan, C.; Agrawal, G.P.; Flytzanis, C. Optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 1997, 15, 909–925. [Google Scholar] [CrossRef]
- Migalska-Zalas, A. Theoretical study of the effect of π-conjugated transmitter of D–π–A ruthenium systems on the quadratic NLO properties. Opt. Quantum Electron. 2016, 48, 183. [Google Scholar] [CrossRef]
- Hurst, S.K.; Cifuentes, M.P.; Morrall, J.P.L.; Lucas, N.T.; Whittall, I.R.; Humphrey, M.G.; Asselberghs, I.; Persoons, A.; Samoc, M.; Luther-Davies, B.; et al. Organometallic Complexes for Nonlinear Optics. 22.1 Quadratic and Cubic Hyperpolarizabilities of trans-Bis(bidentate phosphine)ruthenium σ-Arylvinylidene and σ-Arylalkynyl Complexes. Organometallics 2001, 20, 4664–4675. [Google Scholar] [CrossRef]
- Senthilvelan, N.; Rajarajan, G.; Jegatheesan, A.; Sivakumar, S.; Elanchezhiyan, J. Growth and Spectroscopic Characterization of Urea Sulphamic Acid Crystal: A Second-Ordernonlinear Material. Rasayan J. Chem. 2017, 10, 218–225. [Google Scholar] [CrossRef]
- Leupacher, W.; Penzkofer, A. Third-order nonlinear susceptibilities of dye solutions determined by third-harmonic generation. Appl. Phys. A 1985, 36, 25–31. [Google Scholar] [CrossRef] [Green Version]
Sample | λabs (nm) | α(355nm) (103 cm−1) |
---|---|---|
P1 | 452 | 18.30 |
P2 | 320; 375 | 11.84 |
P3 | 316; 382 | 15.14 |
Sample | Thickness d (μm) | χ(2), pmV−1 | χ(3), 10−22 m2V−2 | ||
---|---|---|---|---|---|
S | P | S | P | ||
Y-cut quartz [36] | 1000 | 1.00 | - | ||
Silica glass [37] | 1000 | - | 2.00 | ||
P1 | 0.500 | 2.03 | 29.54 | 229.2 | 226.1 |
P2 [38] | 0.300 | 0.34 | 0.67 | 3.9 | 4.2 |
P3 | 0.317 | 0.64 | 2.91 | 96.7 | 97.7 |
Sample | Dipole Moment (D) | HOMO (eV) | LUMO (eV) | (Eg)HOMO–LUMO (eV) |
---|---|---|---|---|
P1 | 8.71 | −5.447 | −2.376 | 3.071 |
P2 | 4.71 | −6.368 | −2.769 | 3.599 |
P3 | 5.98 | −6.831 | −3.441 | 3.391 |
Sample | Calculations B3LYP/6-311++G (d,p) | Experiment | ||
---|---|---|---|---|
βtot × 10−30, esu | γtot × 10−36, esu | χ(2), pmV−1 | χ(3), 10−22 m2V−2 | |
P1 | 907.044 | 984.868 | 29.54 | 226.1 |
P2 | 114.946 | 165.064 | 0.67 | 4.2 |
P3 | 177.302 | 425.405 | 2.91 | 97.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waszkowska, K.; Krupka, A.; Smokal, V.; Kharchenko, O.; Migalska-Zalas, A.; Frasinyuk, M.; Wielgosz, R.; Andrushchak, A.; Sahraoui, B. Correlation between Nonlinear Optical Effects and Structural Features of Aurone-Based Methacrylic Polymeric Thin Films. Materials 2022, 15, 6076. https://doi.org/10.3390/ma15176076
Waszkowska K, Krupka A, Smokal V, Kharchenko O, Migalska-Zalas A, Frasinyuk M, Wielgosz R, Andrushchak A, Sahraoui B. Correlation between Nonlinear Optical Effects and Structural Features of Aurone-Based Methacrylic Polymeric Thin Films. Materials. 2022; 15(17):6076. https://doi.org/10.3390/ma15176076
Chicago/Turabian StyleWaszkowska, Karolina, Anastasiia Krupka, Vitaliy Smokal, Oksana Kharchenko, Anna Migalska-Zalas, Mykhaylo Frasinyuk, Robert Wielgosz, Anatoliy Andrushchak, and Bouchta Sahraoui. 2022. "Correlation between Nonlinear Optical Effects and Structural Features of Aurone-Based Methacrylic Polymeric Thin Films" Materials 15, no. 17: 6076. https://doi.org/10.3390/ma15176076
APA StyleWaszkowska, K., Krupka, A., Smokal, V., Kharchenko, O., Migalska-Zalas, A., Frasinyuk, M., Wielgosz, R., Andrushchak, A., & Sahraoui, B. (2022). Correlation between Nonlinear Optical Effects and Structural Features of Aurone-Based Methacrylic Polymeric Thin Films. Materials, 15(17), 6076. https://doi.org/10.3390/ma15176076