Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE—Actinide Fraction of HLW
Abstract
:1. Introduction
2. Requirements (Selection Criteria) for High-Level Waste Immobilization Matrices
3. Zirconolite and Murataite as Matrices for the Immobilization of Actinides
4. Characteristics of Electron Backscatter Diffraction Method
5. EBSD Study of Zirconolite Polytypes and Murataite Polysomes
5.1. Zirconolite—Murataite Matrix with Thorium (Sample “Th”)
5.2. Pyrochlore—Zirconolite Ceramic with Neodymium (Sample “Nd”)
6. On the Simulators of Actinides and REE-Actinide Fraction in Nuclear Waste Matrices
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Adamov, E.O.; Mochalov, Y.S.; Rachkov, V.I.; Khomyakov, Y.S.; Shadrin, A.Y.; Kascheev, V.A.; Khaperskaya, A.V. Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy. At. Energy 2021, 130, 29–35. [Google Scholar] [CrossRef]
- Implications of Partitioning and Transmutation in Radioactive Waste Management; Technical Reports Series, No. 435; IAEA: Vienna, Austria, 2004; 127p.
- Westlen, D. Reducing radiotoxixiti in the long run. Progr. Nucl. Energy 2007, 49, 597–605. [Google Scholar] [CrossRef]
- Potential Benefits and Impacts of Advanced Nuclear Nuclear Fuel Cycles with Actinide Partitioning and Transmutation; Rep. 6894; NEA OECD: Paris, France, 2011; 73p.
- Berthou, V.; Degueldre, C.; Magill, J. Transmutation characteristics in thermal and fast neutron spectra: Application to americium. J. Nucl. Mater. 2003, 320, 156–162. [Google Scholar] [CrossRef]
- Fuels and Materials for Transmutation; Rep. 5419; NEA OECD: Paris, France, 2005; 239p.
- Salvatores, M.; Palmiotti, G. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Progr. Partickle Nucl. Phys. 2011, 66, 144–166. [Google Scholar] [CrossRef]
- Adamov, E.O.; Lopatkin, A.V.; Muravyov, E.V.; Rachkov, V.I.; Khomyakov, Y.u.S. National strategy for the development of nuclear energy: Two approaches to a new technological platform for nuclear energy. Izv. RAN Energy 2019, 3–14. (In Russian) [Google Scholar] [CrossRef]
- Lopatkin, A.V.; Platonov, I.V.; Popov, V.E. Conditions for reaching radiation equivalence of native raw materials and long-lived radioactive waste in nuclear energy in Russia. At. Energy 2021, 129, 188–193. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Chekin SYu Menyailo, A.N.; Maksyutov, M.A.; Tumanov, K.A.; Kashcheeva, P.V.; Lovachev, S.S.; Spirin, E.V.; Solomatin, V.M. Radiotoxicity of long-lived high-level waste from fast reactors in scenarios for handling irradiated nuclear fuel to achieve radiation and radiological equivalence with natural uranium. Radiat. Risk 2019, 28, 8–24. (In Russian) [Google Scholar] [CrossRef]
- Spent Nuclear Fuel Reprocessing Flowsheet; NEA OECD: Paris, France, 2012; 120p.
- State-of-the-Art Report on the Progress of Nuclear Fuel CYCLE Chemistry; NEA: Paris, France, 2018; 299p.
- Skupov, M.V.; Glushenkov, A.E.; Tarasov, B.A.; Abramov, S.V.; Kuzin, M.A.; Nikitin, O.N.; Zabudko, L.M.; Grachev, A.F.; Zherebtsov, A.A.; Mochalov, Y.S. Development of Technologies for Production of Fuel with Minor Actinides. Nucl. Engin. Des. 2021, 382, 111379. [Google Scholar] [CrossRef]
- Kuzin, M.A.; Abramov, S.V.; Grachev, A.F.; Zherebtsov, A.A.; Zabudko, L.M.; Nikitin, O.N.; Kuzmin, S.V. Production and study of tablets of mixed nitrides of uranium, plutonium, americium and neptunium. Chem. Technol. 2021, 22, 36–43. (In Russian) [Google Scholar]
- NEA Annual Report; NEA OECD: Paris, France, 2021; p. 91.
- Uranium 2016: Resources, Production and Demand; NEA OECD: Paris, France, 2016; 546p.
- Geological Classification of Uranium Deposits and Description of Selected Examples; IAE: Vienna, Austria, 2018; 417p.
- World Uranium Geology, Exploration, Resources and Production; IAEA: Vienna, Austria, 2020; 972p.
- Brookins, D.G. Geochemical Aspects of Radioactive Waste Disposal; Springer: New York, NY, USA, 1984; 347p. [Google Scholar]
- Plutonium Separation in Nuclear Power Programs. Status, Problems, and Prospects of Civilian Reprocessing Around the World; Princeton University: Princeton, NJ, USA, 2015; p. 182.
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilization, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 497. [Google Scholar]
- Lumpkin, G.R. Alpha-decay damage and aqueous durability of actinide host phases in natural systems. J. Nucl. Mater. 2001, 289, 136–166. [Google Scholar] [CrossRef]
- Omel’yanenko, B.I.; Livshits, T.S.; Yudintsev, S.V.; Nikonov, B.S. Natural and artificial minerals as matrices for immobilization of actinides. Geol. Ore Depos. 2007, 49, 173–193. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Geisler-Wierwille, T. Minerals and Natural Analogues. In Comprehensive Nuclear Materials; Konings, R., Allen, T., Stoller, R., Yamanak, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 563–600. [Google Scholar]
- Lumpkin, G.R. Ceramic Host Phases for Nuclear Waste Remediation. In Experimental and Theoretical Approaches to Actinide Chemistry; Gibson, J.K., de Jong, W.A., Eds.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 333–377. [Google Scholar]
- Wu, F.-Y.; Yang Yu Mitchell, R.H.; Bellatreccia, F.; Li, Q.-L.; Zhao, Z.-F. In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chem. Geol. 2010, 277, 178–195. [Google Scholar] [CrossRef]
- Apted, M.J.; Ahn, J. (Eds.) Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste; Woodhead Publishing Series in Energy; Elsevier: Amsterdam, The Netherlands, 2017; 778p. [Google Scholar]
- Ringwood, A.E. Disposal of high-level nuclear wastes: A geological perspective. Mineral. Mag. 1985, 49, 159–176. [Google Scholar] [CrossRef]
- Scientific and Technical Basis for Geological Disposal of Radioactive Wastes; IAE: Vienna, Austria, 2003; 80p.
- Management and Disposal of High-Level Radioactive Waste: Global Progress and Solutions; NEA: Paris, France, 2020; 45p.
- Laverov, N.P.; Yudintsev, S.V.; Kochkin, B.T.; Malkovsky, V.I. The Russian strategy of using crystalline rock as a repository for nuclear waste. Elements 2016, 12, 253–256. [Google Scholar] [CrossRef]
- Strategies and Considerations for the Back End of the Fuel Cycle; NEA: Paris, France, 2021; 67p.
- Zilberman, B.Y.; Puzikov, E.A.; Ryabkov, D.V.; Makarychev-Mikhailov, M.N.; Shadrin, A.Y.; Fedorov, Y.S.; Simonenko, V.A. Development, analysis, and simulation of a technological structure for reprocessing irradiated nuclear fuel from nuclear power plants by water-extraction methods. At. Energy 2009, 107, 333–347. [Google Scholar] [CrossRef]
- Modolo, G.; Geist, A.; Miguirditchian, M. Minor actinide separations in the reprocessing of spent nuclear fuels: Recent advances in Europe. In Reprocessing and Recycling of Spent Nuclear Fuel; Elsevier: Amsterdam, The Netherlands, 2015; Volume 10, pp. 245–287. [Google Scholar]
- Veliscek-Carolan, J. Separation of actinides from spent nuclear fuel: A review. J. Hazard. Mater. 2016, 318, 266. [Google Scholar] [CrossRef] [PubMed]
- Baron, P.; Cornet, S.M.; Collins, E.D.; De Angelis, G.; Del Cul, G.; Fedorov Yu Glatz, J.P.; Ignatiev, V.; Inoue, T.; Khaperskaya, A.; Kim, I.T.; et al. A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments. Progr. Nucl. Energy 2019, 117, 103091. [Google Scholar] [CrossRef]
- Ewing, R.C. Plutonium and “minor” actinides: Safe sequestration. Earth Planet. Sci. Lett. 2005, 229, 165–181. [Google Scholar] [CrossRef]
- Ewing, R.C. The nuclear fuel cycle versus the carbon cycle. The Canad. Mineral. 2005, 43, 2099–2116. [Google Scholar] [CrossRef]
- Frankel, G.S.; Vienna, J.D.; Lian, J.; Guo, X.; Gin, S.; Kim, S.H.; Du, J.; Ryan, J.V.; Wang, J.; Windl, W.; et al. Recent advances in corrosion science applicable to disposal of high-level nuclear waste. Chem. Rev. 2021, 121, 12327. [Google Scholar] [CrossRef]
- Vance, E.R.; Zhang, Y.; Gregg, D.J. Ceramic Waste Forms. In Comprehensive Nuclear Materials, 2nd ed.; Konings, R., Stoller, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 6, pp. 445–466. [Google Scholar]
- Ewing, R.C.; Weber, W.J. Actinide waste forms and radiation effects. In Actinide and Transctinide Elements; Morss, L.R., Edelstein, N.M., Fuger, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 6, pp. 3813–3887. [Google Scholar]
- National Research Council. Waste Forms Technology and Performance: Final Report; National Academies Press: Washington, DC, USA, 2011; p. 308. [Google Scholar]
- Hyatt, N.C.; Ojovan, M.I. Materials for Nuclear Waste Immobilization. Materials 2019, 12, 3611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, L.R.; Bailey, D.J.; Sun, S.-K.; Gardner, L.J.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Review of zirconolite crystal chemistry and aqueous durability. Adv. Appl. Ceram. 2021, 120, 69–83. [Google Scholar] [CrossRef]
- High Level Solidified Waste. General Technical Requirements; GOST R-50926-96; Gosstandart of Russia: Moscow, Russia, 1996. (In Russian)
- Poluektov, P.P.; Sukhanov, L.P.; Matyunin, Y.I. Scientific approaches and technical solutions in the field of high-level liquid waste management. Russ. Chem. Mag. 2005, 49, 29–41. (In Russian) [Google Scholar]
- Gumber, N.; Pai, R.V.; Phatak, R.; Adiraju, B.; Sahu, M.; Jagannath, J.; Sudarshan, K. Synthesis, characterization and crystal chemistry of uranium and cerium doped yttrium titanate pyrochlore: A potential waste immobilization matrix. J. Nucl. Mater. 2021, 556, 153191. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Lanthanide titanates as promising matrices for immobilization of actinide wastes. Dokl. Earth Sci. 2015, 460, 130–136. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Isolation of separated waste of nuclear industry. Radiochemistry 2021, 63, 527. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Fielding, P.E.; White, T.J. Crystal chemical incorporation of high-level waste species in aluminotitanate-based ceramics: Valence, location, radiation damage, and hydrothermal durability. J. Mater. Res. 1987, 2, 387–414. [Google Scholar] [CrossRef]
- Yudintsev, S.V. A structural–chemical approach to selecting crystalline matrices for actinide immobilization. Geol. Ore Deposits. 2003, 45, 151–165. [Google Scholar]
- Orlova, A.I.; Orlova, V.A.; Orlova, M.P.; Bykov, D.M.; Stefanovskii, S.V.; Stefanovskaya, O.I.; Nikonov, B.S. The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste. Radiochemistry 2006, 48, 330–339. [Google Scholar] [CrossRef]
- Orlova, A.I. Development of mineral-like materials based on phosphates and complex oxides for HLW immobilization. Crystal chemical concept. Probl. Radiat. Saf. 2015, 3, 67–76. (In Russian) [Google Scholar]
- Orlova, A.; Chuvildeev, V. Chemistry, crystal chemistry and SPS technology for elaboration of perspective materials for nuclear wastes and minor actinides consolidation. J. Nucl. Med. Radiat. Ther. 2016, 7, 36. [Google Scholar]
- Orlova, A.I.; Ojovan, M.I. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, L.; Ionescu, M.; Gregg, D.J. Current advances on titanate glass-ceramic composite materials as waste forms for actinide immobilization: A technical review. J. Eur. Ceram. Soc. 2022, 42, 1852–1876. [Google Scholar] [CrossRef]
- Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides containment in nuclear glasses: An overview. Radiochimica Acta. 2017, 105, 927–959. [Google Scholar] [CrossRef]
- Yang, K.; Lei, P.; Yao, T.; Gong, B.; Wang, Y.; Li, M.; Wang, J.; Lian, J. A systematic study of lanthanide titanates (A2Ti2O7) chemical durability: Corrosion mechanisms and control parameters. Corros. Sci. 2021, 185, 109394. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Y.; Lei, P.; Yao, T.; Zhao, D.; Lian, J. Chemical durability and surface alteration of lanthanide zirconates (A2Zr2O7: A = La-Yb). J. Eur. Ceram. Soc. 2021, 41, 6018–6028. [Google Scholar] [CrossRef]
- Gong, B.; Yang, K.; Lian, J.A.; Wang, J. Machine learning-enabled prediction of chemical durability of A2B2O7 pyrochlore and fluorite. Comput. Mater. Sci. 2021, 200, 110820. [Google Scholar] [CrossRef]
- Babelot, C. Monazite-type ceramics for conditioning of minor actinides: Structural characterization and properties. Reihe Energ. Umw. Energy Environ. 2012, 182, 129. [Google Scholar]
- Ramsdell, L.S. Studies on silicon carbide. Am. Mineral. 1947, 32, 64–71. [Google Scholar]
- Thompson, J.B. Biopyriboles and polysomatic series. Am. Mineral. 1978, 63, 239–249. [Google Scholar]
- Veblen, D.R. Polysomatism and polysomatic series: A review and applications. Am. Mineral. 1991, 76, 801–826. [Google Scholar]
- Laverov, N.P.; Urusov, V.S.; Krivovichev, S.V.; Pakhomova, A.S.; Stefanovsky, S.V.; Yudintsev, S.V. Modular nature of the polysomatic pyrochlore–murataite series. Geol. Ore Depos. 2011, 53, 273–294. [Google Scholar] [CrossRef]
- Laverov, N.P.; Yudintsev, S.V.; Stefanovskii, S.V.; Omel’yanenko, B.I.; Nikonov, B.S. Murataite Matrices for Actinide Wastes. Radiochemistry 2011, 53, 229–243. [Google Scholar] [CrossRef]
- Pakhomova, A.S.; Krivovichev, S.V.; Yudintsev, S.V.; Stefanovsky, S.V. Polysomatism and structural complexity: Structure model for murataite-8C, a complex crystalline matrix for the immobilization of high-level radioactive waste. Eur. J. Mineral. 2016, 28, 205–214. [Google Scholar] [CrossRef]
- Ewing, R.C. Actinides and radiation effects: Impact on the back-end of the nuclear fuel cycle. Mineral. Mag. 2011, 75, 2359–2377. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, B.; Zhang, H. Immobilization of CeO2 using single-phase zirconolite and the chemical stability analysis. Mater. Res. Express 2019, 6, 115526. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, B.; Cheng, J.; Luo, S.; Ding, Y.; Ji, S.; Duan, T.; Ma, J.; Jiang, C. Phase evolution and chemical stability of Nd-doped Y3Fe5O12 waste forms synthesized in molten salt at a low temperature. J. Am. Ceram. Soc. 2021, 105, 1459–1471. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.O.; Major, A. The SYNROC process: A geochemical approach to nuclear waste immobilization. Geochem. J. 1979, 13, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.O.; Major, A. Immobilisation of high-level nuclear reactor wastes in SYNROC. Nature 1979, 278, 219–223. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Reeve, K.D.; Levins, D.M.; Ramm, E.J. Synroc. In Radioactive Waste Forms for the Future; Lutze, W., Ewing, R.C., Eds.; Elsevier: New York, NY, USA, 1988; pp. 233–334. [Google Scholar]
- Laverov, N.P.; Omel’yanenko, B.I.; Yudintsev, S.V.; Nikonov, B.S. Zirconolite as a matrix for immobilization of high-level radioactive wastes (HLW). Geol. Ore Depos. 1996, 38, 345–352. [Google Scholar]
- Advocat, T.; Fillet, C.; Marillet, J.; Boubals, J.M.; Bonnetier, A. Nd-doped zirconolite ceramic and glass ceramic synthesized by melting and controlled cooling. Mat. Res. Soc. Symp. Proc. 1998, 506, 55–61. [Google Scholar] [CrossRef]
- Advocat, T.; McGlinn, P.J.; Fillet, C.; Leturcq, G.; Schuller, S.; Bonnetier, A.; Hart, K. Melted synthetic zirconolite-based matrices: Effect of cooling rate and heat treatment on ceramic microstructure and chemical durability. Mat. Res. Soc. Symp. Proc. 2001, 663, 277–284. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y. Crystallization sequence and microstructure evolution of Synroc samples crystallized from CaZrTi2O7 melts. J. Nucl. Mater. 2000, 279, 100–106. [Google Scholar] [CrossRef]
- Vance, E.R.; Lumpkin, G.R.; Carter, M.L.; Cassidy, D.J.; Ball, C.J.; Day, R.A.; Begg, B.D. Incorporation of Uranium in Zirconolite (CaZrTi2O7). J. Am. Ceram. Soc. 2002, 85, 1853–1859. [Google Scholar] [CrossRef]
- Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C. Glass–ceramic nuclear waste forms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of internal crystallization. J. Nucl. Mater. 2004, 335, 14–32. [Google Scholar] [CrossRef]
- Vance, E.R.; Moricca, S.; Begg, B.D.; Stewart, M.W.A.; Zhang, Y.; Carter, M.L. Advantages hot isostatically pressed ceramic and glass-ceramic waste forms bring to the immobilization of challenging intermediate- and high-level nuclear wastes. Adv. Sci. Technol. 2010, 73, 130–135. [Google Scholar]
- Stefanovsky, S.V.; Chizhevskaya, S.V.; Mironov, A.S.; Kiryanova, O.I.; Yudintsev, S.V. Synthetic calcium-free REE-substituted zirconolites. Perspekt. Mater. 2003, 6, 61–68. (In Russian) [Google Scholar]
- Strachan, D.M.; Scheele, R.D.; Buck, E.C.; Kozelisky, A.E.; Sell, R.L.; Elovich, R.J.; Buchmiller, W.C. Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 2008, 372, 16–31. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, K.; Peng, L.; He, Z.; Liu, Y.; Zhang, H.; Lu, X. Solid-state reaction synthesis and chemical stability studies in Nd-doped zirconolite-rich ceramics. J. Rare Earths. 2018, 36, 492–498. [Google Scholar] [CrossRef]
- Zhang, K.; Yin, D.; Lu, X.; Zhang, H. Self-propagating high-temperature synthesis, phase composition and aqueous durability of Nd–Al bearing zirconolite-rich composites as nuclear waste form. Adv. Appl. Ceram. 2018, 117, 78–84. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Gardner, L.J.; Sun, S.K.; Maddrell, E.R.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Hot Isostatically Pressed Zirconolite Wasteforms for Actinide Immobilisation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 818, 012010. [Google Scholar] [CrossRef]
- Gregg, D.J.; Farzana, R.; Dayal, P.; Holmes, R.; Triani, G. Synroc technology: Perspectives and current status (Review). J. Am. Ceram. Soc. 2020, 103, 5424–5441. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, F.; Liao, Q.; Zhu, Y. Synthesis and characterization of zirconolite—sodium borosilicate glass-ceramics for nuclear waste immobilization. J. Nucl. Mater. 2020, 532, 152026. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, F.; Liao, Q.; Wang, Y.; Zhu, Y. Effect of CeO2 and Nd2O3 on phases, microstructure and aqueous chemical durability of borosilicate glass-ceramics for nuclear waste immobilization. Mater. Chem. Phys. 2020, 249, 122936. [Google Scholar] [CrossRef]
- Caurant, D.; Majérus, O. Glasses and Glass-Ceramics for Nuclear Waste Immobilization. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Oxford, UK, 2021; Volume 2, pp. 762–790. [Google Scholar]
- Aldean, I.; Sun, S.-K.; Wilkins, M.C.D.; Gardner, L.J.; Mason, A.R.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C.; Blackburn, L.R. Synthesis and characterisation of Ce-doped zirconolite Ca0.80Ce0.20ZrTi1.60M0.40O7 (M = Fe, Al) formed by reactive spark plasma sintering (RSPS). Mat. Res. Soc. Adv. 2022, 7, 75–80. [Google Scholar] [CrossRef]
- Dayal, P.; Farzana, R.; Zhang, Y.; Lumpkin, G.R.; Holmes, R.; Triani, G.; Gregg, D.J. Profiling hot isostatically pressed canister–wasteform interaction for Pu-bearing zirconolite-rich wasteforms. J. Am. Ceram. Soc. 2022, 105, 1–14. [Google Scholar] [CrossRef]
- Williams, C.T.; Giere, R. Zirconolite: A Review of localities worldwide, and a compilation of its chemical compositions. Bull. Nat. Hist. Mus. Lond. 1996, 52, 1–24. [Google Scholar]
- Hudson Institute of Mineralogy. mindat.org. Zirconolite. Available online: https://www.mindat.org/min-4422.html) (accessed on 6 July 2022).
- Bayliss, P.; Mazzi, F.; Munno, R.; White, T.J. Mineral nomenclature: Zirconolite. Mineral. Mag. 1989, 53, 565–569. [Google Scholar] [CrossRef]
- Ventura, G.D.; Bellatreccia, F.; Williams, T. Zirconolite with significant REEZrNb(Mn,Fe)O7 from a xenolith of the Laacher see eruptive center, Eifel volcanic region, Germany. The Canad. Mineral. 2000, 38, 57–65. [Google Scholar] [CrossRef]
- Zubkova, N.V.; Chukanov, N.V.; Pekov, I.V.; Ternes, B.; Schüller, W.; Ksenofontov, D.A.; Pushcharovsky, D.Y. The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany. Z. Krist. 2018, 233, 463–468. [Google Scholar] [CrossRef]
- Kesson, S.E.; Sinclair, W.J.; Ringwood, A.E. Solid solution limits in Synroc zirconolite. Nucl. Chem. Waste Managem. 1983, 4, 259–265. [Google Scholar]
- Coelho, A.A.; Cheary, R.W.; Smith, K.L. Analysis and structural determination of Nd-substituted zirconolite-4M. J. Solid State Chem. 1997, 129, 346–359. [Google Scholar] [CrossRef]
- Caurant, D.; Loiseau, P.; Bardez, I. Structural characterization of Nd-doped Hf-zirconolite Ca1−xNdxHfTi2−xAlxO7 ceramics. J. Nucl. Mater. 2010, 407, 88–99. [Google Scholar] [CrossRef]
- Mazzi, F.; Munno, R. Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymignyte and zirkelite: Comparison with pyrochlore and zirconolite. Am. Mineral. 1983, 68, 262–276. [Google Scholar]
- White, T.J. The microstructure and microchemistry of synthetic zirconolite, zirkelite and related phases. Am. Mineral. 1984, 69, 1156–1172. [Google Scholar]
- Smith, K.L.; Lumpkin, G.R. Structural features of zirconolite, hollandite and perovskite, the major waste-bearing phases in Synroc. In Defects and Processes in the Solid State: Geoscience Applications; Boland, J.N., Fitzgerald, J.D., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 401–422. [Google Scholar]
- Blackburn, L.R.; Sun, S.-K.; Gardner, L.J.; Maddrell, E.R.; Stennett, M.C.; Corkhill, C.L.; Hyatt, N.C. Synthesis, structure, and characterization of the thorium zirconolite CaZr1−xThxTi2O7 system. J. Am. Ceram. Soc. 2021, 104, 2937–2951. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Selfslag, C.; Walter, M.; Stennett, M.C.; Somers, J.; Hyatt, N.C.; Livens, F.R. Synthesis and characterisation of Pu-doped zirconolites—(Ca1−xPux)Zr(Ti2−2xFe2x)O7. IOP Conf. Ser. Mater. Sci. Eng. 2009, 9, 012007. [Google Scholar] [CrossRef]
- Grey, I.E.; Mumme, W.G.; Ness, T.J.; Roth, R.S.; Smith, K.L. Structural relations between weberite and zirconolite polytypes—Refinements of doped 3T and 4M Ca2Ta2O7 and 3T CaZrTi2O7. J. Solid State Chem. 2003, 174, 285–295. [Google Scholar] [CrossRef]
- Kong, L.; Karatchevtseva, I.; Zhang, Y.; Wei, T. The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: Ceramic versus glass-ceramic. J. Nucl. Mater. 2021, 543, 152583. [Google Scholar] [CrossRef]
- Cachia, J.-N.; Deschanels, X.; Auwer, C.D.; Pinet, O.; Phalippou, J.; Hennig, C.; Scheinost, A. Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J. Nucl. Mater 2006, 352, 182–189. [Google Scholar] [CrossRef]
- Caurant, D.; Majerus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J.L. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization. J. Nucl. Mater. 2006, 354, 143–162. [Google Scholar] [CrossRef]
- McCloy, J.S.; Schuller, S. Vitrification of wastes: From unwanted to controlled crystallization, a review. Comptes Rendus. Géoscience 2022, 354, 1–40. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Sun, S.; Gardner, L.J.; Maddrell, E.R.; Stennet, M.C.; Hyatt, N.C. A systematic investigation of the phase assemblage and microstructure of the zirconolite CaZr1−xCexTi2O7. J. Nucl. Mater. 2020, 535, 152137. [Google Scholar] [CrossRef]
- Ji, S.; Su, M.; Liao, C.; Ma, S.; Wang, Z.; Shih, K.; Chang, C.-K.; Lee, J.-F.; Chan, T.-S.; Li, Y. Synchrotron x-ray spectroscopy investigation of the Ca1−xLnxZrTi2−x(Al,Fe)xO7 zirconolite ceramics (Ln = La, Nd, Gd, Ho, Yb). J. Am. Ceram. Soc. 2020, 103, 1463–1475. [Google Scholar] [CrossRef]
- Maddrell, E.R.; Paterson, H.C.; May, S.E.; Burns, K.M. Phase evolution in zirconolite glass-ceramic wasteforms. J. Nucl. Mater. 2017, 423, 380–387. [Google Scholar] [CrossRef]
- Vance, E.R.; Agraval, D.K. Incorporation of radionuclides in crystalline titanates. Nucl. Chem. Waste Managem. 1982, 3, 229–234. [Google Scholar] [CrossRef]
- Weber, W.J.; Ewing, R.C.; Catlow, C.R.A. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mat. Res. 1998, 13, 1434–1479. [Google Scholar] [CrossRef]
- Zhang, Y.; Stewart, M.W.A.; Li, H.; Carter, M.L.; Vance, E.R.; Moricca, S. Zirconolite-rich titanate ceramics for immobilisation of actinides—Waste form/HIP can interactions and chemical durability. J. Nucl. Mater. 2009, 395, 69–74. [Google Scholar] [CrossRef]
- Amoroso, J.; Marra, J.C.; Tang, M.; Lin, Y.; Chen, F.; Su, D.; Brinkman, K.S. Melt processed multiphase ceramic waste forms for nuclear waste immobilization. J. Nucl. Mater. 2014, 454, 12–21. [Google Scholar] [CrossRef]
- Leturcq, G.; McGlinn, P.J.; Barbe, C.; Blackford, M.G.; Finnie, K.S. Aqueous alteration of nearly pure Nd-doped zirconolite (Ca0.8Nd0.2ZrTi1.8Al0.2O7), a passivating layer control. Appl. Geochem. 2005, 20, 899–906. [Google Scholar] [CrossRef]
- Pöml, P.; Geisler, T.; Cobos-Sabaté, J.; Wiss, T.; Raison, P.E.; Schmid-Beurmann, P.; Deschanels, X.; Jégou, C.; Heimink, J.; Putnis, A. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite. J. Nucl. Mater. 2011, 410, 10–23. [Google Scholar] [CrossRef]
- Jafar, M.; Sengupta, P.; Achary, S.N.; Tyagi, A.K. Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)—Sm2Ti2O7 (pyrochlore) system. J. Eur. Ceram. Soc. 2014, 34, 4373–4381. [Google Scholar] [CrossRef]
- Malmström, J.; Reusser, E.; Gieré, R.; Lumpkin, G.R.; Düggelin, M.; Mathys, D.; Guggenheim, R. Zirconolite corrosion in dulite acidic and basic fluids at 180–700 °C and 50 MPa. Mat. Res. Soc. Symp. Proc. 1999, 556, 165–172. [Google Scholar] [CrossRef]
- Malmstrom, J.; Reusser, E.; Giere, R.; Lumpkin, G.R.; Blackford, M.G.; Duggelin, M.; Mathys, D.; Guggenheim, R.; Gunther, D. Formation of perovskite and calzirtite during zirconolite alteration. Mat. Res. Soc. Symp. Proc. 2000, 608, 475–480. [Google Scholar] [CrossRef]
- Bakel, A.J.; Mertz, C.J.; Hash, M.C.; Chamberlain, D.B. The long-term corrosion behavior of titanate ceramics for Pu disposition: Rate-controlling processes. Mat. Res. Soc. Symp. Proc. 2000, 608, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Gieré, R.; Malmström, J.; Reusser, E.; Lumpkin, G.R.; Düggelin, M.; Mathys, D.; Guggenheim, R.; Günther, D. Durability of zirconolite in hydrothermal fluids: Implications for nuclear waste disposal. Mat. Res. Soc. Symp. Proc. 2001, 663, 267–276. [Google Scholar] [CrossRef]
- Morgan, P.E.D.; Ryerson, F.J. A new “cubic” crystal compound. J. Mater. Sci. Lett. 1982, 1, 351–352. [Google Scholar] [CrossRef]
- Laverov, N.P.; Yudintsev, S.V.; Stefanovsky, S.V.; Omel’yanenko, B.I.; Nikonov, B.S. Murataite as a universal matrix for immobilization of actinides. Geol. Ore Depos. 2006, 48, 335–356. [Google Scholar] [CrossRef]
- Laverov, N.P.; Omel’yanenko, B.I.; Yudintsev, S.V.; Nikonov, B.S.; Sobolev, I.A.; Stefanovsky, S.V. Mineralogy and geochemistry of matrices for the immobilization of high-level radioactive wastes. Geol. Ore Deposits. 1997, 39, 179–193. [Google Scholar]
- Yudintsev, S.V.; Danilov, S.S.; Vinokurov, S.E.; Stefanovskaya, O.I.; Nikonov, B.S.; Nikol’sky, M.S.; Skvortsov, M.V.; Myasoedov, B.F. Phase composition and hydrothermal stability of ceramics based on murataite. Radiochemistry 2020, 62, 744–751. [Google Scholar] [CrossRef]
- Pakhomova, A.S.; Krivovichev, S.V.; Yudintsev, S.V.; Stefanovsky, S.V. Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste: Crystal structure and its comparison with natural analogues. Z. Krist. Cryst. Mater. 2013, 228, 151–156. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Yudintsev, S.V.; Stefanovsky, S.V.; Organova, N.I.; Karimova, O.V.; Urusov, V.S. Murataite–pyrochlore series: A family of complex oxides with nanoscale pyrochlore clusters. Angew. Chem. 2010, 122, 10178–10180. [Google Scholar] [CrossRef]
- Krivovichev, S.; Yudintsev, S.; Pakhomova, A.; Stefanovsky, S. Murataite-Pyrochlore Ceramics as Complex Matrices for Radioactive Waste Immobilization: Structural and Microstructural Mechanisms of Crystallization. In International Congress on Applied Mineralogy; Springer: Cham, Switzerland, 2019; pp. 447–450. [Google Scholar]
- Yudintsev, S.; Stefanovsky, S.; Nikonov, B.; Stefanovsky, O.; Nickolskii, M.; Skvortsov, M. Phase formation at synthesis of murataite-crichtonite ceramics. J. Nucl. Mater. 2019, 517, 371–379. [Google Scholar] [CrossRef]
- Nickolsky, M.S.; Yudintsev, S.V. Electron backscattered diffraction for the study of matrices for immobilization of actinides composed of the murataite-type phases. Crystallogr. Rep. 2021, 66, 130–141. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nickolsky, M.S.; Nikonov, B.S. Study of Matrices for Immobilization of 99Tc by the EBSD Method. Dokl. Earth Sci. 2021, 500, 794–801. [Google Scholar] [CrossRef]
- Kikuchi, S. Diffraction of cathode rays by mica. Proc. Imp. Acad. 1928, 4, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Venables, J.A.; Harland, C.J. Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Philos. Mag. 1973, 27, 1193–1200. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Kumar, M.; Adamas, B.L.; Field, D.P. (Eds.) Electron Backscatter Diffraction in Materials Science; Springer: New York, NY, USA, 2009; p. 403. [Google Scholar]
- Smith, C.A.; Biswas, S.; Miller, B.D.; Kombaiah, B.; Frazer, D.; Keiser, D.D.; Aitkaliyeva, A. High burnup structure formation in U-Mo fuels. J. Nucl. Mater. 2022, 563, 153617. [Google Scholar] [CrossRef]
- Iltis, X.; Zacharie-Aubrun, I.; Ryu, H.J.; Park, J.M.; Leenaers, A.; Yacout, A.M.; Tarisien, N. Microstructure of as atomized and annealed U-Mo7 particles: A SEM/EBSD study of grain growth. J. Nucl. Mater. 2017, 495, 249–266. [Google Scholar] [CrossRef]
- Jadernas, D.; Gan, J.; Keiser, D.; Madden, J.; Bachhav, M.; Jue, J.F.; Robinson, A. Microstructural characterization of as-fabricated and irradiated U-Mo fuel using SEM/EBSD. J. Nucl. Mater. 2018, 509, 1–8. [Google Scholar] [CrossRef]
- Tumurugoti, P.; Clark, B.M.; Edwards, D.J.; Amoroso, J.; Sundaram, S.K. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms. J. Solid State Chem. 2017, 246, 107–112. [Google Scholar] [CrossRef]
- Peterson, J.A.; Crum, J.V.; Riley, B.J.; Asmussen, R.M.; Neeway, J.J. Synthesis and characterization of oxyapatite [Ca2Nd8(SiO4)6O2] and mixed-alkaline-earth powellite [(Ca,Sr,Ba)MoO4] for a glass-ceramic waste form. J. Nucl. Mater. 2018, 510, 623–634. [Google Scholar] [CrossRef]
- Shoup, S.S.; Bamberger, C.E.; Tyree, J.L.; Anovitz, L. Lanthanide-containing zirconotitanate solid solutions. J. Solid State Chem. 1996, 127, 231–239. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Stefanovsky, S.V.; Kalenova MYu Nikonov, B.S.; Nikol’skii, M.S.; Koshcheev, A.M.; Shchepin, A.S. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting. Radiochemistry 2015, 57, 321–333. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Stefanovsky, S.V.; Stefanovskaya, O.I.; Nikonov, B.S.; Nikol’skii, M.S. Phase distribution of uranium in matrices for immobilization of the rare earth–actinide fraction of high-level waste. Radiochemistry 2015, 57, 640–651. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Livshits, T.S.; Zhang, J.; Ewing, R.C. The behavior of rare-earth pyrochlores and perovskites under ion irradiation. Dokl. Earth Sci. 2015, 461, 247–253. [Google Scholar] [CrossRef]
- Nikolsky, M.S. Crystal Chemistry of Compounds of Rare Earth Elements with Pyrochlore Structure. Ph.D. Thesis, Moscow, Russia, 2018. [Google Scholar]
- Yudintsev, S.V.; Nikolskii, M.S.; Nikonov, B.S.; Malkovskii, V.I. Matrices for isolation of actinide wastes in a deep well repository. Dokl. Earth Sci. 2018, 480, 631–636. [Google Scholar] [CrossRef]
- Shoup, S.S.; Bamberger, C.E. On the formation of americium and neptunium-containing titanates. Radiochim. Acta 1997, 76, 63–69. [Google Scholar] [CrossRef]
- Blackburn, L.R.; Townsend, L.T.; Lawson, S.M.; Mason, A.R.; Stennett, M.C.; Sun, S.-K.; Gardner, L.J.; Maddrell, E.R.; Corkhill, C.L.; Hyatt, N.C. Phase Evolution in the CaZrTi2O7−Dy2Ti2O7 System: A Potential Host Phase for Minor Actinide Immobilization. Inorg. Chem. 2022, 61, 5744–5756. [Google Scholar] [CrossRef]
Element | After 5 Years of Storage | After 30 Years of Storage | ||||||
---|---|---|---|---|---|---|---|---|
45 GW × d/t | 60 GW × d/t | 45 GW × d/t | 60 GW × d/t | |||||
a | b | a | b | a | b | a | b | |
Gd, stable | 150 | 0 | 310 | 0 | 180 | 0 | 346 | 0 |
Eu | 190 | 60 | 260 | 90 | 170 | 8 | 230 | 12 |
Sm, stable | 1060 | 0 | 1370 | 0 | 1120 | 0 | 1430 | 0 |
Pm | 63 | 21 | 62 | 21 | 0 | 0 | 0 | 0 |
Ce | 3210 | 10 | 4230 | 10 | 3210 | 0 | 4220 | 0 |
Pr | 1540 | 114 | 2010 | 113 | 1540 | 0 | 2010 | 0 |
Nd, stable | 5570 | 0 | 7310 | 0 | 5570 | 0 | 7310 | 0 |
La, stable | 1670 | 0 | 2190 | 0 | 1670 | 0 | 2190 | 0 |
Σ REE | 13,453 | 205 | 17,742 | 234 | 13,460 | 8 | 17,736 | 12 |
U | 941,000 | 0.06 | 923,000 | 0.06 | 941,000 | 0.06 | 923,000 | 0.06 |
Pu | 11,200 | 164 | 12,600 | 283 | 10,200 | 138 | 11,500 | 236 |
Np | 570 | 0.01 | 780 | 0.02 | 570 | 0.01 | 780 | 0.02 |
Am | 510 | 47 | 740 | 58 | 1380 | 146 | 1780 | 178 |
Cm | 33 | 88 | 113 | 292 | 14 | 34 | 50 | 112 |
Am + Cm (MA)3+ | 543 | 135 | 853 | 350 | 1394 | 180 | 1830 | 290 |
REE/(REE + MA),% | 96.2 | 60.3 | 95.4 | 40.1 | 90.6 | 4.3 | 90.7 | 4.0 |
Nos. | Characteristic and Its Unit | Influence on the Properties of the HLW Matrix |
---|---|---|
1 | Density, g/cm3 | Amount of waste in the matrix and its volume |
2 | Poisson’s ratio | Mechanical strength and block stability |
3 | Young’s modulus, MPa | Mechanical strength and block stability |
4 | Compressive strength, MPa | Mechanical strength and block stability |
5 | Shear modulus, MPa | Mechanical strength and block stability |
6 | Radiation resistance, Gray | Exposure behavior on the decay of radionuclides |
7 | Thermal resistance, °C | Thermal behavior on the decay of radionuclides |
8 | Melting point, °C | Affects the matrix manufacturing technology |
9 | Glass transition temperature, °C | Thermal stability of glasses to crystallization |
10 | Expansion coefficient, °C−1 | Thermal behavior on the decay of radionuclides |
11 | Specific thermal conductivity, W m−1 K−1 | Heating during the decay of radionuclides |
12 | Heat capacity, J g−1 K−1 | Heating during the decay of radionuclides |
13 | Solubility of waste, wt.% | Affects the amount of waste in the matrix |
14 | Leaching rates, g m−2 day−1 | Ability of the matrix to retain radionuclides |
Cation | x = 0.10 | x = 0.20 | x = 0.30 | x = 0.40 | x = 0.50 | x = 0.60 |
---|---|---|---|---|---|---|
Ce4+ | 2M | 2M + 4M | 2M + 4M | 2M + 4M | 2M + 4M + P | 4M + P |
U4+ | 2M | 2M + 4M | 2M + 4M | 4M + P | 4M + P | 4M + P |
Th4+ | 2M + P | 2M + P | 2M + P | 2M + P | 2M + P | P |
Pu4+ | 2M | 2M + 4M | 2M + 4M | 4M + P | 4M + P | P |
Phase | Al | Ca | Ti | Mn | Fe | Zr | Th | O |
---|---|---|---|---|---|---|---|---|
Zirconolite | 0.8 | 7.5 | 23.6 | 3.0 | 1.1 | 23.0 | 10.8 | 30.2 |
Zirconolite | 0.9 | 7.1 | 24.6 | 3.5 | 1.3 | 19.6 | 12.8 | 30.2 |
Zirconolite | 1.3 | 7.2 | 23.3 | 2.7 | 0.6 | 23.0 | 11.6 | 30.3 |
Murataite-1 1 | 2.5 | 7.6 | 30.9 | 6.9 | 2.1 | 7.8 | 9.4 | 32.8 |
Murataite-1 | 2.0 | 7.8 | 29.2 | 6.8 | 1.9 | 10.0 | 10.2 | 32.1 |
Murataite-1 | 1.9 | 7.4 | 28.8 | 6.6 | 1.9 | 9.1 | 12.7 | 31.6 |
Murataite-2 | 4.6 | 7.0 | 33.1 | 8.2 | 4.5 | 2.6 | 5.2 | 34.8 |
Murataite-2 | 4.8 | 7.1 | 31.8 | 7.8 | 4.4 | 3.0 | 6.6 | 34.5 |
Murataite-2 | 4.7 | 6.4 | 32.8 | 8.7 | 4.8 | 2.0 | 5.9 | 34.7 |
Phase | Ti | Zr | Nd | O | Only Ti4+ Suggested | Formulae of Zirconolite with Both Ti3+ and Ti4+ |
---|---|---|---|---|---|---|
Pyrochlore | 16.5 | 13.1 | 46.9 | 23.5 | Nd1.35Zr0.59Ti1.41O6.02 | Nd1.35Zr0.59Ti1.41O6.02 |
Zirconolite c | 21.5 | 14.6 | 38.1 | 25.8 | Nd1.22Zr0.74Ti2.04O7.40 | Nd1.22Zr0.74Ti4+1.26Ti3+0.78O7 |
Zirconolite e | 23.5 | 11.8 | 38.5 | 26.2 | Nd1.20Zr0.60Ti2.20O7.40 | Nd1.20Zr0.60Ti4+1.40Ti3+0.80O7 |
Rutile | 46.8 | 7.0 | 10.7 | 35.5 | Ti0.86Zr0.07Nd0.07O1.97 | Ti0.86Zr0.07Nd0.07O1.97 |
Sample | NdO1.5 | ZrO2 | TiO2 | Phase Composition: Expected (a) and Real (b) |
---|---|---|---|---|
S3 | 50 | 37.5 | 12.5 | Pa/Pb |
S4 | 20 | 60 | 20 | P—B/B—O—B |
S5 | 20 | 40 | 40 | B—TN—1/B—P—TZ |
S8 | 23 | 0.02 | 75 | TN—2/TN—2—R 1 |
Oxide/Ion | MT | RT | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | m | z-3O | 1 | 2 | o | z-3O | |
Al2O3 | - | 0.8 | n.d. 1 | 3.1 | - | 2.2 | n.d. | 6.7 |
TiO2 | 32.9 | 28.5 | 31.4 | 33.1 | 52.5 | 48.5 | 50.5 | 37.6 |
ZrO2 | - | 6.2 | 0.8 | 25.2 | - | 5.0 | 1.6 | 19.6 |
Nd2O3 | 67.1 | 64.5 | 67.8 | 38.5 | 47.5 | 44.3 | 47.9 | 36.1 |
Al3+ | - | n.d. | 0.27 | - | n.d. | 0.54 | ||
Ti4+ | 2.00 | 1.96 | 1.82 | 9.00 | 8.82 | 1.93 | ||
Zr4+ | - | 0.03 | 0.90 | - | 0.18 | 0.65 | ||
Nd3+ | 2.00 | 2.01 | 1.01 | 4.00 | 4.00 | 0.88 | ||
O2- | 7.00 | 6.99 | 7.37 | 24.00 | 24.00 | 7.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudintsev, S.V.; Nickolsky, M.S.; Ojovan, M.I.; Stefanovsky, O.I.; Nikonov, B.S.; Ulanova, A.S. Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE—Actinide Fraction of HLW. Materials 2022, 15, 6091. https://doi.org/10.3390/ma15176091
Yudintsev SV, Nickolsky MS, Ojovan MI, Stefanovsky OI, Nikonov BS, Ulanova AS. Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE—Actinide Fraction of HLW. Materials. 2022; 15(17):6091. https://doi.org/10.3390/ma15176091
Chicago/Turabian StyleYudintsev, Sergey V., Maximilian S. Nickolsky, Michael I. Ojovan, Olga I. Stefanovsky, Boris S. Nikonov, and Amina S. Ulanova. 2022. "Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE—Actinide Fraction of HLW" Materials 15, no. 17: 6091. https://doi.org/10.3390/ma15176091
APA StyleYudintsev, S. V., Nickolsky, M. S., Ojovan, M. I., Stefanovsky, O. I., Nikonov, B. S., & Ulanova, A. S. (2022). Zirconolite Polytypes and Murataite Polysomes in Matrices for the REE—Actinide Fraction of HLW. Materials, 15(17), 6091. https://doi.org/10.3390/ma15176091