Relation between Microstructures and Macroscopic Mechanical Properties of Earthen-Site Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Processing and Characterization of Pores
2.2. Selected Area and Threshold Settings
2.3. Simulations of Linear Axial Load Transfer in Soils
2.4. Simulations of Ultrasonic Propagation in Soils
2.5. The Establishment of Models
3. Results
3.1. Selected Area and Threshold Optimization
3.2. Microstructural Characterization of Soils
3.3. Effect of Equivalent Diameter Distribution of Pores on Strength, Stiffness, and Ultrasonic Pulse Velocity of Soils
3.4. Effect of Pore Sphericity on Strength, Stiffness, and Ultrasonic Pulse Velocity of Soils
3.5. Effect of Porosity on Strength, Stiffness, and Ultrasonic Pulse Velocity of Soils
4. Discussion
5. Conclusions
- In the microstructure-based modeling, the selection area of microscopic images should be increased as much as possible. The average pore equivalent diameter, average pore sphericity, and porosity of the untreated sample are larger than those of the consolidated sample.
- The equivalent diameter of pores has little obvious effect on the static behavior under linear axial load, but is significant on the propagation velocity of the half-sine pulse. With the increase in pore equivalent diameter, the ultrasonic pulse velocity decreases slightly at first, and then rises greatly. The pore equivalent diameter of soil becomes smaller after consolidation, which may be one of the reasons why the compression wave velocity of consolidated soil decreases in the ultrasound-based test compared with that of untreated soil.
- The sphericity of pores has a significant effect on the static behavior under linear axial load and the acoustic characteristics under harmonic load. The influence of pore sphericity on strength and stiffness characteristics of the medium is greater than on acoustic characteristics. The strength and stiffness characteristics of the medium and the propagation velocity of sinusoidal wave in the medium are positively correlated with the pore sphericity.
- The porosity has a great influence on the macroscopic mechanical behaviors of soil. The compression wave velocity of the non-porous medium is more than twice that of the medium with 40% porosity. The static characteristics and acoustic parameters of the medium are negatively correlated with porosity.
- Among the equivalent diameter, sphericity, and porosity, porosity has the greatest influence on the macroscopic mechanical behavior of the earthen-site soils, followed by sphericity. The static behavior and acoustic characteristics of the soils are the least sensitive to the equivalent diameter of pores.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, J. 3D laser scanning and the conservation of earthen architecture: A case study at the UNESCO World Heritage Site Merv, Turkmenistan. World Archaeol. 2009, 41, 489–504. [Google Scholar] [CrossRef]
- Balderrama, A.A. The conservation of earthen architecture. Conserv. GCI Newsl. 2001, 16, 4–11. [Google Scholar]
- Carretti, E.; Dei, L. Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Prog. Org. Coat. 2004, 49, 282–289. [Google Scholar] [CrossRef]
- Kim, E.K.; Won, J.; Do, J.-Y.; Kim, S.D.; Kang, Y.S. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J. Cult. Herit. 2009, 10, 214–221. [Google Scholar] [CrossRef]
- Biscontin, G.; Maravelaki, P.; Zendri, E.; Glisenti, A. Siliconic and acrylic resins dispersed in water as protectives for stone surface. MRS Online Proc. Libr. 1992, 267, 935–941. [Google Scholar] [CrossRef]
- Melo, M.J.; Bracci, S.; Camaiti, M.; Chiantore, O.; Piacenti, F. Photodegradation of acrylic resins used in the conservation of stone. Polym. Degrad. Stab. 1999, 66, 23–30. [Google Scholar] [CrossRef]
- Borgia, G.C.; Bortolotti, V.; Camaiti, M.; Cerri, F.; Fantazzini, P.; Piacenti, F. Performance evolution of hydrophobic treatments for stone conservation investigated by MRI. Magn. Reson. Imaging 2001, 19, 513–516. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.; Agioutantis, Z.; Maurigiannakis, S.; Korakaki, D. A comparative study of porous limestones treated with silicon-based strengthening agents. Prog. Org. Coat. 2008, 62, 49–60. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Kallithrakas-Kontos, N.; Korakaki, D.; Agioutantis, Z.; Maurigiannakis, S. Evaluation of silicon-based strengthening agents on porous limestones. Prog. Org. Coat. 2006, 57, 140–148. [Google Scholar] [CrossRef]
- Chen, W.; Dai, P.; Yuan, P.; Zhang, J. Effect of inorganic silicate consolidation on the mechanical and durability performance of sandstone used in historical sites. Constr. Build. Mater. 2016, 121, 445–452. [Google Scholar] [CrossRef]
- Ossola, F.; Tomasin, P.; De Zorzi, C.; El Habra, N.; Chiurato, M.; Favaro, M. New calcium alkoxides for consolidation of carbonate rocks. Influence of precursors’ characteristics on morphology, crystalline phase and consolidation effects. New J. Chem. 2012, 36, 2618–2624. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; van Hees, R.; Veiga, R.; Santos Silva, A. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr. Build. Mater. 2017, 142, 385–394. [Google Scholar] [CrossRef]
- Elert, K.; Pardo, E.S.; Rodriguez-Navarro, C. Alkaline activation as an alternative method for the consolidation of earthen architecture. J. Cult. Herit. 2015, 16, 461–469. [Google Scholar] [CrossRef]
- Barajas, M.; Lima, E.; Lara, V.H.; Negrete, J.V.; Barragán, C.; Malváez, C.; Bosch, P. Effect of organic and inorganic consolidation agents on Tlaltecuhtli monolith. J. Archaeol. Sci. 2009, 36, 2244–2252. [Google Scholar] [CrossRef]
- Sassoni, E.; Graziani, G.; Franzoni, E. An innovative phosphate-based consolidant for limestone. Part 1: Effectiveness and compatibility in comparison with ethyl silicate. Constr. Build. Mater. 2016, 102, 918–930. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Zhang, J.; Dai, P. Consolidation effect of composite materials on earthen sites. Constr. Build. Mater. 2018, 187, 730–737. [Google Scholar] [CrossRef]
- Cai, G.; Liu, S.; Du, G.; Chen, Z.; Zheng, X.; Li, J. Mechanical performances and microstructural characteristics of reactive MgO-carbonated silt subjected to freezing-thawing cycles. J. Rock Mech. Geotech. Eng. 2021, 13, 875–884. [Google Scholar] [CrossRef]
- Latif, A.M.A.; Rasoul, Z.M.R.A. Correlation between the compressive strength of concrete and ultrasonic pulse velocity; investigation and interpretation. J. Kerbala Univ. 2009, 7, 17–29. [Google Scholar] [CrossRef]
- Pu, S.; Hong, B.; Liu, X.; Xu, F.; Shan, H. Detection technology of foamed mixture lightweight soil embankment based on ultrasonic wave transmission method. Adv. Mater. Sci. Eng. 2019, 2019, 9654819. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Rom. J. Mater. 2016, 46, 343–350. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, M.G.; Gomes, A. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics 2013, 53, 962–972. [Google Scholar] [CrossRef]
- Demirboğa, R.; Türkmen, İ.; Karakoç, M.B. Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cem. Concr. Res. 2004, 34, 2329–2336. [Google Scholar] [CrossRef]
- Tan, Y.; Yu, H.; Mi, R.; Zhang, Y. Compressive strength evaluation of coral aggregate seawater concrete (CAC) by non-destructive techniques. Eng. Struct. 2018, 176, 293–302. [Google Scholar] [CrossRef]
- Xu, S.; Suorineni, F.T.; Li, K.; Li, Y. Evaluation of the strength and ultrasonic properties of foam-cemented paste backfill. Int. J. Min. Reclam. Environ. 2017, 31, 544–557. [Google Scholar] [CrossRef]
- Yasar, E.; Erdogan, Y. Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 871–875. [Google Scholar] [CrossRef]
- Yin, H.M.; Sun, L.Z. Elastic modelling of periodic composites with particle interactions. Philos. Mag. Lett. 2005, 85, 163–173. [Google Scholar] [CrossRef]
- Yin, H.M.; Sun, L.Z. Magnetoelasticity of chain-structured ferromagnetic composites. Appl. Phys. Lett. 2005, 86, 261901. [Google Scholar] [CrossRef]
- Liu, H.T.; Sun, L.Z.; Ju, J.W. Elastoplastic modeling of progressive interfacial debonding for particle-reinforced met-matrix composites. Acta Mech. 2006, 181, 1–17. [Google Scholar] [CrossRef]
- Shih, T.-C.; Chen, J.-H.; Liu, D.; Nie, K.; Sun, L.; Lin, M.; Chang, D.; Nalcioglu, O.; Su, M.-Y. Computational simulation of breast compression based on fibroglandular tissues on magnetic resonance images. Phys. Med. Biol. 2006, 55, 4153–4168. [Google Scholar] [CrossRef]
- Yoon, J.; El Mohtar, C.S. Constitutive model parameters of concentrated bentonite suspensions modified with sodium pyrophosphate. J. Mater. Sci. 2015, 50, 5253–5261. [Google Scholar] [CrossRef]
- Romero, E.; Simms, P.H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotech. Geol. Eng. 2008, 26, 705–727. [Google Scholar] [CrossRef]
- Wang, L.L.; Bornert, M.; Héripré, E.; Chanchole, S.; Pouya, A.; Halphen, B. The mechanisms of deformation and damage of mudstones: A micro-scale study combining ESEM and DIC. Rock Mech. Rock Eng. 2015, 48, 1913–1926. [Google Scholar] [CrossRef]
- Wang, L.; Bornert, M.; Héripré, E.; Chanchole, S.; Pouya, A.; Halphen, B. Microscale insight into the influence of humidity on the mechanical behavior of mudstones. J. Geophys. Res. Solid Earth 2015, 120, 3173–3186. [Google Scholar] [CrossRef]
- Wang, L.L.; Bornert, M.; Héripré, E.; Chanchole, S.; Tanguy, A. Full-field measurements on low-strained geomaterials using environmental scanning electron microscopy and digital image correlation: Improved imaging conditions. Strain 2014, 50, 370–380. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, J.F.; Coop, M.R.; Viggiani, G.; Jiang, M. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 2015, 65, 625–641. [Google Scholar] [CrossRef]
- Liu, X.; Ni, C.; Meng, K.; Zhang, L.; Liu, D.; Sun, L. Strengthening mechanism of lightweight cellular concrete filled with fly ash. Constr. Build. Mater. 2020, 251, 118954. [Google Scholar] [CrossRef]
- Mcdowell, G.R.; Harireche, O. Discrete element modelling of soil particle fracture. Géotechnique 2002, 52, 131–135. [Google Scholar] [CrossRef]
- Li, Y.; Zou, W.; Wu, W.; Chen, L. Discrete element modeling of strength properties and failure modes of QH-E lunar soil simulant at low confining stresses. Civ. Eng. J. 2018, 211–226. [Google Scholar] [CrossRef]
- Mirghasemi, A.A.; Rothenburg, L.; Matyas, E.L. Numerical simulations of assemblies of two-dimensional polygon-shaped particles and effects of confining pressure on shear strength. Soils Found. 1997, 37, 43–52. [Google Scholar] [CrossRef]
- Mirghasemi, A.A.; Rothenburg, L.; Matyas, E.L. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles. Géotechnique 2002, 52, 209–217. [Google Scholar] [CrossRef]
- Hosseininia, E.S.; Mirghasemi, A.A. Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method. Powder Technol. 2006, 166, 100–112. [Google Scholar] [CrossRef]
- Bagherzadeh-Khalkhali, A.; Mirghasemi, A.A.; Mohammadi, S. Micromechanics of breakage in sharp-edge particles using combined DEM and FEM. Particuology 2008, 6, 347–361. [Google Scholar] [CrossRef]
- Hosseininia, S.E.; Mirghasemi, A.A. Effect of particle breakage on the behavior of simulated angular particle assemblies. China Particuology 2007, 5, 328–336. [Google Scholar] [CrossRef]
- Luo, T.; Ooi, E.T.; Chan, A.H.C.; Fu, S.J. The combined scaled boundary finite-discrete element method: Grain breakage modelling in cohesion-less granular media. Comput. Geotech. 2017, 88, 199–221. [Google Scholar] [CrossRef]
- Raisianzadeh, J.; Mirghasemi, A.A.; Mohammadi, S. 2D simulation of breakage of angular particles using combined DEM and XFEM. Powder Technol. 2018, 336, 282–297. [Google Scholar] [CrossRef]
- Kh, A.B.; Mirghasemi, A.A.; Mohammadi, S. Numerical simulation of particle breakage of angular particles using combined DEM and FEM. Powder Technol. 2011, 205, 15–29. [Google Scholar] [CrossRef]
- Nguyen, T.; Ghazlan, A.; Kashani, A.; Bordas, S.; Ngo, T. 3D meso-scale modelling of foamed concrete based on X-ray Computed Tomography. Constr. Build. Mater. 2018, 188, 583–598. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Chen, W.; Sun, L. Microstructural analysis and multiscale modeling for stiffening and strengthening of consolidated earthen-site soils. J. Cult. Herit. 2022, 55, 143–148. [Google Scholar] [CrossRef]
- Yaman, I.O.; Akbay, Z.; Aktan, H. Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete. Comput. Concr. 2006, 3, 423–437. [Google Scholar] [CrossRef]
- Tang, Q.; Yu, T. Finite element simulation of ultrasonic waves in corroded reinforced concrete for early-stage corrosion detection. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure; SPIE: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Liu, D.; Qiao, P.; Zhou, Z.; Sun, L.Z. Microstructural origins of wave modulus of elasticity of concrete. J. Eng. Mech. 2020, 146, 04020028. [Google Scholar] [CrossRef]
- Matsushima, T.; Katagiri, J.; Uesugi, K.; Tsuchiyama, A.; Nakano, T. 3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1. J. Aerosp. Eng. 2009, 22, 15–23. [Google Scholar] [CrossRef]
- Ministry of Construction of the People’s Republic of China. Code for Investigation of Geotechnical Engineering; GB50021-2001; China Architecture & Building Press: Beijing, China, 2002; p. 11. [Google Scholar]
- Strömblad, N. Modeling of Soil and Structure Interaction Subsea. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2014. [Google Scholar]
- Krahn, J. Stability Modeling with SLOPE/W; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2004; pp. 184–185. [Google Scholar]
- Karatasios, I.; Theoulakis, P.; Kalagri, A.; Sapalidis, A.; Kilikoglou, V. Evaluation of consolidation treatments of marly limestones used in archaeological monuments. Constr. Build. Mater. 2009, 23, 2803–2812. [Google Scholar] [CrossRef]
Selected Area | Threshold 99 | Threshold 100 | ||
---|---|---|---|---|
Porosity (%) | Deviation (%) | Porosity (%) | Deviation (%) | |
120 × 160 | 44.50 | 8.59 | 46.44 | 13.32 |
240 × 320 | 41.15 | 0.41 | 42.92 | 4.73 |
360 × 480 | 39.39 | −3.88 | 41.79 | 1.98 |
480 × 640 | 39.07 | -4.66 | 41.03 | 0.12 |
600 × 800 | 39.42 | −3.81 | 41.90 | 2.24 |
720 × 960 | 40.16 | −2.00 | 42.44 | 3.56 |
840 × 1120 | 40.17 | −1.98 | 42.29 | 3.20 |
960 × 1280 | 41.67 | 1.68 | 42.98 | 4.88 |
Sample | Mean (mm) | Min (mm) | Max (mm) | Median (mm) | Variance | SK | Ku |
---|---|---|---|---|---|---|---|
Untreated | 0.1685 | 0.0156 | 0.3863 | 0.1558 | 0.0058 | 0.4818 | 0.1089 |
Consolidated | 0.1209 | 0.0125 | 0.2348 | 0.1217 | 0.0018 | 0.1666 | 0.1759 |
Sample | Mean | Min | Max | Median | Variance | SK | Ku |
---|---|---|---|---|---|---|---|
Untreated | 0.6880 | 0.4738 | 0.8511 | 0.7024 | 0.0061 | 0.7027 | 0.1261 |
Consolidated | 0.6525 | 0.3486 | 0.8375 | 0.6690 | 0.0105 | 0.6805 | 0.0804 |
Equivalent Diameter (mm) | |||||
---|---|---|---|---|---|
0.10 | 286.980 | 165.121 | 43.778 | 0.251 | 109.436 |
0.12 | 287.343 | 161.260 | 41.931 | 0.266 | 105.727 |
0.14 | 284.150 | 171.357 | 47.145 | 0.214 | 114.438 |
0.16 | 287.990 | 154.697 | 38.486 | 0.293 | 99.641 |
0.18 | 293.629 | 153.474 | 37.815 | 0.312 | 99.163 |
0.20 | 299.145 | 171.697 | 47.315 | 0.254 | 118.662 |
Sphericity | TOF of TB (μs) | TOF of BT (μs) | TOF of LR (μs) | TOF of RL (μs) | Average TOF (μs) | |
---|---|---|---|---|---|---|
1 | 46.10 | 44.50 | 440 | 45.65 | 45.06 | 284.050 |
0.886 | 49.60 | 48.20 | 48.40 | 49.65 | 48.96 | 261.425 |
0.778 | 50.65 | 51.10 | 51.45 | 49.55 | 50.69 | 252.528 |
0.600 | 54.95 | 56.65 | 52.25 | 57.50 | 55.34 | 231.308 |
Porosity (%) | TOF of TB (μs) | TOF of BT (μs) | TOF of LR (μs) | TOF of RL (μs) | Average TOF (μs) | |
---|---|---|---|---|---|---|
0 | 21.35 | 21.35 | 21.30 | 21.30 | 21.33 | 600.235 |
10.23 | 32.75 | 31.75 | 30.70 | 30.80 | 31.50 | 406.349 |
19.27 | 36.40 | 36.45 | 35.85 | 35.90 | 36.15 | 354.080 |
29.15 | 40.30 | 40.75 | 39.75 | 39.20 | 40.00 | 320.000 |
40.67 | 46.10 | 44.50 | 44.00 | 45.65 | 45.06 | 284.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, G.; Chen, W.; Sun, L. Relation between Microstructures and Macroscopic Mechanical Properties of Earthen-Site Soils. Materials 2022, 15, 6124. https://doi.org/10.3390/ma15176124
Zhang Y, Yang G, Chen W, Sun L. Relation between Microstructures and Macroscopic Mechanical Properties of Earthen-Site Soils. Materials. 2022; 15(17):6124. https://doi.org/10.3390/ma15176124
Chicago/Turabian StyleZhang, Yingmin, Guang Yang, Wenwu Chen, and Lizhi Sun. 2022. "Relation between Microstructures and Macroscopic Mechanical Properties of Earthen-Site Soils" Materials 15, no. 17: 6124. https://doi.org/10.3390/ma15176124
APA StyleZhang, Y., Yang, G., Chen, W., & Sun, L. (2022). Relation between Microstructures and Macroscopic Mechanical Properties of Earthen-Site Soils. Materials, 15(17), 6124. https://doi.org/10.3390/ma15176124