Construction Products between Testing Laboratory and Market Surveillance: Case study of Cementitious Ceramic Tile Adhesives
Abstract
:1. Introduction
2. Materials and Methods
- ǀzǀ ≤ 2—satisfactory; therefore, it does not trigger any warning signal or signal for action;
- 2 < ǀzǀ < 3—questionable, it causes a warning signal;
- ǀzǀ ≥ 3—unsatisfactory, triggers an action signal.
3. Results
Participant Code | Initial Tensile Adhesion Strength | Tensile Adhesion Strength after Heat Ageing | ||
---|---|---|---|---|
[N/mm2] | Dominant Failure Pattern | [N/mm2] | Dominant Failure Pattern | |
1 | 1.5 | CF-A | 1.5 | AF-T |
2 | 1.4 | 50% CF-A/50%AF-T | 1.3 | 50% CF-A/50% AF-T |
3 | 1.6 | CF-A | 1.6 | CF-A |
4 | 1.7 | CF-A | 1.8 | CF-A |
5 | 1.9 | CF-A | 1.3 | CF-A |
6 | 2.0 | CF-A | 1.5 | CF-A |
7 | 1.9 | CF-A | 2.0 | CF-A |
8 | 1.3 | CF-A | 1.6 | CF-A |
9 | 1.6 | CF-A | 1.3 | CF-A |
10 | 1.6 | CF-A | 1.5 | CF-A |
11 | 1.3 | AF-S | 0.6 | CF-A |
12 | 1.5 | AF-T | 1.3 | AF-T |
13 | 1.8 | CF-A | 1.9 | CF-S |
14 | 2.4 | AF-S | 2.1 | AF-T |
15 | 1.9 | CF-A | 1.8 | CF-A |
16 | 1.9 | 50% CF-A/50% AF-T | 1.1 | 55% CF-A/45% AF-T |
17 | 2.7 | CF-A | 2.5 | CF-A |
18 | 1.6 | AF-S | 0.8 | BT |
19 | 2.0 | CF-A | 1.7 | CF-A/AF-S |
20 | 1.5 | AF-T | 2.3 | AF-T |
21 | 2.0 | CF-A | 1.9 | CF-A |
22 | 2.0 | CF-A | 1.8 | CF-A |
23 | 1.4 | AF-T/CF-A | 1.7 | CF-A |
24 | 1.5 | CF-A | 1.8 | CF-A |
25 | 2.3 | AF-T | 1.6 | AF-T |
26 | 2.3 | CF-A | 2.1 | CF-S |
27 | 1.7 | CF-A | 2.2 | CF-A |
Participant Code | Tensile Adhesion Strength after Immersion in Water | Tensile Adhesion Strength after Freeze–Thaw Cycles | ||
---|---|---|---|---|
[N/mm2] | Dominant Failure Pattern | [N/mm2] | Dominant Failure Pattern | |
1 | 0.9 | AF-T | 1.5 | AF-T |
2 | 0.5 | 5% CF-A/95%AF-T | 0.8 | 50% CF-A/50% AF-T |
3 | 0.8 | CF-A | 1.0 | CF-A |
4 | 1.0 | CF-A | 1.3 | CF-A |
5 | 0.6 | AF-T | 0.9 | CF-A |
6 | 1.0 | AF-T | 1.2 | AF-T |
7 | 0.6 | CF-A | 1.4 | CF-A |
8 | 1.1 | CF-A | 1.6 | CF-A |
9 | 1.1 | CF-A | 1.2 | CF-A |
10 | 0.9 | AF-T | 1.0 | AF-T |
11 | 0.6 | AF-T | 0.1 | AF-T |
12 | 0.4 | AF-T | * | * |
13 | 0.9 | CF-A | 1.2 | CF-A |
14 | 1.3 | AF-T | 0.6 | CF-S |
15 | 1.5 | CF-A | 1.6 | CF-A |
16 | 0.6 | 20% CF-A/80% AF-T | 1.2 | 65% CF-A/35% AF-T |
17 | 1.1 | CF-A | 2.1 | CF-A |
18 | 1.2 | CF-A | 0.3 | AF-T |
19 | 1.5 | CF-A/AF-S | 2.1 | CF-A |
20 | 1.2 | AF-T | 1.1 | AF-T |
21 | 1.1 | CF-A | 1.6 | CF-A |
22 | 0.6 | CF-A | 0.8 | CF-A |
23 | 0.6 | AF-T | 1.4 | CF-A |
24 | 0.8 | AF-T | 1.7 | CF-A |
25 | 0.9 | AF-T | 1.4 | CF-A |
26 | 1.1 | AF-T | 1.6 | CF-A |
27 | 2.0 | CF-A | * | * |
Initial Adhesion Strength [N/mm2] | Adhesion Strength after Heat Ageing [N/mm2] | Adhesion Strength after Water Immersion [N/mm2] | Adhesion Strength after Freeze–Thaw Cycles [N/mm2] | |
---|---|---|---|---|
Lowest value | 1.3 | 0.6 | 0.4 | 0.1 |
Highest value | 2.7 | 2.5 | 2.0 | 2.1 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation (EU) No. 305/2011 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32011R0305 (accessed on 31 May 2022).
- European Commission. Summary of References of Harmonised Standards Published in the Official Journal—Regulation (EU) No. 305/20111 of the European Parliament and of the Council of 9 March 2011 Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/docsroom/documents/49237 (accessed on 31 May 2022).
- European Organization for Technical Assessment (EOTA). ETA Database; European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2022; Available online: https://www.eota.eu/etassessments (accessed on 31 May 2022).
- Regulation (EU) No. 1025/2012 of the European Parliament and of the Council of 25 October 2012 on European Standardisation, Amending Council Directives 89/686/EEC and 93/15/EEC and Directives 94/9/EC, 94/25/EC, 95/16/EC, 97/23/EC, 98/34/EC, 2004/22/EC, 2007/23/EC, 2009/23/EC and 2009/105/EC of the European Parliament and of the Council and Repealing Council Decision 87/95/EEC and Decision No. 1673/2006/EC of the European Parliament and of the Council Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R1025 (accessed on 31 May 2022).
- Eliantonio, M.; Cauffman, C. The Legitimacy of Standardisation as a Regulatory Technique in the EU—A Cross-Disciplinary and Multi-Level Analysis: An Introduction. In The Legitimacy of Standardisation as a Regulatory Technique; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- European Parliament, Committee on the Internal Market and Consumer Protection, Report on the Implementation of Regulation (EU) No. 305/2011 Laying Down Harmonised Conditions for the Marketing of Construction Products (the Construction Products Regulation (2020/2028(INI), 2021. Available online: https://www.europarl.europa.eu/doceo/document/A-9-2021-0012_EN.html (accessed on 31 May 2022).
- Michalak, J. Standards and Assessment of Construction Products: Case Study of Ceramic Tile Adhesives. Standards 2022, 2, 184–193. [Google Scholar] [CrossRef]
- Zgirskas, A.; Ruževičius, J.; Ruželė, D. Benefits of Quality Management Standards in Organizations. Standards 2021, 1, 154–166. [Google Scholar] [CrossRef]
- Acemoglu, D.; Gancia, G.; Zilibotti, F. Competing engines of growth: Innovation and standardization. J. Econ. Theory 2012, 147, 570–601. [Google Scholar] [CrossRef]
- Godin, B. The linear model of innovation: The historical construction of an analytical framework. Sci. Technol. Hum. Values 2006, 31, 639–667. [Google Scholar] [CrossRef]
- Regulation (EC) No. 765/2008 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R0765 (accessed on 12 June 2022).
- Miller, W.G. The role of proficiency testing in achieving standardization and harmonization between laboratories. Clin. Biochem. 2009, 42, 232–235. [Google Scholar] [CrossRef]
- de Medeiros Albano, F.; ten Caten, C.S. Proficiency tests for laboratories: A systematic review. Accredit. Qual. Assur. 2014, 19, 245–257. [Google Scholar] [CrossRef]
- de Medeiros Albano, F.; ten Caten, C.S. Analysis of the relationships between proficiency testing, validation of methods and estimation of measurement uncertainty: A qualitative study with experts. Accredit. Qual. Assur. 2016, 21, 161–166. [Google Scholar] [CrossRef]
- Stancu, C. The importance of laboratories’ participation in interlaboratory comparison. Case study: Interlaboratory tests on adhesives for ceramic tiles. Rom. J. Mater. 2022, 52, 3–7. [Google Scholar]
- Stancu, C.; Michalak, J. Interlaboratory Comparison as a Source of Information for the Product Evaluation Process. Case Study of Ceramic Tiles Adhesives. Materials 2022, 15, 253. [Google Scholar] [CrossRef]
- Guiñón, L.; García-Villoria, J.; Ribes, A.; Gort, L.; Molina, A.; Soler, A.; Sahuquillo, A.; Alvarez, L. External quality assessment in the absence of proficiency testing: A split-Sample testing program experience. Clin. Biochem. 2021, 97, 78–81. [Google Scholar] [CrossRef]
- Szewczak, E.; Bondarzewski, A. Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational? Accredit. Qual. Assur. 2016, 21, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Kotyczka-Moranska, M.; Mastalerz, M.; Plis, A.; Sciazko, M. Inter-Laboratory proficiency testing of the measurement of gypsum parameters with small numbers of participants. Accredit. Qual. Assur. 2020, 25, 373–381. [Google Scholar] [CrossRef]
- Szewczak, E.; Piekarczuk, A. Performance evaluation of the construction products as a research challenge. Small error–Big difference in assessment? Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 675–686. [Google Scholar] [CrossRef]
- Skrzypczak, I.; Leśniak, A.; Ochab, P.; Górka, M.; Kokoszka, W.; Sikora, A. Interlaboratory Comparative Tests in Ready-Mixed Concrete Quality Assessment. Materials 2021, 14, 3475. [Google Scholar] [CrossRef] [PubMed]
- Szewczak, E. Does Standardisation Ensure a Reliable Assessment of the Performance of Construction Products? Standards 2022, 2, 260–275. [Google Scholar] [CrossRef]
- Łukasik, M.; Michałowski, B.; Michalak, J. Assessment of the constancy of performance of cementitious adhesives for ceramic tiles: Analysis of the test results Commissioned by Polish Market Surveillance Authorities. Appl. Sci. 2020, 10, 6561. [Google Scholar] [CrossRef]
- Kulesza, M.; Lukasik, M.; Michalowski, B.; Michalak, J. Risk related to the assessment and verification of the constancy of performance of construction products. Analysis of the results of the tests of cementitious adhesives for ceramic tiles commissioned by Polish construction supervision authorities in 2016–2020. Cem. Wapno Beton 2020, 25, 444–456. [Google Scholar]
- Plant, A.L.; Hanisch, R.J. Reproducibility and Replicability in Science, A Metrology Perspective. In National Academies of Sciences, Engineering and Medicine Committee on Reproducibility and Replicability in Science Report; National Academies of Sciences, Engineering and Medicine: Washington, DC, USA, 2018; Available online: https://nap.nationalacademies.org/resource/25303/Metrology%20Perspective%20on%20Reproducibility.pdf (accessed on 31 May 2022).
- Williams, A. Principles of the EURACHEM/CITAC guide “Use of uncertainty information in compliance assessment”. Accredit. Qual. Assur. 2008, 13, 633–638. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. Uncertainty of measurement and conformity assessment: A review. Anal. Bioanal. Chem. 2011, 400, 1729–1741. [Google Scholar] [CrossRef]
- Loftus, P.; Giudice, S. Relevance of methods and standards for the assessment of measurement system performance in a High-Value Manufacturing Industry. Metrologia 2014, 51, S219–S227. [Google Scholar] [CrossRef]
- Kosztyán, Z.T.; Hegedűs, C.; Katona, A. Treating measurement uncertainty in industrial conformity control. Central Eur. J. Oper. Res. 2017, 25, 907–928. [Google Scholar] [CrossRef]
- Grégis, F. On the meaning of measurement uncertainty. Measurement 2019, 133, 41–46. [Google Scholar] [CrossRef]
- Milinković, N.; Jovičić, S.; Ignjatović, S. Measurement uncertainty as a universal concept: Can it be universally applicable in routine laboratory practice? Crit. Rev. Clin. Lab. Sci. 2021, 58, 101–112. [Google Scholar] [CrossRef]
- Dastmardi, M.; Mohammadi, M.; Naderi, B. Optimizing measurement uncertainty to reduce the risk and cost in the process of conformity assessment. Accreditation Qual. Assur. 2017, 23, 19–28. [Google Scholar] [CrossRef]
- Szewczak, E. Ryzyko związane z niepewnością wyników badań i oceną zgodności wyrobów budowlanych. Mater. Bud. 2011, 470, 73–75. [Google Scholar]
- Oosterhuis, W.P.; Theodorsson, E. Total error vs. measurement uncertainty: Revolution or evolution? Clin. Chem. Lab. Med. CCLM 2016, 54, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Pendrill, L.R. Using measurement uncertainty in decision-Making and conformity assessment. Metrologia 2014, 51, S206–S218. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Lourenço, F.R. Risk of false conformity assessment applied to automotive fuel analysis: A multiparameter approach. Chemosphere 2020, 263, 128265. [Google Scholar] [CrossRef]
- Hinrichs, W. Product-Specific adaption of conformity assessment criteria and their financial consequences. Prod. Eng. 2011, 5, 549–556. [Google Scholar] [CrossRef]
- Banyai, T. Economic aspects of decision making in production processes with uncertain component quality. Prod. Eng. 2011, 5, 549–556. [Google Scholar] [CrossRef]
- Shirono, K.; Tanaka, H.; Koike, M. Economic optimization of acceptance interval in conformity assessment: 1. Process with no systematic effect. Metrologia 2022, 59, 045005. [Google Scholar] [CrossRef]
- Coarna, M.; Guslicov, G.; Stancu, C.; Vlad, C. Interlaboratory test on adhesives for ceramic tiles in the last 5 years. In Proceedings of the 4th International Proficiency Testing Conference, Brasov, Romania, 18–20 September 2013; pp. 17–20. [Google Scholar]
- EN ISO/IEC 17025:2018-02; General Requirements for the Competence of Testing and Calibration Laboratories. European Committee for Standardization (CEN): Brussels, Belgium, 2018.
- Baraldi, L. World production and consumption of ceramic tiles. Ceram. World Rev. 2021, 31, 26–41. [Google Scholar]
- Michalak, J. Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review. Ceramics 2021, 4, 378–390. [Google Scholar] [CrossRef]
- EN 12004:2001; Adhesives for Tiles—Definitions and Specifications. European Committee for Standardization (CEN): Brussels, Belgium, 2001.
- EN 12004-1:2017; Adhesives for Ceramic Tiles—Part 1: Requirements, Assessment and Verification of Constancy of Performance, Classification and Marking. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- EN 12004:2007+A1:2012; Adhesives for Tiles–Requirements, Evaluation of Conformity, Classification and Designation. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- ISO 13007-1:2004; Ceramic Tiles—Grouts and Adhesive—Part. 1: Terms, Definitions and Specifications for Adhesives. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- ISO 13007-1:2014; Ceramic Tiles—Grouts and Adhesives—Part 1: Terms, Definitions and Specifications for Adhesives. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- ISO 13528:2015; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Felixberger, J.K. Polymer-Modified Thin-Bed Tile Adhesive; Institut De Promocio Ceramica: Castelló, Spain, 2008. [Google Scholar]
- Niziurska, M. Znaczenie wlaściwości plytek ceramicznych w zapewnieniu trwalości okladzin mocowanych zaprawami cementowymi. Pr. Inst. Ceram. I Mater. Bud. 2013, 6, 17–26. [Google Scholar]
- Nosal, K.; Niziurska, M.; Wieczorek, M. Wplyw zanieczyszczeń zawartych w wodzie przeznaczonej do sezonowania zapraw klejowych do plytek na ich przyczepność. Pr. Inst. Ceram. I Mater. Bud. 2015, 8, 61–70. [Google Scholar]
- Lopes, A.C.; Flores-Colen, I.; Silva, L.; Lopes, C. Variability of the pull-Off technique for adhesion strength evaluation on ceramic tile claddings. J. Adhes. 2014, 91, 768–791. [Google Scholar] [CrossRef]
- Salustio, J.; Torres, S.M.; Melo, A.C.; Silva Â, J.C.; Azevedo, A.C.; Tavares, J.C.; Leal, M.S.; Delgado, J.M. Mortar Bond Strength: A Brief Literature Review, Tests for Analysis, New Research Needs and Initial Experiments. Materials 2022, 15, 2332. [Google Scholar] [CrossRef]
- EN ISO/IEC 17043:2010; Conformity Assessment—General Requirements for Proficiency Testing. European Committee for Standardization (CEN): Brussels, Belgium, 2010.
Predominant Failure Pattern | Initial Adhesion Strength | Adhesion Strength after Heat Ageing | Adhesion Strength after Water Immersion | Adhesion Strength after Freeze–Thaw Cycles |
---|---|---|---|---|
CF-A | 18 | 16 | 12 | 16 |
AF-T | 3 | 5 | 12 | 6 |
AF-S | 3 | 0 | 0 | 0 |
CF-S | 0 | 2 | 0 | 1 |
CF-T | 0 | 0 | 0 | 0 |
BT | 0 | 1 | 0 | 0 |
other | 3 | 3 | 3 | 2 |
Parameter | Initial Adhesion Strength [N/mm2] | Adhesion Strength after Heat Ageing [N/mm2] | Adhesion Strength after Water Immersion [N/mm2] | Adhesion Strength after Freeze–thaw Cycles * [N/mm2] |
---|---|---|---|---|
x* | 1.7 | 1.7 | 0.9 | 1.2 |
s* | 0.3 | 0.3 | 0.4 | 0.4 |
xpt | 1.8 | 1.7 | 0.9 | 1.2 |
pt | 0.4 | 0.4 | 0.3 | 0.4 |
u(xpt) | 0.1 | 0.1 | 0.1 | 0.1 |
V | 19.9 | 24.5 | 36.8 | 36.1 |
Participant Code | Initial Adhesion Strength [N/mm2] | Adhesion Strength after Heat Ageing [N/mm2] | Adhesion Strength after Water Immersion [N/mm2] | Adhesion Strength after Freeze–thaw Cycles * [N/mm2] |
---|---|---|---|---|
1 | −0.77 | −0.41 | −0.11 | 0.58 |
2 | −1.05 | −0.90 | −1.27 | −0.98 |
3 | −0.49 | −0.17 | −0.40 | −0.54 |
4 | −0.20 | 0.32 | 0.18 | 0.13 |
5 | 0.36 | −0.90 | −0.98 | −0.76 |
6 | 0.64 | −0.41 | 0.18 | −0.09 |
7 | 0.36 | 0.81 | −0.98 | 0.36 |
8 | −1.34 | −0.17 | 0.47 | 0.80 |
9 | −0.49 | −0.90 | 0.47 | −0.09 |
10 | −0.49 | −0.41 | −0.11 | −0.54 |
11 | −1.34 | −2.61 | −0.98 | −2.54 |
12 | −0.77 | −0.90 | −1.56 | - |
13 | 0.08 | 0.56 | −0.11 | −0.09 |
14 | 1.78 | 1.05 | 1.05 | −1.43 |
15 | 0.39 | 0.37 | 1.72 | 0.78 |
16 | 0.36 | −1.39 | −0.98 | −0.09 |
17 | 2.63 | 2.03 | 0.47 | 1.92 |
18 | −0.49 | −2.13 | 0.76 | −2.10 |
19 | 0.64 | 0.08 | 1.64 | 1.92 |
20 | −0.66 | 1.42 | 0.79 | −0.42 |
21 | 0.64 | 0.56 | 0.47 | 0.80 |
22 | 0.64 | 0.32 | −0.98 | −0.98 |
23 | −1.05 | 0.08 | −0.98 | 0.36 |
24 | −0.77 | 0.32 | −0.40 | 1.03 |
25 | 1.49 | −0.17 | −0.11 | 0.36 |
26 | 1.49 | 1.05 | 0.47 | 0.80 |
27 | −0.20 | 1.30 | 3.09 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stancu, C.; Dębski, D.; Michalak, J. Construction Products between Testing Laboratory and Market Surveillance: Case study of Cementitious Ceramic Tile Adhesives. Materials 2022, 15, 6167. https://doi.org/10.3390/ma15176167
Stancu C, Dębski D, Michalak J. Construction Products between Testing Laboratory and Market Surveillance: Case study of Cementitious Ceramic Tile Adhesives. Materials. 2022; 15(17):6167. https://doi.org/10.3390/ma15176167
Chicago/Turabian StyleStancu, Cristina, Dawid Dębski, and Jacek Michalak. 2022. "Construction Products between Testing Laboratory and Market Surveillance: Case study of Cementitious Ceramic Tile Adhesives" Materials 15, no. 17: 6167. https://doi.org/10.3390/ma15176167
APA StyleStancu, C., Dębski, D., & Michalak, J. (2022). Construction Products between Testing Laboratory and Market Surveillance: Case study of Cementitious Ceramic Tile Adhesives. Materials, 15(17), 6167. https://doi.org/10.3390/ma15176167