The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Experimental Procedure
2.3. Characterization
3. Results
3.1. Powder Characteristics for Forming Precision
3.2. Process Parameters for SLM Molybdenum
3.3. Microstructure
3.4. Mechanical Performance
4. Discussion
4.1. Densification Process
4.2. Crack Generation and Suppression
4.3. Microstructure, Hardness and Fracture Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Lin, X.; Wang, L.; Zhang, S.; Huang, W. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting. Mater. Sci. Eng. A 2021, 815, 141317. [Google Scholar] [CrossRef]
- Faidel, D.; Jonas, D.; Natour, G.; Behr, W. Investigation of the Selective Laser Melting Process with Molybdenum powder. Addit. Manuf. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Guo, M.; Gu, D.; Xi, L.; Zhang, H.; Wang, R. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2019, 84, 105025. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 2012, 57, 133–164. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Zhang, M.; Liu, Y.; Sercombe, T.B.; Wang, S.; Hao, Y.; Yang, R.; Murr, L.E. Comparison of the microstructures and mechanical properties of ti-6al-4v fabricated by selective laser melting and electron beam melting. Mater. Des. 2016, 95, 21–31. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ishino, A. Microstructures and mechanical properties of laser-sintered commercially pure ti and ti-6al-4v alloy for dental applications. Materials 2020, 13, 609. [Google Scholar] [CrossRef]
- Liu, P.; Hu, J.; Sun, S.; Feng, K.; Zhang, Y.; Cao, M. Microstructural evolution and phase transformation of Inconel 718 alloys fabricated by selective laser melting under different heat treatment. J. Manuf. Processes 2019, 39, 226–232. [Google Scholar] [CrossRef]
- Kim, M.S. Effects of processing parameters of selective laser melting process on thermal conductivity of alsi10mg alloy. Materials 2021, 14, 2410. [Google Scholar] [CrossRef]
- Qian, B.; Saeidi, K.; Kvetková, L.; Lofaj, F.; Xiao, C.; Shen, Z. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 1435–1444. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, J.; Wang, S.; Men, J.; Li, M.; Wang, Y. Comparison of shaped charge jet performance generated by machined and additively manufactured cusn10 liners. Materials 2021, 14, 7149. [Google Scholar] [CrossRef]
- Johnson, J.L.; Hens, K.F.; German, R.M. W–Cu and Mo–Cu for microelectronic packaging applications: Processing fundamentals. In Tungsten and Refractory Metals—1994; Bose, A., Dowding, R.J., Eds.; Metal Powder Industries Federation: Princeton, NJ, USA, 1995; pp. 246–252. [Google Scholar]
- Kaserer, L.; Braun, J.; Stajkovic, J.; Leitz, K.H.; Tabernig, B.; Singer, P.; Letofsky-Papst, I.; Kestler, H.; Leichtfried, G. Fully dense and crack free molybdenum manufactured by Selective Laser Melting through alloying with carbon. Int. J. Refract. Met. Hard Mater. 2019, 84, 105000. [Google Scholar] [CrossRef]
- Braun, J.; Kaserer, L.; Stajkovic, J.; Leitz, K.H.; Tabernig, B.; Singer, P.; Leibenguth, P.; Gspan, C.; Kestler, H.; Leichtfried, G. Molybdenum and tungsten manufactured by selective laser melting—Analysis of defect structure and solidification mechanisms. Int. J. Refract. Metals Hard Mater. 2019, 84, 104999. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Attard, B.; Zhang, P.; Kuang, T. Selective laser melting of high-performance pure tungsten: Parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mater. 2018, 19, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, D.; Xing, L.; Wang, Y.; Yu, C.; Chen, J.; Zhang, T.; Ma, J.; Liu, W.; Shen, Z. Crack suppression in additively manufactured tungsten by introducing secondary-phase nanoparticles into the matrix. Int. J. Refract. Met. Hard Mater. 2019, 79, 158–163. [Google Scholar] [CrossRef]
- Stephens, J.R. Effects of Interstitial Impurities on the Low-Temperature Tensile Properties of Tungsten, Lewis Research Center; NASA-TN-D-2287; National Aeronautics and Space Administration: Cleveland, OH, USA, 1964; p. 964. [Google Scholar]
- Leung, C.L.; Marussi, S.; Towrie, M.; Atwood, R.C.; Withers, P.J.; Lee, P.D. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater. 2019, 166, 294–305. [Google Scholar] [CrossRef]
- Wang, D.Z.; Li, K.L.; Yu, C.F.; Ma, J.; Liu, W.; Shen, Z.J. Cracking Behavior in Additively Manufactured Pure Tungsten. Acta Metall. Sin. 2019, 32, 127–135. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Ma, J.; Liu, W.; Shen, Z. Densification and crack suppression in selective laser melting of pure molybdenum. Mater. Des. 2017, 129, 44–52. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lin, C.C.; Horng, M.H.; Chang, L.K.; Hsu, J.H.; Chang, T.W.; Hung, J.C.; Lee, R.M.; Tsai, M.C. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing. Materials 2022, 15, 5662. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Zhang, D.; Shen, Z.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Z.; Yang, T.; Wang, Y.; Ma, Z. Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting. Mater. Des. 2016, 109, 79–87. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Z.; Yang, T.; Wang, Y.; Ma, Z. Sintering densification behaviors and microstructural evolvement of W-Cu-Ni composite fabricated by selective laser sintering. Int. J. Adv. Manuf. Technol. 2017, 90, 657–666. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, D.; Yang, Y. Effect of particle size on laser absorption and formation mechanism of scanning trajectory in selective laser melting of pure tungsten powder. Engineering 2019, 5, 736–745. [Google Scholar] [CrossRef]
- Veprek, S.; Sarott, F.A.; Iqbal, Z. Effect of grain-boundaries on the Raman-spectra, optical-absorption, and elastic light-scattering in nanometer-sized crystalline silicon. Phys. Rev. B 1987, 36, 3344–3350. [Google Scholar] [CrossRef]
- Akhter, R.; Li, L.; Edwards, R.E.; Gale, A.W. Porosity/bubble formation mechanism in laser surface enamelling. Appl. Surf. Sci. 2003, 208, 447–452. [Google Scholar] [CrossRef]
- Regenfuss, P.; Streek, A.; Hartwig, L.; Klötzer, S.; Brabant, T.; Horn, M.; Ebert, R.; Exner, H. Principles of laser micro sintering. Rapid Prototyp. J. 2007, 13, 204–212. [Google Scholar] [CrossRef]
- Zaeh, M.F.; Branner, G. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. 2010, 4, 35–45. [Google Scholar] [CrossRef]
Elements | Mo | Al | Si | Cr | Fe | Cu | O | Others, Total |
---|---|---|---|---|---|---|---|---|
Results wt(%) | ≥99.9 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.01 | ≤0.03 | ≤0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, A.; Atif, A.M.; Wang, X.; Lan, T.; Wang, Z. The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting. Materials 2022, 15, 6230. https://doi.org/10.3390/ma15186230
Yan A, Atif AM, Wang X, Lan T, Wang Z. The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting. Materials. 2022; 15(18):6230. https://doi.org/10.3390/ma15186230
Chicago/Turabian StyleYan, Anru, Abbas Mirza Atif, Xiaobo Wang, Tian Lan, and Zhiyong Wang. 2022. "The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting" Materials 15, no. 18: 6230. https://doi.org/10.3390/ma15186230
APA StyleYan, A., Atif, A. M., Wang, X., Lan, T., & Wang, Z. (2022). The Microstructure and Cracking Behaviors of Pure Molybdenum Fabricated by Selective Laser Melting. Materials, 15(18), 6230. https://doi.org/10.3390/ma15186230