Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and UV-3D Printing
2.2. PVD Sputtering and Surface Characterization
3. Results and Discussion
3.1. Three-Dimensional Printing and Metallization of the Samples
3.2. Roughness
3.3. SEM Analysis
3.4. Gloss Measurements
3.5. Adhesion Properties
3.6. Fields of Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer Composite Materials: A Comprehensive Review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Witten, E.; Mathes, V. The European Market for Fibre Reinforced Plastics/Composites in 2021; Texdata International: Hamburg, Germany, 2022. [Google Scholar]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef]
- Ribeiro, M.C.S.; Fiúza, A.; Ferreira, A.; Dinis, M.D.L.; Meira Castro, A.C.; Meixedo, J.P.; Alvim, M.R. Recycling Approach towards Sustainability Advance of Composite Materials’ Industry. Recycling 2016, 1, 178–193. [Google Scholar] [CrossRef]
- Beauson, J.; Brøndsted, P. Wind Turbine Blades: An End of Life Perspective. In MARE-WINT.; Ostachowicz, W., McGugan, M., Schröder-Hinrichs, J.-U., Luczak, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 421–432. ISBN 978-3-319-39094-9. [Google Scholar]
- Sommer, V.; Walther, G. Recycling and Recovery Infrastructures for Glass and Carbon Fiber Reinforced Plastic Waste from Wind Energy Industry: A European Case Study. Waste Manag. 2021, 121, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.D.; Collins, A.; Cooper, D.; Wingfield-Digby, M.; Watts-Farmer, A.; Laurence, A.; Patel, K.; Stevens, M.; Watkins, R. Recycling of Reinforced Plastics. Appl. Compos. Mater. 2014, 21, 263–284. [Google Scholar] [CrossRef]
- Campbell-Johnston, K.; Vermeulen, W.J.V.; Reike, D.; Brullot, S. The Circular Economy and Cascading: Towards a Framework. Resour. Conserv. Recycl. 2020, 7, 100038. [Google Scholar] [CrossRef]
- Bank, L.; Arias, F.; Yazdanbakhsh, A.; Gentry, T.; Al-Haddad, T.; Chen, J.-F.; Morrow, R. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing. Recycling 2018, 3, 3. [Google Scholar] [CrossRef]
- Zindani, D.; Kumar, K. An Insight into Additive Manufacturing of Fiber Reinforced Polymer Composite. Int. J. Lightweight Mater. Manuf. 2019, 2, 267–278. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Griffini, G.; Natale, G.; Invernizzi, M.; Postiglione, G.; Turri, S.; Levi, M. 3D-Printable CFR Polymer Composites with Dual-Cure Sequential IPNs. Polymer 2016, 91, 174–178. [Google Scholar] [CrossRef]
- Invernizzi, M.; Natale, G.; Levi, M.; Turri, S.; Griffini, G. UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites. Materials 2016, 9, 583. [Google Scholar] [CrossRef] [PubMed]
- Compton, B.G.; Lewis, J.A. 3D-Printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Liu, Y.; Zhou, H.; Chen, H.; Fang, D. Preparation and Characterization of 3D Printed Continuous Carbon Fiber Reinforced Thermosetting Composites. Polym. Test. 2018, 65, 29–34. [Google Scholar] [CrossRef]
- Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Recycling of Fiberglass Wind Turbine Blades into Reinforced Filaments for Use in Additive Manufacturing. Compos. Part B Eng. 2019, 175, 107101. [Google Scholar] [CrossRef]
- Romani, A.; Mantelli, A.; Suriano, R.; Levi, M.; Turri, S. Additive Re-Manufacturing of Mechanically Recycled End-of-Life Glass Fiber-Reinforced Polymers for Value-Added Circular Design. Materials 2020, 13, 3545. [Google Scholar] [CrossRef]
- Mantelli, A.; Romani, A.; Suriano, R.; Diani, M.; Colledani, M.; Sarlin, E.; Turri, S.; Levi, M. UV-Assisted 3D Printing of Polymer Composites from Thermally and Mechanically Recycled Carbon Fibers. Polymers 2021, 13, 726. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, W.; Liu, Z. An Additive Manufacturing-Based Approach for Carbon Fiber Reinforced Polymer Recycling. CIRP Ann. 2020, 69, 33–36. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites. J. Clean. Prod. 2017, 142, 1609–1618. [Google Scholar] [CrossRef]
- Giani, N.; Mazzocchetti, L.; Benelli, T.; Picchioni, F.; Giorgini, L. Towards Sustainability in 3D Printing of Thermoplastic Composites: Evaluation of Recycled Carbon Fibers as Reinforcing Agent for FDM Filament Production and 3D Printing. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107002. [Google Scholar] [CrossRef]
- Gonzalez, R.; Ashrafizadeh, H.; Lopera, A.; Mertiny, P.; McDonald, A. A Review of Thermal Spray Metallization of Polymer-Based Structures. J. Therm. Spray Tech. 2016, 25, 897–919. [Google Scholar] [CrossRef] [Green Version]
- Baptista, A.; Silva, F.J.G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Krella, A. Resistance of PVD Coatings to Erosive and Wear Processes: A Review. Coatings 2020, 10, 921. [Google Scholar] [CrossRef]
- Ferreira, A.A.; Silva, F.J.G.; Pinto, A.G.; Sousa, V.F.C. Characterization of Thin Chromium Coatings Produced by PVD Sputtering for Optical Applications. Coatings 2021, 11, 215. [Google Scholar] [CrossRef]
- White, J. Environmentally Benign Metallization of Material Extrusion Technology 3D Printed Acrylonitrile Butadiene Styrene Parts Using Physical Vapor Deposition. Addit. Manuf. 2018, 22, 279–285. [Google Scholar] [CrossRef]
- Kucherov, F.A.; Romashov, L.V.; Ananikov, V.P. Development of 3D+G Printing for the Design of Customizable Flow Reactors. Chem. Eng. J. 2022, 430, 132670. [Google Scholar] [CrossRef]
- Cheng, P.-W.; Chen, C.-Y.; Ichibayashi, T.; Chang, T.-F.M.; Sone, M.; Nishimura, S. Metallization of 3D-Printed Polymer Structures via Supercritical Carbon Dioxide-Assisted Electroless Plating. MRS Commun. 2021, 11, 278–282. [Google Scholar] [CrossRef]
- Khan, M.S.; Mishra, S.B.; Kumar, M.A.; Banerjee, D. Optimizing Surface Texture and Coating Thickness of Nickel Coated ABS-3D Parts. Mater. Today Proc. 2018, 5, 19011–19018. [Google Scholar] [CrossRef]
- Afshar, A.; Mihut, D. Enhancing Durability of 3D Printed Polymer Structures by Metallization. J. Mater. Sci. Technol. 2020, 53, 185–191. [Google Scholar] [CrossRef]
- Lavecchia, F.; Percoco, G.; Pei, E.; Galantucci, L.M. Computer Numerical Controlled Grinding and Physical Vapor Deposition for Fused Deposition Modelled Workpieces. Adv. Mater. Sci. Eng. 2018, 2018, 9037490. [Google Scholar] [CrossRef]
- Equbal, A.; Sood, A. Metallization on FDM Parts Using the Chemical Deposition Technique. Coatings 2014, 4, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Keough, M.; McLeod, J.F.; Salomons, T.; Hillen, P.; Pei, Y.; Gibson, G.; McEleney, K.; Oleschuk, R.; She, Z. Realizing New Designs of Multiplexed Electrode Chips by 3-D Printed Masks. RSC Adv. 2021, 11, 21600–21606. [Google Scholar] [CrossRef] [PubMed]
- Baek, I.; Lim, C.-M.; Park, K.Y.; Ryu, B.K. Enhanced Metal Coating Adhesion by Surface Modification of 3D Printed PEKKs. Coatings 2022, 12, 854. [Google Scholar] [CrossRef]
- Romani, A.; Mantelli, A.; Tralli, P.; Turri, S.; Levi, M.; Suriano, R. Metallization of Thermoplastic Polymers and Composites 3D Printed by Fused Filament Fabrication. Technologies 2021, 9, 49. [Google Scholar] [CrossRef]
- Arlington, S.Q.; Lakshman, S.V.; Barron, S.C.; DeLisio, J.B.; Rodriguez, J.C.; Narayanan, S.; Fritz, G.M.; Weihs, T.P. Exploring Material Chemistry for Direct Ink Writing of Reactively Formed Conductors. Mater. Adv. 2020, 1, 1151–1160. [Google Scholar] [CrossRef]
- Žigon, J.; Kariž, M.; Pavlič, M. Surface Finishing of 3D-Printed Polymers with Selected Coatings. Polymers 2020, 12, 2797. [Google Scholar] [CrossRef]
- Tymms, C.; Zorin, D.; Gardner, E.P. Tactile Perception of the Roughness of 3D-Printed Textures. J. Neurophysiol. 2017, 119, 862–876. [Google Scholar] [CrossRef]
- ASTM D523-14; Test Method for Specular Gloss. ASTM International: West Conshohocken, PA, USA, 2018.
- EN ISO 2409:2020; Paints and Varnishes. Cross-Cut Test. International Standard Organization (ISO): Geneva, Switzerland, 2020.
- Lewis, J.A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. [Google Scholar] [CrossRef]
- Poornaganti, S.; Yeole, S.N.; Kode, J.P. Insights on Surface Characterization of 3D Printed Polymeric Parts. Mater. Today Proc. 2022, 62, 3837–3848. [Google Scholar] [CrossRef]
- Bernasconi, R.; Natale, G.; Levi, M.; Magagnin, L. Electroless Plating of PLA and PETG for 3D Printed Flexible Substrates. ECS Trans. 2015, 66, 23–35. [Google Scholar] [CrossRef]
- Xiao, R.; Feng, X.; Fan, R.; Chen, S.; Song, J.; Gao, L.; Lu, Y. 3D Printing of Titanium-Coated Gradient Composite Lattices for Lightweight Mandibular Prosthesis. Compos. Part B Eng. 2020, 193, 108057. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Sakar, M.S.; Mao, A.; Petruska, A.J.; Qiu, F.; Chen, X.-B.; Kennedy, S.; Mooney, D.; Nelson, B.J. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents. Adv. Mater. 2015, 27, 6644–6650. [Google Scholar] [CrossRef] [PubMed]
- Sorocki, J.; Piekarz, I. Low-Cost Microwave Components’ Fabrication in Hybrid Technology of Laminates and Additive Manufacturing on an Example of Miniaturized Suspended Directional Coupler. IEEE Access 2020, 8, 128766–128775. [Google Scholar] [CrossRef]
- Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U.; Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U. Overview of Thin Film Deposition Techniques. AIMS Mater. Sci. 2019, 6, 174–199. [Google Scholar] [CrossRef]
- Mantelli, A.; Romani, A.; Suriano, R.; Levi, M.; Turri, S. Direct Ink Writing of Recycled Composites with Complex Shapes: Process Parameters and Ink Optimization. Adv. Eng. Mater. 2021, 23, 2100116. [Google Scholar] [CrossRef]
- Constantin, R.; Miremad, B. Performance of Hard Coatings, Made by Balanced and Unbalanced Magnetron Sputtering, for Decorative Applications. Surf. Coat. Technol. 1999, 120–121, 728–733. [Google Scholar] [CrossRef]
- Carneiro, E.; Parreira, N.M.G.; Vuchkov, T.; Cavaleiro, A.; Ferreira, J.; Andritschky, M.; Carvalho, S. Cr-Based Sputtered Decorative Coatings for Automotive Industry. Materials 2021, 14, 5527. [Google Scholar] [CrossRef]
- Chen, X.; Shao, F.; Barnes, C.; Childs, T.; Henson, B. Exploring Relationships between Touch Perception and Surface Physical Properties. Int. J. Des. 2009, 3, 67–76. [Google Scholar]
- Vezzoli, C.; Ceschin, F.; Osanjo, L.; M’Rithaa, M.K.; Moalosi, R.; Nakazibwe, V.; Diehl, J.C. Design for Sustainability: An Introduction. In Designing Sustainable Energy for All: Sustainable Product-Service System Design Applied to Distributed Renewable Energy; Vezzoli, C., Ceschin, F., Osanjo, L., M’Rithaa, M.K., Moalosi, R., Nakazibwe, V., Diehl, J.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 103–124. ISBN 978-3-319-70223-0. [Google Scholar]
- Vezzoli, C. The “Material” Side of Design for Sustainability. In Materials Experience; Elsevier: Amsterdam, The Netherlands, 2014; pp. 105–121. ISBN 978-0-08-099359-1. [Google Scholar]
- Lammel, P.; Whitehead, A.H.; Simunkova, H.; Rohr, O.; Gollas, B. Droplet Erosion Performance of Composite Materials Electroplated with a Hard Metal Layer. Wear 2011, 271, 1341–1348. [Google Scholar] [CrossRef]
Parameters | Units | Values |
---|---|---|
Perimeters | - | 1 |
Infill | % | 0 |
Flow | % | 100 |
Speed | mm/s | 15 |
Layer height | mm | 0.25 |
Nozzle diameter | mm | 1 |
UV LED source | - | 3 × 3 W (395 nm) |
Sample (Batch) | Figure | Post-Processing | Metallization | Tests |
---|---|---|---|---|
N. 1 | Figure 1a | No; | No; | Gloss, Roughness; |
N. 2 | Figure 1b | No; | Yes (sanding), PVD sputtering; | Gloss, Roughness, SEM, Adhesion; |
N. 3 | Figure 1c | Yes, sanding; | No; | Gloss, Roughness; |
N. 4 | Figure 1d | Yes, sanding; | Yes (sanding), PVD sputtering; | Gloss, Roughness; |
Sample (Batch) | Ra (μm) | Rq (μm) |
---|---|---|
N. 1 | 18.25 ± 2.06 | 22.66 ± 1.75 |
N. 2 | 9.51 ± 1.39 | 12.25 ± 2.00 |
N. 3 | 1.60 ± 0.33 | 2.58 ± 0.67 |
N. 4 | 0.03 ± 0.01 | 0.05 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romani, A.; Tralli, P.; Levi, M.; Turri, S.; Suriano, R. Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing. Materials 2022, 15, 6242. https://doi.org/10.3390/ma15186242
Romani A, Tralli P, Levi M, Turri S, Suriano R. Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing. Materials. 2022; 15(18):6242. https://doi.org/10.3390/ma15186242
Chicago/Turabian StyleRomani, Alessia, Paolo Tralli, Marinella Levi, Stefano Turri, and Raffaella Suriano. 2022. "Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing" Materials 15, no. 18: 6242. https://doi.org/10.3390/ma15186242
APA StyleRomani, A., Tralli, P., Levi, M., Turri, S., & Suriano, R. (2022). Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing. Materials, 15(18), 6242. https://doi.org/10.3390/ma15186242