Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Glass Synthesis
2.3. X-ray Diffraction
2.4. Helium Pycnometry
2.5. Differential Scanning Calorimetry
2.6. Mass Loss Assessment
2.7. Fluoride Release
3. Results
3.1. Glass Synthesis
3.2. XRD Analysis
3.3. Helium Pycnometry
3.4. Differential Scanning Calorimetry
3.5. Mass Loss Assessment
3.6. Fluoride Release
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mouriño, V.; Cattalini, J.P.; Boccaccini, A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. R. Soc. Interface 2012, 9, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Habibovic, P.; Barralet, J.E. Bioinorganics and biomaterials: Bone repair. Acta Biomater. 2011, 7, 3013–3026. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Martins, M.; Neves, N.M.; Fernandes, M.H.V.; Reis, R.L.; Pires, R.A. Intrinsic antibacterial borosilicate glasses for bone tissue engineering applications. ACS Biomater. Sci. Eng. 2016, 2, 1143–1150. [Google Scholar] [CrossRef]
- Day, R.M. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005, 11, 768–777. [Google Scholar] [CrossRef]
- Fernandes, J.S.; Gentile, P.; Crawford, A.; Pires, R.A.; Hatton, P.V.; Reis, R.L. Substituted borosilicate glasses with improved osteogenic capacity for bone tissue engineering. Tissue Eng. Part A 2017, 23, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.; Widholz, B.; Essers, C.; Becker, M.; Tulyaganov, D.; Moghaddam, A.; de Juan, I.G.; Westhauser, F. Superior biocompatibility and comparable osteoinductive properties: Sodium-reduced fluoride-containing bioactive glass belonging to the CaO–MgO–SiO2 system as a promising alternative to 45S5 bioactive glass. Bioact. Mater. 2020, 5, 55–65. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Wray, P. Cotton candy that heals? Borate glass nanofibers look promising. Am. Ceram. Soc. Bull. 2011, 90, 25–29. [Google Scholar]
- Castiglioni, S.; Cazzaniga, A.; Albisetti, W.; Maier, J.A.M. Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 2013, 5, 3022–3033. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An update on magnesium and bone health. Biometals 2021, 34, 715–736. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Bigi, A.; Falini, G.; Foresti, E.; Gazzano, M.; Ripmonti, A.; Roveri, N. Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr. Sect. B Struct. Sci. 1996, 52, 87–92. [Google Scholar] [CrossRef]
- Abdallah, M.-N.; Eimar, H.; Bassett, D.C.; Schnabel, M.; Ciobanu, O.; Nelea, V.; McKee, M.D.; Cerruti, M.; Tamimi, F. Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomater. 2016, 37, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.N. Surface Reactivity of Tooth Enamel with Dyes Oxidizing Agents and Magnesium Ions and Its Effect on Tooth Color. Master’s Thesis, McGill University, Montreal, QC, Canada, 2012. [Google Scholar]
- Shaikh, K.; Pereira, R.; Gillam, D.G.; Phad, S. Comparative evaluation of desensitizing dentifrices containing BioMin®, Novamin® and fluoride on dentinal tubule occlusion before and after a citric acid challenge—A scanning electron microscope in-vitro study. J. Odontol. 2018, 2, 1000105. [Google Scholar]
- Reddy, G.V.; Surakanti, J.R.; Vemisetty, H.; Doranala, S.; Hanumanpally, J.R.; Malgikar, S. Comparative assessment of effectiveness of Biomin, NovaMin, herbal, and potassium nitrate desensitizing agents in the treatment of hypersensitive teeth: A clinical study. J. NTR Univ. Health Sci. 2019, 8, 24–28. [Google Scholar]
- Tirapelli, C.; Panzeri, H.; Soares, R.G.; Peitl, O.; Zanotto, E.D. A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz. Oral Res. 2010, 24, 381–387. [Google Scholar] [CrossRef]
- De Caluwe, T.; Vercruysse, C.W.J.; Declercq, H.A.; Schaubroeck, D.; Verbeeck, R.M.H.; Martens, L.C. Bioactivity and biocompatibility of two fluoride containing bioactive glasses for dental applications. Dent. Mater. 2016, 32, 1414–1428. [Google Scholar] [CrossRef]
- MacDonald, K.; Boudreau, E.; Thomas, G.V.; Badrock, T.C.; Davies, L.J.; Lloyd, M.J.; Spradbery, P.S.; Turner-Cahill, S.; Boyd, D. In vitro evaluation of Sensi-IP®: A soluble and mineralizing sensitivity solution. Heliyon 2021, 8, e08672. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Büttner, T.; Pacheco, V.M.; Boccaccini, A.R. Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 2018, 38, 855–869. [Google Scholar] [CrossRef]
- Liang, W.; Rüssel, C.; Day, D.E.; Völksch, G. Bioactive comparison of a borate, phosphate and silicate glass. J. Mater. Res. 2006, 21, 125–131. [Google Scholar] [CrossRef]
- Goetschius, K.L.; Beuerlein, M.A.; Bischoff, C.M.; Brow, R.K. Dissolution behavior of ternary alkali–alkaline earth-borate glasses in water. J. Non-Cryst. Solids 2018, 487, 12–18. [Google Scholar] [CrossRef]
- Wright, A.C.; Dalba, G. Borate versus silicate glasses: Why are they so different? Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2010, 5, 233–265. [Google Scholar]
- Wright, A.C. My borate life: An enigmatic journey. Int. J. Appl. Glass Sci. 2015, 6, 45–63. [Google Scholar] [CrossRef]
- Hill, R. An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 1996, 15, 1122–1125. [Google Scholar] [CrossRef]
- Manchester, R.A.; Todorova, T.Z.; Werner-Zwanziger, U.; Boyd, D. Mixture designs to investigate the role of alkali and alkaline earth cations on composition–structure–property relationships in ternary borate glass networks. J. Non-Cryst. Solids 2021, 569, 120982. [Google Scholar] [CrossRef]
- MacDonald, K.; Hanson, M.A.; Boyd, D. Modulation of strontium release from a tertiary borate glass through substitution of alkali for alkali earth oxide. J. Non-Cryst. Solids 2016, 443, 184–191. [Google Scholar] [CrossRef]
- Yiannopoulos, Y.D.; Chryssikos, G.D.; Kamitsos, E.I. Structure and properties of alkaline earth borate glasses. Phys. Chem. Glasses 2001, 42, 164–172. [Google Scholar]
- Kamitsos, E.I.; Chryssikos, G.D.; Karakassides, M.A. Vibrational spectra of magnesium-sodium-borate glasses. 1. Far-infrared investigation of the cation-site interactions. J. Phys. Chem. 1987, 91, 1067–1073. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Egili, K.; Ramadan, R.; Khalil, E. Structural species in mixed-fluoride PbF2–CdF2–B2O3 borate glasses; FTIR investigation. Vib. Spectrosc. 2019, 102, 24–30. [Google Scholar] [CrossRef]
- El-Egili, K.; Doweidar, H.; Ramadan, R.; Altawaf, A. Role of F− ions in the structure and properties of BaF2B2O3 glasses. J. Non-Cryst. Solids 2016, 449, 83–93. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Egili, K.; Ramadan, R.; Khalil, E. Structural studies and properties of CdF2–B2O3 glasses. J. Non-Cryst. Solids 2018, 481, 494–502. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Egili, K.; Altawaf, A. Structural units and properties of BaF2–PbF2–B2O3 glasses. J. Non-Cryst. Solids 2017, 464, 73–80. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Damrawi, G.; Abdelghany, M. Structure and properties of CaF2–B2O3 glasses. J. Mater. Sci. 2012, 47, 4028–4035. [Google Scholar] [CrossRef]
- ElBatal, F.H.; Ouis, M.A.; ElBatal, H.A. Comparative studies on the bioactivity of some borate glasses and glass–ceramics from the two systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3. Ceram. Int. 2016, 42, 8247–8256. [Google Scholar] [CrossRef]
- Ouis, M.A.; Abdelghany, A.M.; Elbatal, H.A. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass. Process. Appl. Ceram. 2012, 6, 141–149. [Google Scholar] [CrossRef]
- Mauro, J.C.; Philip, C.S.; Vaughn, D.J.; Pambianchi, M.S. Glass science in the United States: Current status and future directions. Int. J. Appl. Glass Sci. 2014, 5, 2–15. [Google Scholar] [CrossRef]
- Han, T.; Stone-Weiss, N.; Huang, J.; Goel, A.; Kumar, A. Machine learning as a tool to design glasses with controlled dissolution for healthcare applications. Acta Biomater. 2020, 107, 286–298. [Google Scholar] [CrossRef]
- Krishnan, N.A.; Mangalathu, S.; Smedskjaer, M.M.; Tandia, A.; Burton, H.; Bauchy, M. Predicting the dissolution kinetics of silicate glasses using machine learning. J. Non-Cryst. Solids 2018, 487, 37–45. [Google Scholar] [CrossRef]
- Ahmmad, S.K.; Jabeen, N.; Ahmed, S.T.U.; Hussainy, S.F.; Ahmed, B. Density of fluoride glasses through artificial intelligence techniques. Ceram. Int. 2021, 47, 30172–30177. [Google Scholar] [CrossRef]
- Ahmmad, S.K.; Jabeen, N.; Ahmed, S.T.U.; Ahmed, S.A.; Rahman, S. Artificial intelligence density model for oxide glasses. Ceram. Int. 2021, 47, 7946–7956. [Google Scholar] [CrossRef]
- Wright, A.C. Borate structures: Crystalline and vitreous. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. 2010, 51, 1–39. [Google Scholar]
- Aguiar, P.M.; Kroeker, S. Boron speciation and non-bridging oxygens in high-alkali borate glasses. J. Non-Cryst. Solids 2007, 353, 1834–1839. [Google Scholar] [CrossRef]
- Sokolov, I.A.; Naraev, V.N.; Nosakin, A.N.; Pronkin, A.A. Influence of MeF2 (Me = Mg, Ca, Sr, and Ba) on the electrical properties of glasses in the MeF2-Na2B4O7 system. Glass Phys. Chem. 2000, 26, 383–389. [Google Scholar] [CrossRef]
- Abdelghany, A.M.; Kamal, H. Spectroscopic investigation of synergetic bioactivity behavior of some ternary borate glasses containing fluoride anions. Ceram. Int. 2014, 40, 8003–8011. [Google Scholar] [CrossRef]
- Chowdari, B.V.R.; Rong, Z. Study of the fluorinated lithium borate glasses. Solid State Ion. 1995, 78, 133–142. [Google Scholar] [CrossRef]
- Shaharyar, Y.; Wein, E.; Kim, J.-J.; Youngman, R.E.; Muñoz, F.; Kim, H.-W.; Tilocca, A.; Goel, A. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J. Mater. Chem. B 2015, 3, 9360–9373. [Google Scholar] [CrossRef]
- Lusvardi, G.; Malavasi, G.; Cortada, M.; Menabue, L.; Menziani, M.C.; Pedone, A.; Segre, U. Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 2008, 112, 12730–12739. [Google Scholar] [CrossRef]
- Brauer, D.S.; Karpukhina, N.; Law, R.V.; Hill, R.G. Structure of fluoride-containing bioactive glasses. J. Mater. Chem. 2009, 19, 5629–5636. [Google Scholar] [CrossRef]
- Gaafar, M.S.; Marzouk, S.Y.; Zayed, H.A.; Soliman, L.I.; El-Deen, A.H.S. Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Curr. Appl. Phys. 2013, 13, 152–158. [Google Scholar] [CrossRef]
- Lower, N.P.; McRae, J.L.; Feller, H.A.; Betzen, A.R.; Kapoor, S.; Affatigato, M.; Feller, S.A. Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions. J. Non-Cryst. Solids 2001, 293, 669–675. [Google Scholar] [CrossRef]
- Doweidar, H.; El-Damrawi, G.; Mansour, E.; Fetouh, R.E. Structural role of MgO and PbO in MgO–PbO–B2O3 glasses as revealed by FTIR; A new approach. J. Non-Cryst. Solids 2012, 358, 941–946. [Google Scholar] [CrossRef]
- Deng, B. Machine learning on density and elastic property of oxide glasses driven by large dataset. J. Non-Cryst. Solids 2020, 529, 119768. [Google Scholar] [CrossRef]
- Kamitsos, E.I. Modifying role of alkali-metal cations in borate glass networks. J. Phys. Chem. 1989, 93, 1604–1611. [Google Scholar] [CrossRef]
- Varshneya, A.K. Fundamentals of Inorganic Glasses; Academic Press, Inc.: San Diego, CA, USA, 2013. [Google Scholar]
- Zhong, J.; Bray, P.J. Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR. JNCS 1988, 111, 67–76. [Google Scholar] [CrossRef]
- Bachar, A.; Mercier, C.; Tricoteaux, A.; Hampshire, S.; Leriche, A.; Follet, C. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses. J. Mech. Behav. Biomed. 2013, 23, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Day, D.E.; Kittiratanapiboon, K.; Rahaman, M.N. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 2006, 17, 583–596. [Google Scholar] [CrossRef]
- Brauer, D.S.; Karpukhina, N.; O’Donnell, M.D.; Law, R.V.; Hill, R.G. Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 2010, 6, 3275–3282. [Google Scholar] [CrossRef]
- Brauer, D.S.; Mneimne, M.; Hill, R.G. Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution. J. Non-Cryst. Solids 2011, 357, 3328–3333. [Google Scholar] [CrossRef]
- Shah, F.A. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments. Mater. Sci. Eng. C 2016, 58, 1279–1289. [Google Scholar] [CrossRef]
Component | Minimum (mol%) | Maximum (mol%) | Coded Low | Coded High | Mean | StdDev. |
---|---|---|---|---|---|---|
B2O3 | 45 | 95 | +0 ↔ 45 | +1 ↔ 95 | 54.14 | 13.12 |
MgO | 1 | 50 | +0 ↔ 1 | +0.98 ↔ 50 | 9.33 | 12.33 |
CaCO3 | 1 | 50 | +0 ↔ 1 | +0.98 ↔ 50 | 9.77 | 12.66 |
Na2CO3 | 1 | 50 | +0 ↔ 1 | +0.98 ↔ 50 | 11.18 | 12.71 |
NaF | 1 | 30 | +0 ↔ 1 | +0.58 ↔ 30 | 7.95 | 8.80 |
KF | 1 | 30 | +0 ↔ 1 | +0.58 ↔ 30 | 7.63 | 8.64 |
Total = 100% | L Pseudo Coding |
B2O3 | MgO | CaCO3 | Na2CO3 | NaF | KF | |
---|---|---|---|---|---|---|
1 | 46.0000 | 1.00000 | 1.00000 | 50.00000 | 1.00000 | 1.00000 |
2 | 67.88520 | 1.32178 | 1.82480 | 23.48440 | 1.00000 | 4.48374 |
3 | 54.24860 | 11.60190 | 9.07179 | 2.35758 | 21.72010 | 1.00000 |
4 | 45.00000 | 5.30483 | 1.00000 | 17.69520 | 30.00000 | 1.00000 |
5 α | 45.00000 | 23.09420 | 1.00000 | 22.93810 | 3.04775 | 4.91997 |
6 β | 68.64670 | 1.00000 | 23.11950 | 1.00000 | 2.95458 | 3.27929 |
7 | 72.52560 | 1.00000 | 1.00000 | 6.88452 | 17.58990 | 1.00000 |
8 | 48.20090 | 4.00991 | 13.57280 | 9.38025 | 11.04280 | 13.79340 |
9 α | 45.00000 | 23.09420 | 1.00000 | 22.93810 | 3.04775 | 4.91997 |
10 | 45.00000 | 3.99303 | 5.03366 | 1.02125 | 14.95210 | 30.00000 |
11 | 45.00000 | 1.00000 | 1.00000 | 22.00000 | 1.00000 | 30.00000 |
12 | 52.19040 | 1.00000 | 1.00000 | 1.00000 | 30.0000 | 14.80960 |
13 β | 68.64670 | 1.00000 | 23.11950 | 1.00000 | 2.95458 | 3.27929 |
14 γ | 45.88610 | 23.51110 | 24.03280 | 2.00722 | 3.56274 | 1.00000 |
15 | 45.00000 | 27.52700 | 1.00000 | 1.00000 | 18.73830 | 6.73472 |
16 δ | 45.00000 | 1.00000 | 23.61650 | 23.34480 | 4.33026 | 2.70839 |
17 | 95.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
18 | 46.24920 | 1.00000 | 26.88010 | 1.00000 | 20.22320 | 4.64742 |
19 ε | 45.00000 | 1.00000 | 1.00000 | 25.29430 | 14.07570 | 13.63000 |
20 | 45.00000 | 50.00000 | 1.00000 | 2.00000 | 1.00000 | 1.00000 |
21 | 45.00000 | 4.03483 | 29.27670 | 2.65946 | 1.00000 | 18.02900 |
22 | 72.34390 | 1.00000 | 1.00000 | 1.00000 | 4.83657 | 19.81960 |
23 | 54.17490 | 1.00000 | 3.36218 | 33.29040 | 7.17249 | 1.00000 |
24 ε | 45.00000 | 1.00000 | 1.00000 | 25.29430 | 14.07570 | 13.63000 |
25 | 46.00000 | 1.00000 | 50.00000 | 1.00000 | 1.00000 | 1.00000 |
26 | 48.47710 | 28.60270 | 2.03278 | 1.00000 | 1.00000 | 18.88740 |
27 | 59.11740 | 13.30200 | 1.00000 | 11.26980 | 1.00000 | 14.31080 |
28 | 68.32760 | 23.23240 | 1.18548 | 2.06453 | 4.18996 | 1.00000 |
29 | 78.38850 | 7.96152 | 5.19700 | 6.45299 | 1.00000 | 1.00000 |
30 γ | 45.88610 | 23.51110 | 24.03280 | 2.00722 | 3.56274 | 1.00000 |
31 δ | 45.00000 | 1.00000 | 23.61650 | 23.34480 | 4.33026 | 2.70839 |
% Crystallinity | Density (g/cm3) | Molar Volume (cm3) | Tg Onset (°C) | Tg Inflection (°C) | Tg Final (°C) | |
---|---|---|---|---|---|---|
1 * | 88.0 | - | - | - | - | - |
2 | 9.0 | 2.26 | 29.45 | 472.4 | 489.4 | 479.9 |
3 | 2.0 | 2.40 | 24.49 | 505.7 | 521.5 | 513.0 |
4 | 3.0 | 2.45 | 23.77 | 392.4 | 404.7 | 403.1 |
5 | 7.9 | 2.42 | 24.66 | 422.9 | 434.4 | 431.6 |
6 * | 28.0 | - | - | 589.2 | 604.9 | 599.4 |
7 * | 25.3 | 2.18 | 29.26 | 433.1 | 453.1 | 444.9 |
8 * | 17.9 | 2.50 | 24.61 | 429.1 | 444.1 | 435.2 |
9 | 3.5 | 2.44 | 24.41 | 420.4 | 433.0 | 429.1 |
10 * | 19.0 | 2.41 | 25.02 | 381.3 | 400.6 | 394.4 |
11 * | 13.1 | 2.36 | 27.08 | 345.3 | 357.1 | 354.7 |
12 | 2.3 | 2.30 | 25.77 | 384.2 | 399.4 | 395.6 |
13 * | 19.9 | - | - | - | - | - |
14 | 2.0 | 2.57 | 22.68 | 566.9 | 583.5 | 575.6 |
15 | 5.0 | 2.45 | 22.65 | 480.9 | 494.9 | 490.4 |
16 | 4.9 | 2.46 | 25.56 | 430.2 | 441.0 | 440.3 |
17 * | 42.9 | 1.88 | 36.77 | - | - | - |
18 | 5.0 | 2.50 | 23.90 | 555.1 | 569.8 | 566.5 |
19 | 1.9 | 2.40 | 25.85 | 358.9 | 369.9 | 367.1 |
20 | - | - | - | - | - | - |
21 | 1.9 | 2.51 | 24.75 | 489.8 | 503.2 | 501.9 |
22 * | 18.4 | 2.12 | 30.95 | 387.5 | 400.2 | 400.6 |
23 | 3.6 | 2.41 | 26.77 | 419.4 | 433.1 | 427.0 |
24 | 1.4 | 2.42 | 25.59 | 357.7 | 369.9 | 367.8 |
25 * | 38.1 | 2.70 | 23.03 | 607.8 | 618.4 | 617.4 |
26 | 4.2 | 2.34 | 25.02 | 509.1 | 523.8 | 521.9 |
27 | 1.7 | 2.32 | 27.11 | 457.6 | 471.7 | 468.1 |
28 | 2.4 | 2.27 | 27.01 | 538.8 | 558.8 | 556.4 |
29 | 2.5 | 2.17 | 30.32 | 476.0 | 501.5 | 492.1 |
30 | 2.3 | 2.57 | 22.70 | 568.6 | 582.4 | 576.7 |
31 | 7.1 | 2.46 | 25.64 | 582.4 | 439.8 | 435.2 |
Response | Regression Model | R2 | R2 Adjusted | R2 Predicted | Adequate Precision |
---|---|---|---|---|---|
Crystallinity | 0.40 × B2O3 + 6.42 × MgO + 0.19 × CaCO3 − 0.45 × Na2CO3 − 0.27 × NaF + 0.12 × KF − 0.10 × B2O3 × MgO − 0.09 × MgO × CaCO3 − 0.05 × MgO × Na2CO3 − 0.06 × MgO × NaF − 0.10 × MgO × KF | 0.88 | 0.86 | 0.44 | 20.10 |
Density | 0.018 × B2O3 + 0.023 × MgO + 0.035 × CaCO3 + 0.021 × Na2CO3 + 0.029 × NaF + 0.027 × KF + 0.00015 × B2O3 × MgO + 0.00018 × B2O3 × Na2CO3 − 0.00017 × CaCO3 × Na2CO3 | 0.98 | 0.97 | 0.95 | 45.83 |
Molar Volume | 0.39 × B2O3 + 0.23 × MgO + 0.34 × CaCO3 + 0.31 × Na2CO3 + 0.18 × NaF + 0.26 × KF − 0.0033 × B2O3 × MgO + -0.0054 × B2O3 × CaCO3 − 0.0031 × B2O3 × Na2CO3 − 0.0019 × B2O3 × NaF − 0.0016 × B2O3 × KF + 0.0015 × CaCO3 × Na2CO3 | 0.99 | 0.99 | 0.97 | 66.66 |
Tg Onset | 5.11 × B2O3 + 6.12 × MgO + 7.69 × CaCO3 + 2.41 × Na2CO3 + 2.98 × NaF + 1.25 × KF | 0.84 | 0.80 | 0.74 | 17.83 |
Tg Inflection | 4.17 × B2O3 + 3.06 × MgO + 0.99 × CaCO3 − 2.96 × Na2CO3 + 3.87 × NaF + 2.38 × KF + 0.092 × B2O3 × MgO + 0.16 × B2O3 × CaCO3 + 0.14 × B2O3 × Na2CO3 − 0.067 × MgO × Na2CO3 + 0.066 × MgO × KF − 0.10 × CaCO3 × Na2CO3 + 0.10× CaCO3 × NaF | 0.99 | 0.98 | 0.83 | 35.24 |
Tg Final | 4.35 × B2O3 + 9.32 × MgO + 1.83 × CaCO3 − 1.89 × Na2CO3 + 3.75 × NaF + 2.11 × KF + 0.14 × B2O3 × CaCO3 + 0.11 × B2O3 × Na2CO3 − 0.087 × MgO × CaCO3 − 0.14 × MgO × Na2CO3 − 0.090 × MgO × NaF − 0.11 × CaCO3 × Na2CO3 + 0.10 × CaCO3 × NaF | 0.99 | 0.98 | 0.88 | 33.42 |
1 h Mass Loss | (100 × ey)/(1 + ey) where y = 0.10 × B2O3 + 0.17 × MgO + 0.88 × CaCO3 + 0.010 × Na2CO3 − 0.061 × NaF − 0.036 × KF − 0.0059 × B2O3 × MgO − 0.021 × B2O3 × CaCO3 − 0.0032 × CaCO3 × Na2CO3 | 0.94 | 0.92 | 0.86 | 18.12 |
12 h Mass Loss | (100 × ey)/(1 + ey) where y = 0.045 × B2O3 − 0.026 × MgO − 0.055 × CaCO3 + 0.046 × Na2CO3 + 0.0024 × NaF − 0.00077 × KF | 0.76 | 0.70 | 0.59 | 12.32 |
24 h Mass Loss | (100 × ey)/(1 + ey) where y = 0.045 × B2O3 − 0.027 × MgO + −0.054 × CaCO3 + 0.043 × Na2CO3 + 0.0022 × NaF + 0.0010 × KF | 0.74 | 0.67 | 0.55 | 11.51 |
1 h Fluoride Release | (2000 × ey)/(1 + ey) where y = −0.057 × B2O3 − 0.015 × MgO − 0.045 × CaO+ 0.18 × Na2O + 0.031 × KF + 0.14 × NaF − 0.0045 × CaO × NaF + 0.0039 × Na2O × KF. | 0.85 | 0.79 | 0.70 | 11.68 |
12 h Fluoride Release | (2000 × ey)/(1 + ey) where y = −0.053 × B2O3 − 0.027 × MgO − 0.040 × CaCO3 + 0.080 × Na2CO3 -0.20 × NaF + 0.036 × KF − 0.0019 × B2O3 × Na2CO3 + 0.0050× B2O3 × NaF + 0.0031 × MgO × Na2CO3 + 0.0029 × Na2CO3 × NaF − 0.0026 × NaF × KF | 0.95 | 0.90 | 0.76 | 18.31 |
24 h Fluoride Release | (2000 × ey)/(1 + ey) where y = −0.059 × B2O3 − 0.0029 × MgO − 0.0384 × CaCO3 + 0.014 × Na2CO3 − 0.14 × NaF + 0.080 × KF + 0.0035 × B2O3 × NaF − 0.0016 × MgO × KF − 0.0020 × CaCO3 × KF + 0.0021 × Na2CO3 × NaF | 0.98 | 0.96 | 0.84 | 29.5 |
Mass Loss (%) | Fluoride Release (ppm) | |||||
---|---|---|---|---|---|---|
1 h | 12 h | 24 h | 1 h | 12 h | 24 h | |
1 | - | - | - | - | - | - |
2 | 99.8 | 98.4 | 98.4 | 168.4 | 25.2 | 74.6 |
3 | 53.5 | 79.5 | 79.5 | 360.6 | 318.6 | 152.5 |
4 | 93.7 | 91.9 | 91.9 | 1918.1 | 946.9 | 582.5 |
5 | 82.8 | 79.1 | 79.1 | 714.6 | 459.1 | 191.0 |
6 | - | - | - | - | - | - |
7 | 98.6 | 93.2 | 93.2 | 670.4 | 463.5 | 201.0 |
8 | 61.9 | 73.0 | 73.0 | 500 | 448.0 | 165.0 |
9 | - | - | - | - | - | - |
10 | 81.6 | 82.3 | 82.3 | 1342.9 | 177.7 | 483.0 |
11 | 97.8 | 92.4 | 92.4 | 1725.7 | 394.7 | 1064.5 |
12 | 96.0 | 95.2 | 95.2 | 1216.8 | 273.9 | 766.5 |
13 | - | - | - | - | - | - |
14 | 47.9 | 61.1 | 61.1 | 39.6 | 46.7 | 49.2 |
15 | 55.1 | 81.9 | 81.9 | 674.8 | 98.2 | 202.0 |
16 | 72.5 | 73.5 | 62.7 | 112 | 111.5 | 94.7 |
17 | - | - | - | - | - | - |
18 | 56.9 | 60.8 | 64.7 | 71.9 | 81.1 | 79.5 |
19 | 96.8 | 99.2 | 99.2 | 1915.9 | 418.9 | 854.5 |
20 | - | - | - | - | - | - |
21 | 65.5 | 59.7 | 64.3 | 82.9 | 66.0 | 71.5 |
22 | 99.7 | 95.9 | 95.9 | 119.4 | 113.7 | 223.0 |
23 | 98.0 | 99.4 | 99.4 | 149.2 | 144.7 | 329.0 |
24 | 92.6 | 96.0 | 96.0 | 441.2 | 414.5 | 808.0 |
25 | 40.5 | 55.0 | 59.3 | 16.9 | 21.3 | 21.2 |
26 | 67.8 | 85.9 | 85.9 | 127.5 | 115.2 | 187.0 |
27 | 92.1 | 91.9 | 93.0 | 137.9 | 134.5 | 117.9 |
28 | 64.4 | 93.8 | 93.8 | 50.5 | 64.5 | 64.7 |
29 | 76.3 | 97.2 | 97.2 | 14.4 | 16.6 | 16.7 |
30 | 48.3 | 62.8 | 62.3 | 41.6 | 50.7 | 52.1 |
31 | 66.9 | 67.8 | 69.6 | 110.4 | 103.4 | 95.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MacDonald, K.; Boyd, D. Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach. Materials 2022, 15, 6247. https://doi.org/10.3390/ma15186247
MacDonald K, Boyd D. Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach. Materials. 2022; 15(18):6247. https://doi.org/10.3390/ma15186247
Chicago/Turabian StyleMacDonald, Kathleen, and Daniel Boyd. 2022. "Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach" Materials 15, no. 18: 6247. https://doi.org/10.3390/ma15186247
APA StyleMacDonald, K., & Boyd, D. (2022). Investigation of Multicomponent Fluoridated Borate Glasses through a Design of Mixtures Approach. Materials, 15(18), 6247. https://doi.org/10.3390/ma15186247