Effect of the Preparation Conditions on the Catalytic Properties of CoPt for Highly Efficient 4-Nitrophenol Reduction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological and Compositional Characterization
3.2. XRD Analysis of the CoPt Alloys
3.3. Reduction of 4-NP to 4-AP Using Synthesized Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San, B.H.; Lee, S.; Moh, S.H.; Park, J.-G.; Lee, J.H.; Hwang, H.Y.; Kyeong Kyu Kim, K.K. Size-controlled synthesis and characterization of CoPt nanoparticles using protein shells. J. Mater. Chem. B 2013, 1, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Nielsch, K.; Wehrspohn, R.B.; Barthel, J.; Kirschner, J.; Gösele, U.; Fischer, S.F.; Kronmüller, H. Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 2001, 79, 1360. [Google Scholar] [CrossRef]
- Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci. 2007, 30, 271–290. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Cottam, M.G.; Liu, H.Y.; Wang, Z.K.; Ng, S.C.; Kuok, M.H.; Lockwood, D.J.; Nielsch, K.; Gösele, U. Spin waves in permalloy nanowires: The importance of easy-plane anisotropy. Phys. Rev. B 2006, 73, 140402. [Google Scholar] [CrossRef]
- Schneegans, O.; Moradpour, A.; Dragos, O.; Franger, S.; Dragoe, N.; Pinsard-Gaudart, L.; Chrétien, P.; Revcolevschi, A. NaxCoO2: A New Opportunity for Rewritable Media? J. Am. Chem. Soc. 2007, 129, 7482–7483. [Google Scholar] [CrossRef] [PubMed]
- Aricò, A.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Serrà, A.; Alcobé, X.; Sort, J.; Noguésed, J.; Vallés, E. Highly efficient electrochemical and chemical hydrogenation of 4-nitrophenol using recyclable narrow mesoporous magnetic CoPt nanowires. J. Mater. Chem. A 2016, 4, 15676–15687. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Cavallotti, P.L.; Bestetti, M.; Franz, S. Microelectrodeposition of Co–Pt alloys for micromagnetic applications. Electrochim. Acta 2003, 48, 3013–3020. [Google Scholar] [CrossRef]
- Sirtoni, V.; Cavalotti, P.L.; Rognoni, R.; Xu, X.; Zangari, G.; Fratesi, G.; Trioni, M.I.; Bernasconi, M. Unusually Large Magnetic Anisotropy in Electrochemically Deposited Co-Rich Co–Pt Films. ASC Appl. Mater. Interfaces 2011, 3, 1800–1803. [Google Scholar] [CrossRef]
- Cortés, M.; Gómez, E.; Vallés, E. Magnetic CoPt (60–70 wt%Pt) microstructures fabricated by the electrochemical method. Micromech. Microeeng. 2012, 22, 055016. [Google Scholar] [CrossRef]
- Meng, X.; Seton, H.C.; Lu, L.T.; Prior, I.A.; Thanh, N.T.K.; Song, B. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale 2011, 3, 977–984. [Google Scholar] [CrossRef]
- Gummalla, M.; Ball, S.C.; Condit, D.A.; Rasouli, S.; Yu, K.; Ferreira, P.J.; Myers, D.J.; Yang, Z. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability. Catalysts 2015, 5, 926–948. [Google Scholar] [CrossRef]
- Peng, P.; Li, J.; Mo, S.; Zhang, Q.; Shen, T.; Xie, Q. Bimetallic Pt-Co Nanoparticle Deposited on Alumina for Simultaneous CO and Toluene Oxidation in the Presence of Moisture. Processes 2021, 9, 230. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Liu, Y.; Duan, Q. Preparation of Reduced-Graphene-Oxide-Supported CoPt and Ag Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Catalysts 2021, 11, 1336. [Google Scholar] [CrossRef]
- Anaya-Castro, F.d.J.; Beltrán-Gastélum, M.; Morales Soto, O.; Pérez-Sicairos, S.; Lin, S.W.; Trujillo-Navarrete, B.; Paraguay-Delgado, F.; Salazar-Gastélum, L.J.; Romero-Castañón, T.; Reynoso-Soto, E.; et al. Ultra-Low Pt Loading in PtCo Catalysts for the Hydrogen Oxidation Reaction: What Role Do Co Nanoparticles Play? Nanomaterials 2021, 11, 3156. [Google Scholar] [CrossRef]
- Han, Y.Y.; Xiao, G.Q.; Chen, M.H.; Chen, S.F.; Zhao, F.Z.; Zhang, Y.H.; Li, J.L.; Hong, J. Effect of support modification and precursor decomposition method on the properties of CoPt/ZrO2 Fischer-Tropsch catalysts. Catal. Today 2021, 375, 1–9. [Google Scholar] [CrossRef]
- Gong, W.B.; Han, M.M.; Chen, C.; Lin, Y.; Wang, G.Z.; Zhang, H.M.; Zhao, H.J. Rational Design of Cobalt-Platinum Alloy Decorated Cobalt Nanoparticles for One-Pot Synthesis of Imines from Nitroarenes and Aldehydes. ChemCatChem 2020, 12, 5948–5958. [Google Scholar] [CrossRef]
- Tang, L.; Li, T.; Li, C.; Ling, L.; Zhang, K.; Yao, Y. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. Nanoscale 2015, 7, 19699–19704. [Google Scholar] [CrossRef]
- Popov, A.A.; Shubin, Y.V.; Bauman, Y.I.; Plyusnin, P.E.; Mishakov, I.V.; Sharafutdinov, M.R.; Maksimovskiy, E.A.; Korenev, S.V.; Vedyagin, A.A. Preparation of porous Co-Pt alloys for catalytic synthesis of carbon nanofibers. Nanotechnology 2020, 31, 495604. [Google Scholar] [CrossRef]
- Xia, H.; Xie, Q.; Tian, Y.; Chen, Q.; Wen, M.; Zhang, J.; Wang, Y.; Tang, Y.; Zhang, S. High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries. Nano Energy 2021, 84, 105877. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, F.; Yang, S.; Martinez Moro, M.; de los Angeles Ramirez, M.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic Synergy in CoPt Nanocatalysts Stabilized by “Click” Dendrimers for Evolution of Hydrogen from Hydrolysis of Ammonia Borane. ACS Catal. 2019, 9, 1110–1119. [Google Scholar] [CrossRef]
- Wang, K.; Yao, Q.; Qing, S.; Lu, Z.H. La(OH)3 nanosheet-supported CoPt nanoparticles: A highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution. J. Mater. Chem. A 2019, 7, 9903–9911. [Google Scholar] [CrossRef]
- Zhang, H.; Ke, D.; Cheng, L.; Feng, X.; Hou, X.; Wang, J.; Li, Y.; Han, S. CoPt-Co hybrid supported on amino modified SiO2 nanospheres as a high performance catalyst for hydrogen generation from ammonia borane. Prog. Nat. Sci. Mater. Int. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Li, S.; Xie, W.; Song, Y.; Li, Y.; Song, Y.; Li, J.; Shao, M. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction. Chem. Eng. J. 2022, 437, 135473. [Google Scholar] [CrossRef]
- Guo, S.J.; Li, D.G.; Zhu, H.Y.; Zhang, S.; Markovic, N.M.; Stamenkovic, V.R.; Sun, S.H. FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angew. Chem.-Int. Ed. 2013, 52, 3465–3468. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Fischer, J.M.T.A.; Jia, Y.; Yan, X.C.; Xu, W.; Wang, X.Y.; Chen, J.; Yang, D.J.; Liu, H.W.; Zhuang, L.Z.; et al. Coordination of Atomic Co-Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763. [Google Scholar] [CrossRef]
- Kakade, B.A.; Tamaki, T.; Ohashi, H.; Yamaguchi, T. Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-oxidation. J. Phys. Chem. C 2012, 116, 7464–7470. [Google Scholar] [CrossRef]
- Serra, A.; Gomez, E.; Valles, E. Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. Int. J. Hydrogen Energy 2015, 40, 8062–8070. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Zhang, J.; Su, N.; Cheng, J.X. Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction. Sci. Rep. 2017, 7, 45555. [Google Scholar] [CrossRef] [Green Version]
- Tabakovic, I.; Qiu, J.M.; Dragos, O. Electrodeposition of thin CoPt films with very high perpendicular anisotropy from hexachloroplatinate solution: Effect of saccharin additive and electrode substrate. J. Electrochem. Soc. 2016, 163, D287–D294. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Liu, Y.; Wang, Y.; Duan, Q. Co75Pt25 alloy nanoparticles: A class of catalyst for the catalytic reduction of 4-nitrophenol with enhanced activity and recycling. J. Alloys Compd. 2021, 858, 157700. [Google Scholar] [CrossRef]
- Le, T.L.; Tung, L.D.; Long, J.; Fernig, D.G.; Thanh, N.T.K. Facile synthesis of stable, water-soluble magnetic CoPt hollow nanostructures assisted by multi-thiol ligands. J. Mater. Chem. 2009, 19, 6023–6028. [Google Scholar] [CrossRef]
- Tabakovic, I.; Qiu, J.-M.; Riemer, S. Electrodeposition of CoPt Alloys from the Stable Hexachloroplatinate Solution: Electrochemical Studies. J. Electrochem. Soc. 2015, 162, D291–D299. [Google Scholar] [CrossRef]
- Dragos-Pinzaru, O.; Riemer, S.; Tabakovic, I. Composition Gradient in Electrodeposition of Thin CoPt Films from the Quiescent Hexachloroplatinate Solutions. J. Electrochem. Soc. 2017, 164, D30–D38. [Google Scholar] [CrossRef]
- Dragos-Pinzaru, O.; Ghemes, A.; Chiriac, H.; Lupu, N.; Grigoras, M.; Riemer, S.; Tabakovic, I. Magnetic properties of CoPt thin films obtained by electrodeposition from hexachloroplatinate solution. Composition, thickness and substrate dependence. J. Alloys Compd. 2017, 718, 319–325. [Google Scholar] [CrossRef]
- Cortes, M.; Gomez, E.; Valles, E. Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. J. Electroanal. Chem. 2013, 689, 69–75. [Google Scholar] [CrossRef]
- Dahmane, Y.; Cagnon, L.; Voiron, J.; Pairis, S.; Bacia, M.; Ortega, L.; Benbrahim, N.; Kadri, A. Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates. J. Phys. D Appl. Phys. 2006, 39, 4523. [Google Scholar] [CrossRef]
- Kalaimurugan, D.; Sivasankar, P.; Durairaj, K.; Lakshmanamoorthy, M.; Ali Alharbi, S.; Al Yousef, S.A.; Chinnathambi, A.; Venkatesan, S. Novel strategy for biodegradation of 4-nitrophenol by the immobilized cells of Pseudomonas sp. YPS3 with Acacia gum. Saudi J. Biol. Sci. 2021, 28, 833–839. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, D.H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664–669. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3, 3357–3363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jia, W.; Liu, B.; Dong, A.; Gong, X.; Li, C.; Jing, P.; Li, Y.; Xu, G.; Zhang, J. Hierarchical structure based on Pd(Au) nanoparticles grafted onto magnetite cores and double layered shells: Enhanced activity for catalytic applications. J. Mater. Chem. A 2013, 1, 12732–12741. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mandal, M.; Kundu, S.; Nath, S.; Pal, T. Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A Gener. 2004, 268, 61–66. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-Based Nanowires for Advanced Catalysis, Advanced Functional Materials. Adv. Funct. Mater. 2020, 30, 2000793. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, Y.; Zhang, L.; Zhang, Y.; Wang, J.X.; Adzic, R.R.; Stach, E.A.; Gang, O. Truncated ditetragonal gold prisms as nanofacet activators of catalytic platinum. J. Am. Chem. Soc. 2011, 133, 18074–18077. [Google Scholar] [CrossRef]
- Sadeghi, B.; Sadjadi, M.A.S.; Vahdati, R.A.R. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals. Superlattices Microstruct. 2009, 46, 858–863. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Y. Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem. Int. Ed. 2012, 51, 602–613. [Google Scholar] [CrossRef]
- Lim, B.; Xia, Y. Metal Nanocrystals with Highly Branched Morphologies. Angew. Chem. Int. Ed. 2011, 50, 76–85. [Google Scholar] [CrossRef]
- Kuroda, K.; Ishida, T.; Haruta, M. Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J. Mol. Catal. A Chem. 2009, 298, 7–11. [Google Scholar] [CrossRef]
- Subhan, F.; Aslam, S.; Yan, Z.; Yaseen, M.; Marwat, A.; Ahmad, A. Catalytic reduction of nitrophenol and MB waste water using homogeneous Pt NPs confined in hierarchically porous silica. J. Environ. Chem. Eng. 2021, 9, 105567. [Google Scholar] [CrossRef]
- Hoseini, S.J.; Bahrami, M.; Sadri, N.; Aramesh, N.; Fard, Z.S.; Iran, H.R.; Agahi, B.H.; Maddahfar, M.; Dehghani, M.; Arabi, A.Z.B.; et al. Multi-metal nanomaterials obtained from oil/water interface as effective catalysts in reduction of 4-nitrophenol. J. Colloid Interface Sci. 2018, 513, 602–616. [Google Scholar] [CrossRef]
- Shang, H.; Pan, K.; Zhang, L.; Zhang, B.; Xiang, X. Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds. Nanomaterials 2016, 6, 103. [Google Scholar] [CrossRef]
- Liu, C.Y.; Liu, J.; Du, P.Y.; Zhang, Z.; Lu, X.Q. Preparation of Hydrophilic FePt Nanoparticles and co-Catalyze Degrade Organic Pollutants. Chem. J. Chin. Univ. 2020, 41, 697–705. [Google Scholar] [CrossRef]
- Krajczewski, J.; Kołątaj, K.; Kudelski, A. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol. Appl. Surf. Sci. 2016, 388, 624–630. [Google Scholar] [CrossRef]
- Li, J.; Sharma, S.; Liu, X.; Pan, Y.T.; Spendelow, J.S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D.A.; Xi, Z.; et al. Hard-Magnet L1(0)-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule 2019, 3, 124–135. [Google Scholar] [CrossRef]
- Manhabosco, T.M.; Muller, I.L. Influence of saccharin on morphology and properties of cobalt thin films electrodeposited over n-Si(100). Surf. Coat. Technol. 2008, 202, 3585–3590. [Google Scholar] [CrossRef]
- Li, Y.W.; Huang, X.X.; Yao, J.H.; Deng, X.S. Effect of Saccharin Addition on the Electrodeposition of Nickel from a Watts-Type Electrolyte. Adv. Mater. Res. 2011, 189–193, 911–914. [Google Scholar] [CrossRef]
- Tebbakh, S.; Messaoudi, Y.; Azizi, A.; Fenineche, N.; Schmerber, G.; Dinia, A. The influence of saccharin on the electrodeposition and properties of Co–Ni alloy thin films. Trans. IMF 2015, 93, 196–204. [Google Scholar] [CrossRef]
- Miller, J.D.; Veeramasuneni, S.; Drelich, J.; Yalamanchili, M.R.; Yamauchi, G. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films. Polym. Eng. Sci. 1996, 36, 10580. [Google Scholar] [CrossRef]
- Tebbakh, S.; Mentar, L.; Messaoudi, Y.; Khelladi, M.R.; Belhadj, H.; Azizi, A. Effect of cobalt content on electrodeposition and properties of Co–Ni alloy thin films. Inorg. Nano-Met. Chem. 2021, 51, 1796–1802. [Google Scholar] [CrossRef]
- Tian, L.; Xu, J.; Xiao, S. The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition. Vacuum 2011, 86, 27–33. [Google Scholar] [CrossRef]
- Cortes, M.; Serra, A.; Gomez, E.; Valles, E. CoPt nanoscale structures with different geometry prepared by electrodeposition for modulation of their magnetic properties. Electrochim. Acta 2011, 56, 8232–8238. [Google Scholar] [CrossRef]
- Dragos-Pinzaru, O.G.; Stoian, G.; Borza, B.; Chiriac, H.; Lupu, N.; Tabakovic, I.; Stadler, J.H.B. CoPt Nanowires with Low Pt Content for the Catalytic Methanol Oxidation Reaction (MOR). ACS Appl. Nano Mater. 2022, 5, 8089–8096. [Google Scholar] [CrossRef]
- Ayodhya, D.; Veerabhadram, G. Influence of g-C3N4 and g-C3N4 nanosheets supported CuS coupled system with effect of pH on the catalytic activity of 4-NP reduction using NaBH4. FlatChem 2019, 14, 100088. [Google Scholar] [CrossRef]
- El-Sheshtawy, H.S.; El-Hosainy, H.M.; Shoueir, K.R.; El-Mehasseb, I.M.; El-Kemary, M. Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Appl. Surf. Sci. 2019, 467–468, 268–276. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, R. Fast and efficient single step synthesis of modified magnetic nanocatalyst for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys. 2022, 276, 125437. [Google Scholar] [CrossRef]
- Bahrami, M.; Derikvand, Z. Fabrication of a new magnetic CoFe2O4/ZrMCM-41 nanocomposite: Simple construction and application for fast reduction of Cr(IV) and nitroaromatic compounds. J. Mol. Struct. 2022, 1254, 132367. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, Z.; Huang, Q.; Li, Y.; Zheng, B.; Chang, J.; Yang, Z. Hyperporous magnetic catalyst foam for highly efficient and stable adsorption and reduction of aqueous organic contaminants. J. Hazard. Mater. 2021, 420, 126622. [Google Scholar] [CrossRef]
- Kalantari, E.; Lucia, L.; Lavoine, N. Green synthesis, characterization, and catalytic application of a supported and magnetically isolable copper-iron oxide-sodium alginate. Green Synth. Catal. 2022, 3, 179–184. [Google Scholar] [CrossRef]
- Wang, G.; Lv, K.; Chen, T.; Chen, Z.; Hu, J. Immobilizing of palladium on melamine functionalized magnetic chitosan beads: A versatile catalyst for p-nitrophenol reduction and Suzuki reaction in aqueous medium. Int. J. Biol. Macromol. 2021, 184, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ouyang, B.; Zhang, X.; Xia, G.; Wang, N.; Ou, H.; Ma, L.; Mao, P.; Ostrikov, K.K.; Di, L.; et al. Plasma-enabled synthesis of Pd/GO rich in oxygen-containing groups and defects for highly efficient 4-nitrophenol reduction. Appl. Surf. Sci. 2022, 4, 153727. [Google Scholar] [CrossRef]
- Nethravathi, C.; Manganahalli, A.D.; Rajamathi, M. Bi2Te3–MoS2 Layered Nanoscale Heterostructures for Electron Transfer Catalysis. ACS Appl. Nano Mater. 2019, 2, 2005–2012. [Google Scholar] [CrossRef]
Sample | Bath pH | Saccharin Addition | ED Time (s) | Surface Roughness (nm) | Crystalline Structure | Crystallite Size (nm) | Alloy Composition | Conversion Degree after 120 min, % | ||
---|---|---|---|---|---|---|---|---|---|---|
XRD | AFM | % Pt | % Co | |||||||
S1 | 2.5 | NO | 25 | 7.5 | cfc | 54 | 55 | 90 | 10 | 11.4 |
S2 | YES | 30 | 9 | hcp | 46 | 50 | 88 | 12 | 28.0 | |
S3 | 5.5 | NO | 30 | 9.2 | hcp | 88 | 90 | 78 | 22 | 67.9 |
S4 | YES | 35 | 10.6 | hcp | 74 | 75 | 15 | 85 | 96.5 |
Material | Reaction Time for the Reduction of 4-NP | References |
---|---|---|
g-C3N4/CuS composite | 50 min | [65] |
Ag/g-C3N4/V2O5 | 60 min | [66] |
ACMNP (10 mg) | 18 min | [67] |
ACMNP (15 mg) | 14 min | [67] |
ACMNP (20 mg) | 9 min | [67] |
ACMNP (25 mg) | 6 min | [67] |
CoFe2O4/ZrMCM-41 25% nanocomposite | 6 min | [68] |
Nickel-coated hyperporous polymer foam (Ni-HPF) | 24 min | [69] |
Cu NPs-Fe3O4-SAlg | ~4 min | [70] |
Fe3O4/CS-Me@Pd microcapsules | ~2.5–5 min | [71] |
CoPt, rGO/CoPt, and rGO/CoPt/Ag catalysts | 8, 4, 1 min | [15] |
Co25Pt75, Co50Pt50 and Co75Pt25 alloy nanoparticles | 3, 4, and 2 min | [32] |
GO | 60 min | [72] |
Pd/rGO-H | 2 min | [72] |
Bi2Te3−MoS2 layered heterostructures | 35 min | [73] |
CoPt pH = 5.5 + sacch | ~5 min | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragos-Pinzaru, O.-G.; Buema, G.; Gherca, D.; Tabakovic, I.; Lupu, N. Effect of the Preparation Conditions on the Catalytic Properties of CoPt for Highly Efficient 4-Nitrophenol Reduction. Materials 2022, 15, 6250. https://doi.org/10.3390/ma15186250
Dragos-Pinzaru O-G, Buema G, Gherca D, Tabakovic I, Lupu N. Effect of the Preparation Conditions on the Catalytic Properties of CoPt for Highly Efficient 4-Nitrophenol Reduction. Materials. 2022; 15(18):6250. https://doi.org/10.3390/ma15186250
Chicago/Turabian StyleDragos-Pinzaru, Oana-Georgiana, Gabriela Buema, Daniel Gherca, Ibro Tabakovic, and Nicoleta Lupu. 2022. "Effect of the Preparation Conditions on the Catalytic Properties of CoPt for Highly Efficient 4-Nitrophenol Reduction" Materials 15, no. 18: 6250. https://doi.org/10.3390/ma15186250
APA StyleDragos-Pinzaru, O. -G., Buema, G., Gherca, D., Tabakovic, I., & Lupu, N. (2022). Effect of the Preparation Conditions on the Catalytic Properties of CoPt for Highly Efficient 4-Nitrophenol Reduction. Materials, 15(18), 6250. https://doi.org/10.3390/ma15186250