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Abstract: The distribution of stresses near holes is of great importance in fracture mechanics and
material modeling. The present paper provides a general stress solution near a traction-free surface
for an arbitrary piecewise linear yield criterion, assuming plane-strain conditions. The generalized
method of moving coordinates is proven efficient in this case. In particular, the solution reduces to
evaluating one ordinary integral. The boundary value problem solved is a Cauchy problem for a
hyperbolic system of equations. Therefore, the stress solution in the plastic region is independent
of other boundary conditions, though the occurrence of plastic yielding at a specific point is path-
dependent. The general solution applies to calculating the stress field near an elliptic hole. It is
shown that the parameter that controls the pressure-dependency of the yield criterion affects the
stress field significantly. The aspect ratio is less significant as compared to that parameter. However,
for a given material, the aspect ratio should also be considered to predict the stress field accurately,
especially in the near vicinity of the hole. The solution reduces to an available solution for the
pressure-independent yield criterion, which is a particular yield criterion of the considered class of
yield criteria.

Keywords: holes; stress fields; moving coordinates; plasticity

1. Introduction

The distribution of stresses near holes and cracks is of great importance in fracture
mechanics and material modeling. A vast amount of literature is devoted to developing
methods for finding such distributions using the theories of elasticity and plasticity. The
linearly elastic stress field at the base of a sharp stationary crack has been found in [1]. This
analysis has been extended to the plastic range in [2–4].

The importance of stress solutions near holes is twofold. Firstly, such solutions are
required to understand the fracture process. Paper [5] has presented a stress solution in
the plastic region around an elliptic hole. This solution can be used in conjunction with
the ductile fracture model proposed in [6]. Exact solutions for an elliptic hole embedded
in a thermoelectric material have been presented in [7,8]. Paper [9] has found the stress
distribution around an elliptic hole for non-local elastic material models. An elastic solution
for a plate subject to biaxial loading and containing an inclined elliptic defect has been
provided in [10]. The stress concentration generated by an elliptic hole in a functionally
graded panel subjected to uniform tension has been analyzed in [11]. The effect of elastic
anisotropy on the stress distribution around an elliptical crack has been revealed in [12],
assuming that the medium is subjected to general loading at infinity. The influence of
multiple pre-existing holes on the fracture process in granite subject to compressive loading
has been studied in [13]. The stress concentration due to a circular hole in a plate subject
to the uniaxial extension has been investigated in [14], using new constitutive equations
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with density-dependent elasticity moduli. This result has been extended to bi-axial defor-
mation in [15]. A perturbation technique has been adopted in [16] for deriving analytical
solutions for an elastic/plastic plate with a hole, including an elliptic hole. In particular,
the elastic/plastic boundary has been found. Another analytical method for determining
the elastic/plastic boundary in the vicinity of holes has been proposed in [17].

Another area of applications of the stress solutions near elliptic holes is that structural
members contain such holes. Examples of such members have been considered in [18,19].

The present paper extends the solution [5] to an arbitrary piecewise linear yield
criterion. Such yield criteria are widely used for describing metallic and nonmetallic
materials [20–22]. The generalized method of moving coordinates is developed and used.
The solution is semi-analytical. One needs to evaluate one ordinary integral to calculate the
principal stresses at any point of the plastic region.

2. Basic Equations

Considered is plane-strain deformation of a material obeying an arbitrary piecewise
linear yield criterion. Such yield criteria are represented by a linear function of the two
principal stresses in a typical plane of flow. These stresses are denoted as σ1 and σ2. The
yield criterion can be represented as:

λp + q = 1. (1)

Here, λ is a constitutive parameter and

p = −σ1 + σ2

2
and q =

σ1 − σ2

2
. (2)

Note that Equation (1) represents the totality of piecewise linear yield criteria if the
stresses are non-dimensionalized using an appropriate reference stress. For example, a
standard form of the Mohr–Coulomb yield criterion is [23]:

− p sin χ + q = k cos χ (3)

where the cohesion k and angle of internal friction χ are constants. Equation (3) reduces to
Equation (1) if λ = − sin χ and the reference stress is k cos χ. It is also possible to choose
without loss of generality that σ1 > σ2. Then, q > 0.

Let ψ be the inclination of the direction of the stress σ1 relative to the x1−axis of a
Cartesian coordinate system (x1, y1), measured anticlockwise. Then, the stress components
referred to the Cartesian coordinates are:

σxx = (σ1+σ2)
2 + (σ1−σ2)

2 cos 2ψ, σyy = (σ1+σ2)
2 − (σ1−σ2)

2 cos 2ψ,
σxy = (σ1−σ2)

2 sin 2ψ.
(4)

Equations (1), (2) and (4) combine to give:

σxx = −p(1 + λ cos 2ψ) + cos 2ψ,
σyy = −p(1 + λ cos 2ψ)− cos 2ψ,
σxy = (1− λp) sin 2ψ.

(5)

Equation (1) and the equilibrium equations comprise a statically determinate system.
This system, without the assumption that the yield criterion is piecewise linear, has been ana-
lyzed in [24]. In the case of Equation (1), this analysis provides the following characteristics:

dy1

dx1
= tan(ψ− φ) and

dy1

dx1
= tan(ψ + φ), (6)
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which are termed the α− and β−lines, respectively, where

tan φ =

√
1− λ

1 + λ
. (7)

The relations along the characteristics are:√
1− λ2dp + 2(1− λp)dψ = 0 and

√
1− λ2dp− 2(1− λp)dψ = 0 (8)

on the α− and β−lines, respectively. It is seen from Equations (6) and (7) that the angle
between the direction of the stress σ1 and each characteristic line is constant. Therefore,
Equation (8) can be rewritten as:√

1− λ2dp + 2(1− λp)dϕ = 0 and
√

1− λ2dp− 2(1− λp)dϕ = 0 (9)

where
ϕ = ψ− φ (10)

is the angle between the x−axis and the α−characteristic line measured from the axis
anticlockwise. If both families of characteristics are curved, the equations in (9) can be
immediately integrated to give:

P− ϕ = −2α cos φ− ϕ0 and P + ϕ = 2β cos φ + ϕ0 (11)

where

P = −
√

1− λ2

2λ
ln
(

1− λp
1− λp0

)
. (12)

The constants ϕ0 and p0 have been introduced for further convenience. Note that
Equation (12) reduces to P = (p− p0)/2 as λ→ 0 . Solving the equations in (11) for P and
ϕ yields:

P = (β− α) sin 2φ and ϕ = (β + α) sin 2φ + ϕ0. (13)

3. Generalized Moving Coordinates

The moving coordinates (x, y) are used for solving boundary value problems in
pressure-independent plasticity. This method has been described in many monographs,
for example, [24]. In short, x and y are the coordinates of the point C under consideration,
referred to axes passing through the origin O and parallel to the characteristic directions
at C. The geometric interpretation of the moving coordinates is shown in Figure 1a. In
the case of pressure-independent plasticity, the characteristic directions are orthogonal.
Therefore, the moving coordinates are orthogonal. It is seen from Equations (6) and (7) that
the characteristic directions are not orthogonal if λ 6= 0.
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The geometric interpretation of the generalized moving coordinates, which are also

denoted as
(−

x,
−
y
)

, is shown in Figure 1b. In this figure, (x, y) is a skew rectilinear coordi-
nate system with the origin at O. The x−axis is tangent to the base α−characteristic line
passing through O, and the y−axis is tangent to the base β−characteristic line passing
through O. Let ex and ey be the unit base vectors of the (x, y)−coordinate system. The unit
vectors eα and eβ are directed along the α− and β−characteristic lines at the point C under
consideration. Therefore, the angle between the vectors ex and eα is ϕ. Then (Figure 1b):

eα · ex = cos ϕ, eα · ey = cos(ϕ− 2φ), eβ · ex = cos(ϕ + 2φ),
eβ · ey = cos ϕ, ey · ex = cos 2φ.

(14)

The position vector of any point can be represented as

R = xex + yey = xeα + yeβ. (15)

Using Equations (14) and (15), one can find the scalar products, R · ex and R · ey, as:

R · ex = x + y cos 2φ = x cos ϕ + y cos(ϕ + 2φ),
R · ey = x cos 2φ + y = x cos(ϕ− 2φ) + y cos ϕ.

(16)

Solving these equations for x and y yields:

x = x [cos ϕ−cos 2φ cos(ϕ+2φ)]

sin2 2φ
+ y [cos ϕ cos 2φ−cos(ϕ+2φ)]

sin2 2φ
,

y = x [cos ϕ cos 2φ−cos(ϕ−2φ)]

sin2 2φ
+ y [cos ϕ−cos 2φ cos(ϕ−2φ)]

sin2 2φ
.

(17)

Alternatively, the equations in (16) can be solved for x and y. As a result,

x = x [cos ϕ−cos 2φ cos(ϕ−2φ)]

sin2 2φ
+ y [cos(ϕ+2φ)−cos ϕ cos 2φ]

sin2 2φ
,

y = x [cos(ϕ−2φ)−cos ϕ cos 2φ]

sin2 2φ
+ y [cos ϕ−cos 2φ cos(ϕ+2φ)]

sin2 2φ
.

(18)

Differentiating the first equation in (17) with respect to β and the second with respect
to α leads to:

sin2 2φ ∂x
∂β = [cos ϕ− cos 2φ cos(ϕ + 2φ)] ∂x

∂β + [cos ϕ cos 2φ− cos(ϕ + 2φ)]
∂y
∂β−

{x[sin ϕ− cos 2φ sin(ϕ + 2φ)] + y[sin ϕ cos 2φ− sin(ϕ + 2φ)]} ∂ϕ
∂β ,

sin2 2φ
∂y
∂α = [cos ϕ cos 2φ− cos(ϕ− 2φ)] ∂x

∂α + [cos ϕ− cos 2φ cos(ϕ− 2φ)]
∂y
∂α−

{x[sin ϕ cos 2φ− sin(ϕ− 2φ)] + y[sin ϕ− cos 2φ sin(ϕ− 2φ)]} ∂ϕ
∂α .

(19)

It is seen from Equation (13) that ∂ϕ/∂α = ∂ϕ/∂β = sin 2φ. Therefore, Equation (19) becomes:

∂x
∂β = [cos ϕ−cos 2φ cos(ϕ+2φ)]

sin2 2φ
∂x
∂β + [cos ϕ cos 2φ−cos(ϕ+2φ)]

sin2 2φ

∂y
∂β−

{x[sin ϕ− cos 2φ sin(ϕ + 2φ)] + y[sin ϕ cos 2φ− sin(ϕ + 2φ)]} csc 2φ,
∂y
∂α = [cos ϕ cos 2φ−cos(ϕ−2φ)]

sin2 2φ
∂x
∂α + [cos ϕ−cos 2φ cos(ϕ−2φ)]

sin2 2φ

∂y
∂α−

{x[sin ϕ cos 2φ− sin(ϕ− 2φ)] + y[sin ϕ− cos 2φ sin(ϕ− 2φ)]} csc 2φ.

(20)

Using Equation (18), one can get after some trigonometry:

{x[sin ϕ− cos 2φ sin(ϕ + 2φ)] + y[sin ϕ cos 2φ− sin(ϕ + 2φ)]} csc 2φ = −(y + x cos 2φ),
{x[sin ϕ cos 2φ− sin(ϕ− 2φ)] + y[sin ϕ− cos 2φ sin(ϕ− 2φ)]} csc 2φ = y cos 2φ + x.

(21)

Equation (6) can be rewritten using Equation (10) as:

∂y1

∂α
= tan ϕ

∂x1

∂α
and

∂y1

∂β
= tan(ϕ + 2φ)

∂x1

∂β
. (22)
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One can situate the origin of the (x1, y1)−coordinate system at the origin of the
(x, y)−coordinate system and direct the x1−axis along the x−axis (Figure 2). Then,

x = x1 − y1 cot 2φ and y =
y1

sin 2φ
. (23)
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Differentiating, one arrives at:

∂x
∂α = ∂x1

∂α + ∂y1
∂α cot 2φ, ∂x

∂β = ∂x1
∂β + ∂y1

∂β cot 2φ,
∂y
∂α = 1

sin 2φ
∂y1
∂α , ∂y

∂β = 1
sin 2φ

∂y1
∂β .

(24)

Consider the terms of the equations in (20) containing the derivatives ∂x/∂α, ∂y/∂α,
∂x/∂β, and ∂y/∂β. Using Equations (22) and (24), one can represent these terms as:

[cos ϕ cos 2φ−cos(ϕ−2φ)]

sin2 2φ
∂x
∂α + [cos ϕ−cos 2φ cos(ϕ−2φ)]

sin2 2φ

∂y
∂α ={

[cos ϕ cos 2φ− cos(ϕ− 2φ)](cot ϕ− cos 2φ)+
[cos ϕ− cos 2φ cos(ϕ− 2φ)] csc 2φ

}
csc2 2φ

∂y1
∂α ,

[cos ϕ−cos 2φ cos(ϕ+2φ)]

sin2 2φ
∂x
∂β + [cos ϕ cos 2φ−cos(ϕ+2φ)]

sin2 2φ

∂y
∂β ={

[cos ϕ− cos 2φ cos(ϕ + 2φ)][cot(ϕ + 2φ)− cot 2φ]+
[cos ϕ cos 2φ− cos(ϕ + 2φ)] csc 2φ

}
csc2 2φ

∂y1
∂α

(25)

Using trigonometric identities, one can show that the coefficient of ∂y1/∂α vanishes in
each of these equations. Therefore, Equations (20) and (22) combine to give:

∂x
∂β
− (y + x cos 2φ) = 0 and

∂y
∂α

+ y cos 2φ + x = 0. (26)

Introduce new variables X and Y as

x = X exp[(β− α) cos 2φ] and y = Y exp[(β− α) cos 2φ]. (27)

Substituting Equation (27) into Equation (26) yields:

∂X
∂β
−Y = 0 and

∂Y
∂α

+ X = 0. (28)
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It is seen from this equation that the quantities X and Y separately satisfy the equation
of telegraphy. The latter is integrated by the method of Riemann.

4. Solution near a Traction-Free Surface

One of the principal stresses vanishes on any traction-free surface. The other principal
stress and p are determined from Equations (1) and (2). It is necessary to consider two cases.
One of these cases demands:

σ1 = 0, σ2 = − 2
1 + λ

, and p =
1

1 + λ
(29)

on a traction-free surface. The other case demands:

σ2 = 0, σ1 =
2

1− λ
, and p = − 1

1− λ
(30)

on a traction-free surface.
Consider Equation (29). The general structure of the solution is shown in Figure 3.

It is required to find X and Y at a point C. BC is an α−characteristic line, and AC is a
β−characteristic line. Riemann’s method for the telegraph equation results in∮

BCA

(
G

∂ f
∂α
− f

∂G
∂α

)
dα +

(
f

∂G
∂β
− G

∂ f
∂β

)
dβ = 0. (31)
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Here f is X or Y and.

G(αC, βC, α, β) ≡ J0

[
2
√
(αC − α)(βC − β)

]
. (32)
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Also, J0(z) is the Bessel function of the first kind of zero order, αC is the value of α at
the point C, and βC is the value of β at the point C. Note that

J0(0) = 1. and J1(0) = 0 (33)

where J1(z) = −dJ0(z)/dz is the Bessel function of the first kind of first order.
Since dβ = 0 on BC and dα = 0 on AC, Equation (31) can be rewritten as:

∮
BCA

(
G ∂ f

∂α − f ∂G
∂α

)
dα +

(
f ∂G

∂β − G ∂ f
∂β

)
dβ =

αC∫
αB

(
G ∂ f

∂α − f ∂G
∂α

)
dα+

βA∫
βC

(
f ∂G

∂β − G ∂ f
∂β

)
dβ +

∫
AB

(
G ∂ f

∂α − f ∂G
∂α

)
dα +

(
f ∂G

∂β − G ∂ f
∂β

)
dβ = 0.

(34)

Moreover, β = βC on BC and α = αC on AC. Therefore, z = 0 on these lines. Then, it
follows from Equations (33) and (34) that:

fC =
fB + fA

2
− 1

2

∫
AB

(
G

∂ f
∂α
− f

∂G
∂α

)
dα +

(
f

∂G
∂β
− G

∂ f
∂β

)
dβ. (35)

Here fA, fB, and fC are the value of f at A, B, and C, respectively.
Put p0 = 1/(1 + λ) in (12). Then, it follows from Equations (12), (13), and (29) that:

P = 0, dP = 0, dβ =
dϕ

2 sin 2φ
, and dα =

dϕ

2 sin 2φ
(36)

on AB.
Using Equation (36), one can rewrite the integral in Equation (35) as∫

AB

(
G ∂ f

∂α − f ∂G
∂α

)
dα +

(
f ∂G

∂β − G ∂ f
∂β

)
dβ =

= 1
2 sin 2φ

∫
AB

(
G ∂ f

∂α − f ∂G
∂α + f ∂G

∂β − G ∂ f
∂β

)
dϕ.

(37)

It follows from Equation (13) that:

∂

∂α
= sin 2φ

(
∂

∂ϕ
− ∂

∂P

)
and

∂

∂β
= sin 2φ

(
∂

∂ϕ
+

∂

∂P

)
. (38)

Equations (37) and (38) combine to give:∫
AB

(
G

∂ f
∂α
− f

∂G
∂α

)
dα +

(
f

∂G
∂β
− G

∂ f
∂β

)
dβ =

∫
AB

(
f

∂G
∂P
− G

∂ f
∂P

)
dϕ. (39)

The derivative ∂ f /∂P can be eliminated using Equation (28). In particular, it follows
from Equations (28) and (38) that:

∂Y
∂P = ∂Y

∂ϕ − csc 2φ ∂Y
∂α = ∂Y

∂ϕ + X csc 2φ,
∂X
∂P = csc 2φ ∂X

∂β −
∂X
∂ϕ = Y csc 2φ− ∂X

∂ϕ .
(40)

Moreover, by replacing α and β in Equation (32) with ϕ and P using Equation (13),
one gets:

G(ϕC, PC, ϕ, P) ≡ J0(Z) (41)

where ϕC is the value of ϕ at C, PC is the value of P at C, and

Z = csc 2φ

√
(ϕ− ϕC)

2 − (P− PC)
2. (42)
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It follows from Equations (41) and (42) that:

∂G
∂P

=
J1(Z)(P− PC)

Z sin2 2φ
and

∂G
∂ϕ

= − J1(Z)(ϕ− ϕC)

Z sin2 2φ
. (43)

Substituting Equation (40) into Equation (39) and integrating by parts, one arrives at:∫
AB

(
X ∂G

∂P − G ∂X
∂P

)
dϕ =

∫
AB

[
X
(

∂G
∂P −

∂G
∂ϕ

)
− GY csc 2φ

]
dϕ + XB − XA,∫

AB

(
Y ∂G

∂P − G ∂Y
∂P

)
dϕ =

∫
AB

[
Y
(

∂G
∂P + ∂G

∂ϕ

)
− GX csc 2φ

]
dϕ−YB + YA.

(44)

Eliminating here the derivatives ∂G/∂P and ∂G/∂ϕ using Equation (43) yields:∫
AB

(
X ∂G

∂P − G ∂X
∂P

)
dϕ = csc 2φ

∫
AB

[
X J1(Z)(ϕ−ϕC−PC)

Z sin 2φ − J0(Z)Y
]
dϕ + XB − XA,∫

AB

(
Y ∂G

∂P − G ∂Y
∂P

)
dϕ = − csc 2φ

∫
AB

[
Y J1(Z)(ϕ−ϕC+PC)

Z sin 2φ + J0(Z)X
]
dϕ−YB + YA.

(45)

Substituting Equation (45) into Equation (35) leads to:

XC = XA − csc 2φ
2

ϕB∫
ϕA

[
X J1(Z)(ϕ−ϕC−PC)

Z sin 2φ − J0(Z)Y
]
dϕ,

YC = YB + csc 2φ
2

ϕB∫
ϕA

[
Y J1(Z)(ϕ−ϕC+PC)

Z sin 2φ + J0(Z)X
]
dϕ.

(46)

The coefficients of X and Y in the integrands are known functions of ϕ due to
Equations (36) and (42).

Consider Equation (30). In this case, AC is an α−characteristic line, and BC is a
β−characteristic line (Figure 3). Putting p0 = −1/(1 + λ) in Equation (12) and repeating
the line of reasoning that has led to Equation (46) in the previous case, one gets:

XC = XB + csc 2φ
2

ϕB∫
ϕA

[
X J1(Z)(ϕ−ϕC−PC)

Z sin 2φ − J0(Z)Y
]
dϕ,

YC = YA − csc 2φ
2

ϕB∫
ϕA

[
Y J1(Z)(ϕ−ϕC+PC)

Z sin 2φ + J0(Z)X
]
dϕ.

(47)

It follows from Equation (11) that:

PC =
ϕA − ϕB

2
and ϕC =

ϕB + ϕA
2

(48)

if Equation (29) is valid and

PC =
ϕB − ϕA

2
and ϕC =

ϕB + ϕA
2

(49)

Equation (30) is valid. Using Equations (48) and (49), one can eliminate ϕC and PC in
Equations (46) and (47).

The free surface geometry determines the quantities X and Y involved in Equations (46) and (47).
Since P = 0 on the free surface, it is seen from Equations (13) and (27) that:

X = x and Y = y (50)

on AB. One of the principal stress directions is orthogonal to the free surface. Therefore,
replacing ϕ with ψ in Equations (46) and (47) is convenient. It is seen from Equation (10)
that dψ = dϕ. Then, using Equations (48)–(50), one rewrites Equations (46) and (47) as:
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XC = xA − csc 2φ
2

ψB∫
ψA

[
x J1(Z)(ψ−ψB)

Z sin 2φ − J0(Z)y
]
dψ,

YC = yB + csc 2φ
2

ψB∫
ψA

[
y J1(Z)(ψ−ψA)

Z sin 2φ + J0(Z)x
]
dψ,

(51)

and

XC = xB + csc 2φ
2

ψB∫
ψA

[
x J1(Z)(ψ−ψB)

Z sin 2φ − J0(Z)y
]
dψ,

YC = yA −
csc 2φ

2

ψB∫
ψA

[
y J1(Z)(ψ−ψA)

Z sin 2φ + J0(Z)x
]
dψ,

(52)

respectively.
Equations (51) and (52) coincide with the solution [5] for pressure-independent mate-

rial (i.e., φ = π/4).

5. Numerical Example

The distributions of x and y along AB are required to evaluate the integrals in
Equations (51) and (52). The free surface shape determines these distributions. The numer-
ical solution below is for an elliptic hole. Its equation can be written as:

y2
1 +

x2
1

a2 = 1 or
(

sin2 θ +
cos2 θ

a2

)
ρ2 = 1 (53)

where x1 = ρ cos θ and y1 = ρ sin θ. Equations (17) and (18) have been derived upon
the assumption that the x−axis coincides with the x1−axis. Therefore, the origin of the
(x, y)−coordinate system should be situated at a point of the ellipse where the tangent to
the α−is parallel to the x1−axis. This condition is equivalent to:

ψ = φ (54)

at the origin of the (x, y)−coordinate system. Let θ0 be the value of θ at which this condi-
tion is satisfied. The components of the unit vector orthogonal to the ellipse are readily
determined from Equation (53). As a result,

a2 tan θ = tan ψ. (55)

Then, the condition Equation (54) yields:

a2 tan θ0 = tan φ. (56)

The ellipse, (x, y)−coordinate system, and (x1, y1)−coordinate system are shown in
Figure 4. The unit base vectors of the (x, y)−coordinate system are denoted as ex and ey,
and the unit base vectors of the (x1, y1)−coordinate system as i and j. The position vector
of a generic point is:

R = R0 + r. (57)

Using Equation (56), one can represent the vector R0 as:

R0 = x0i + y0j,

x0 = a2 cos φ√
1−(1−a2) cos2 φ

, y0 = sin φ√
1−(1−a2) cos2 φ

. (58)

It follows from the geometry of Figure 4 that:

ex · i = 1, ex · j = 0, ey · i = cos 2φ, ey · j = sin 2φ. (59)
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Using Equations (58) and (59), one can find the scalar products R · i and R · j from
Equation (57) as:

x1 = x0 + x + y cos 2φ and y1 = y0 + y sin 2φ. (60)

Solving these equations for x and y yields:

x = x1 − y1 cot 2φ− x0 + y0 cot 2φ and y =
y1 − y0

sin 2φ
. (61)

It is convenient to rewrite these equations in terms of ρ and θ as

x = ρ(cos θ − sin θ cot 2φ)− x0 + y0 cot 2φ and y =
ρ sin θ − y0

sin 2φ
. (62)

One can eliminate r in these equations using Equation (54). As a result,

x = a(cos θ−sin θ cot 2φ)√
a2 sin2 θ+cos2 θ

− x0 + y0 cot 2φ,

y = a sin θ

sin 2φ
√

a2 sin2 θ+cos2 θ
− y0

sin 2φ .
(63)

Equation (55) allows for x and y to be calculated from Equation (63) as functions of
ψ. Then, Equations (10) and (17) supply x and y as functions of ψ. These functions have
been used in Equation (51) to calculate XC and YC. Having XC and YC, one can calculate
the x1− and y1−coordinates of point C using Equations (18), (27), and (60). The principal
stresses at this point are found from Equations (1), (2), (12), and (48) (or (49)). The numerical
results below are for Equation (29). Figure 5 depicts the variation of the stress σ1 along
the x1−axis for several values of λ and a. Figure 6 shows the variation of the stress σ2. In
these figures, s is the distance from the hole surface, s = x1 − a. Figures 5 and 6 reveal
a significant effect of λ on the stresses. In particular, the effect of a is invisible in these
figures. However, the hole shape does affect the stresses near the surface. Figure 7 depicts
the variation of the principal stresses for several a-values at λ = −1/4. It is seen from
this figure that the value of |σ1| near a circular hole (a = 1) is larger than its value near an
elliptic hole. However, elliptical holes produce higher values of |σ1| than the corresponding
circular hole at some distance from the hole’s surface. The same tendency occurs with
the stress |σ2|.
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6. Conclusions

From this work, the following conclusions can be drawn:

(1) The generalized method of moving coordinates is efficient for determining stress fields
near traction-free surfaces. In particular, determining the stress components at any point
of the plastic region requires evaluating one ordinary integral in Equations (51) or (52).

(2) The solutions in Equations (51) and (52) are independent of other boundary conditions,
though the shape of the plastic region is.

(3) The solution found is identical to the solution in [5] if λ = 0 in Equation (1).
(4) The parameter λ involved in Equation (1) has a much greater effect on the stress field

than the aspect ratio (Figures 5 and 6). However, it is a consequence of the yield
criterion. For a given material, the aspect ratio affects the stress distribution in a small
region near the hole (Figure 7).

(5) The solution found is for perfectly plastic material. However, slip-line solutions for the
class of problems considered agree well with experimental results for strain-hardening
materials [25].
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