Colloidal Nanosilica Treatments for Sealing Cracks in Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Crack Sealing Treatments
2.2.1. Electromigration
2.2.2. Injection
2.2.3. Capillary Suction
2.3. Crack Sealing Characterization
3. Results and Discussion
3.1. Electrical Resistance Measurements
3.2. Visual Inspection of Treated Cracks
3.3. Interaction between Colloidal Nanosilica and Treated Mortar
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Tittelboom, K.; De Belie, N. Self-Healing in Cementitious Materials—A Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [PubMed]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Sidiq, A.; Gravina, R.; Giustozzi, F. Is concrete healing really efficient? A review. Constr. Build. Mater. 2019, 205, 257–273. [Google Scholar] [CrossRef]
- Nodehi, M.; Ozbakkaloglu, T.; Gholampour, A. A systematic review of bacteria-based self-healing concrete: Biomineralization, mechanical and durability properties. J. Build. Eng. 2022, 49, 104038. [Google Scholar] [CrossRef]
- Lee, J.Y.; Seo, H.J.; Oh, K.H.; Bo, J.; Oh, S.K. Crack-Bridging Property Evaluation of Synthetic Polymerized Rubber Gel (SPRG) through Yield Stress Parameter Identification. Materials 2021, 14, 7599. [Google Scholar] [CrossRef]
- Issa, C.A.; Debs, P. Experimental study of epoxy repairing of cracks in concrete. Constr. Build. Mater. 2007, 21, 157–163. [Google Scholar] [CrossRef]
- Abolfazli, M.; Bazli, M.; Heydari, H.; Fahimifar, A. Investigating the Effects of Cement and Polymer Grouting on the Shear Behaviour of Rock Joints. Polymers 2022, 14, 1229. [Google Scholar] [CrossRef]
- Khayat, K.H.; Balling, G.; Gaudreault, M. High-performance cement grout for underwater crack injection. Can. J. Civ. Eng. 2011, 24, 405–418. [Google Scholar] [CrossRef]
- Wang, D.; Ye, Y.; Yao, N.; Liu, Y.; Deng, X. Experimental study on strength Enhancement of Expansive Grout. Materials 2022, 15, 885. [Google Scholar] [CrossRef]
- García Calvo, J.L.; Pedrosa, F.; Carballosa de Miguel, P.; Revuelta, D. Evaluation of the sealing effectiveness of expansive cement grouts through a novel water penetration test. Constr. Build. Mater. 2020, 251, 118974. [Google Scholar] [CrossRef]
- Chu, H.; Linhua, J.; Song, Z.; Xu, Y.; Zhao, S.; Xiong, C. Repair of concrete crack by pulse electrodeposition technique. Constr. Build. Mater. 2017, 148, 241–248. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, Q.F.; She, W.; Cai, Y.; Yang, J.; Iqbal, M.F. Electrochemical deposition method for load-induced crack repair of reinforced concrete structures: A numerical study. Eng. Struct. 2021, 246, 112903. [Google Scholar] [CrossRef]
- Wiktor, V.; Jonkers, H.M. Field performance of bacteria-based repair system: Pilot study in a parking garage. Case Stud. Constr. Mater. 2015, 2, 11–17. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 2010, 40, 157–166. [Google Scholar] [CrossRef]
- Feurgard, I.; Lors, C.; Gagni, R.; Damidot, D. Use of colloidal thickeners to inject and retain bacterial growth media to repair cracked concrete. Constr. Build. Mater. 2020, 262, 119993. [Google Scholar] [CrossRef]
- Jung, A.; Weichold, O. A 3-in-1 alkaline gel for the crack injection in cement-based materials with simultaneous corrosion protection and repassivation of crack-crossing steel rebars. Constr. Build. Mater. 2022, 344, 128092. [Google Scholar] [CrossRef]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement based materials —A review. Constr. Build. Mater. 2013, 47, 1013–1021. [Google Scholar] [CrossRef]
- Alqamish, H.H.; Al-Tamimi, A.K. Development and Evaluation of Nano-Silica Sustainable Concrete. Appl. Sci. 2021, 11, 3041. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. Nano-Silica-Modified Concrete: A Bibliographic Analysis and Comprehensive Review of Material Properties. Nanomaterials 2022, 12, 1989. [Google Scholar] [CrossRef]
- Hou, P.; Cheng, X.; Qiang, J.; Cao, W.; Shah, S.P. Characteristics of surface-treatment of nano-SiO2 on the transport properties of hardened cement pastes with different water-to-cement ratios. Cem. Concr. Compos. 2015, 55, 26–33. [Google Scholar] [CrossRef]
- Fajardo, G.; Cruz-López, A.; Cruz-Moreno, D.; Valdez, P.; Torres, G.; Zanella, R. Inovative application of silicon nanoparticles (SN): Improvement of the barrier effect in hardened Portland cement-based materials. Constr. Build. Mater. 2015, 76, 158–167. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E.; Pigino, B. Ethyl-silicate for surface treatment of concrete. Part I: Pozzolanic effect of ethyl silicate. Cem. Concr. Compos. 2012, 34, 306–312. [Google Scholar] [CrossRef]
- Sánchez, M.; Alonso, M.C.; González, R. Preliminary attempt of hardened mortar sealing by colloidal nanosilica migration. Constr. Build. Mater. 2014, 66, 306–312. [Google Scholar] [CrossRef]
- EN 197-1:2011; Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 196-1:2018; Methods of Testing Cement. European Committee for Standardization: Brussels, Belgium, 2018.
- Richardson, I.G. The nature of C-S-H in hardened cements. Cem. Concr. Res. 1999, 29, 1131–1147. [Google Scholar] [CrossRef]
- SchOler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr Compos. 2015, 55, 374–382. [Google Scholar] [CrossRef]
- Muller, A.C.A.; Scriver, K.L.; Skibsted, J.; Gajewicz, A.M.; McDonald, P.J. Influence of silica fume on the microstructure of cement pastes: New insights from 1H NMR relaxometry. Cem. Concr. Res. 2014, 74, 116–125. [Google Scholar] [CrossRef]
- García Calvo, J.L.; Hidalgo, A.; Alonso, C.; Fernández Luco, L. Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem. Concr. Res. 2010, 40, 1290–1297. [Google Scholar] [CrossRef]
- Cong, X.; Kirkpatrick, R.J. 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 1996, 3, 144–156. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 |
---|---|---|---|---|---|---|---|
60.3 | 17.4 | 4.68 | 5.08 | 1.78 | 0.34 | 0.18 | 3.17 |
Sample | Crack Width/μm | Method |
---|---|---|
M1 | 49 ± 7 | Electromigration (M) |
M2 | 166 ± 20 | Electromigration (M) |
M3 | 248 ± 40 | Electromigration (M) |
I1 | 237 ± 12 | Injection (I) |
I2 | 395 ± 13 | Injection (I) |
S1 | 60 ± 8 | Capillary suction (S) |
S2 | 94 ± 24 | Capillary suction (S) |
S3 | 180 ± 36 | Capillary suction (S) |
Sample | Initial Crack Width/μm | Final Crack Width/μm | % Reduction |
---|---|---|---|
M1 | 49 ± 7 | 36 ± 6 | 25 |
M2 | 166 ± 20 | 86 ± 32 | 48 |
M3 | 248 ± 40 | 246 ± 23 | 1 |
I1 | 237 ± 12 | 220 ± 39 | 7 |
I2 | 395 ± 13 | 299 ± 31 | 24 |
S1 | 60 ± 8 | NEGLIGIBLE | 100 |
S2 | 94 ± 24 | 47 ± 24 | 50 |
S3 | 180 ± 36 | 143 ± 11 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Moreno, M.; García-Calvo, J.L.; Tavares-Pinto, F. Colloidal Nanosilica Treatments for Sealing Cracks in Mortar. Materials 2022, 15, 6338. https://doi.org/10.3390/ma15186338
Sánchez-Moreno M, García-Calvo JL, Tavares-Pinto F. Colloidal Nanosilica Treatments for Sealing Cracks in Mortar. Materials. 2022; 15(18):6338. https://doi.org/10.3390/ma15186338
Chicago/Turabian StyleSánchez-Moreno, M., J.L. García-Calvo, and F. Tavares-Pinto. 2022. "Colloidal Nanosilica Treatments for Sealing Cracks in Mortar" Materials 15, no. 18: 6338. https://doi.org/10.3390/ma15186338
APA StyleSánchez-Moreno, M., García-Calvo, J. L., & Tavares-Pinto, F. (2022). Colloidal Nanosilica Treatments for Sealing Cracks in Mortar. Materials, 15(18), 6338. https://doi.org/10.3390/ma15186338