Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Group-PMMA Samples
2.2. Fabrication of Group-ABS (Acrylonitrile–Butadiene–Styrene) Samples
2.3. Fabrication of Group-PLA (Polylactic Acid) Samples
2.4. Measurement of Marginal and Internal Gaps
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackman, R.; Baez, R.; Barghi, N. Marginal accuracy and geometry of cast titanium copings. J. Prosthet. Dent. 1992, 67, 435–440. [Google Scholar] [CrossRef]
- Marsaw, F.A.; de Rijk, W.G.; Hesby, R.A.; Hinman, R.W.; Pelleu, G.B. Internal volumetric expansion of casting investments. J. Prosthet. Dent. 1984, 52, 361–366. [Google Scholar] [CrossRef]
- Rai, R.; Kumar Sa Prabhu, R.; Govindan, R.; Tanveer, F. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques. Indian J. Dent. Res. 2017, 28, 291. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.S. A review of methods and techniques to improve the fit of cast restorations. J. Prosthet. Dent. 1986, 56, 279–283. [Google Scholar] [CrossRef]
- Hung, S.H.; Hung, K.-S.; Eick, J.D.; Chappell, R.P. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J. Prosthet. Dent. 1990, 63, 26–31. [Google Scholar] [CrossRef]
- Sulaiman, F.; Chai, J.; Jameson, L.M.; Wozniak, W.T. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int. J. Prosthodont. 1997, 10, 478–484. [Google Scholar]
- Moldovan, O.; Rudolph, H.; Quaas, S.; Bornemann, G.; Luthardt, R.G. Internal and external fit of CAM-made zirconia bridge frameworks—A pilot study. Dtsch. Zahnarztl. Z. 2006, 61, 38–42. [Google Scholar]
- Quante, K.; Ludwig, K.; Kern, M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dent. Mater. 2008, 24, 1311–1315. [Google Scholar] [CrossRef]
- Ucar, Y.; Akova, T.; Akyil, M.S.; Brantley, W.A. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. J. Prosthet. Dent. 2009, 102, 253–259. [Google Scholar] [CrossRef]
- McLean, J.W.; Von, F. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef]
- Ushiwata, O.; de Moraes, J.V.; Bottino, M.A.; da Silva, E.G. Marginal fit of nickel-chromium copings before and after internal adjustments with duplicated stone dies and disclosing agent. J. Prosthet. Dent. 2000, 83, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Milan, F.M.; Consani, S.; Correr Sobrinho, L.; Sinhoreti, M.A.C.; Sousa-Neto, M.D.; Knowles, J.C. Influence of casting methods on marginal and internal discrepancies of complete cast crowns. Braz. Dent. J. 2004, 15, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Takkar, R.; Jain, G.; Takkar, R.; Deora, N. CAD-CAM the future of digital dentistry: A review. Ann. Prosthodont. Restor. Dent. 2016, 2, 33–36. [Google Scholar]
- White, S.N.; Yu, Z.; Tom, J.F.M.D.; Sangsurasak, S. In vivo marginal adaptation of cast crowns luted with different cements. J. Prosthet. Dent. 1995, 74, 25–32. [Google Scholar] [CrossRef]
- Ushiwata, O.; de Moraes, J.V. Method for marginal measurements of restorations: Accessory device for Toolmakers microscope. J. Prosthet. Dent. 2000, 83, 362–366. [Google Scholar] [CrossRef]
- Örtorp, A.; Jönsson, D.; Mouhsen, A.; Vult von Steyern, P. The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dent. Mater. 2011, 27, 356–363. [Google Scholar] [CrossRef]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Boening, K.W.; Wolf, B.H.; Schmidt, A.E.; Kästner, K.; Walter, M.H. Clinical fit of Procera AllCeram crowns. J. Prosthet. Dent. 2000, 84, 419–424. [Google Scholar] [CrossRef]
- Trifkovic, B.; Budak, I.; Todorovic, A.; Hodolic, J.; Puskar, T.; Jevremovic, D.; Vukelić, Đ. Application of Replica Technique and SEM in Accuracy Measurement of Ceramic Crowns. Meas. Sci. Rev. 2012, 12, 90–97. [Google Scholar] [CrossRef]
- Lombardas, P.; Carbunaru, A.; McAlarney, M.E.; Toothaker, R.W. Dimensional accuracy of castings produced with ringless and metal ring investment systems. J. Prosthet. Dent. 2000, 84, 27–31. [Google Scholar] [CrossRef]
- Park, G.-S.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Seo, D.-G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Materials 2019, 12, 2533. [Google Scholar] [CrossRef] [PubMed]
- Yasa, E.; Poyraz, O.; Solakoglu, E.U.; Akbulut, G.; Oren, S. A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy. Procedia CIRP 2016, 45, 175–178. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Kim, J.-H.; Kim, H.-Y.; Kim, W.-C. Comparison and evaluation of marginal and internal gaps in cobalt–chromium alloy copings fabricated using subtractive and additive manufacturing. J. Prosthodont. Res. 2018, 62, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Elfar, M.; Korsel, A.; Kamel, M. Marginal fit of heat pressed lithium disilicate crowns fabricated by three-dimensional printed and subtractive CAD/CAM wax patterns. Tanta Dent. J. 2018, 15, 199. [Google Scholar] [CrossRef]
- Wang, W.; Yu, H.; Liu, Y.; Jiang, X.; Gao, B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J. Prosthet. Dent. 2019, 121, 285–291. [Google Scholar] [CrossRef] [PubMed]
Resin Fabrication Technology | Material–Brand Name, Model and Place of Manufacture | Materials–Composition |
---|---|---|
Milling | Aidite, 0D9, Hebei, China | Polymethyl methacrylate (PMMA) resin disc 14 mm–A2 shade |
3D Printing-Digital Light Processing (DLP) | Weistek, ABS-1000-BL, China | Acrylo-nitrile butadiene styrene (ABS) resin material |
3D Printing-Digital Light Processing (DLP) | e-sun, e-resin, PLAgray05A, China | Polylactic acid (PLA) resin material |
Resin Pattern Groups (n = 15) | Buccal (MG-B) | Lingual (MG-L) | Mesial (MG-M) | Distal (MG-D) | p-Value |
---|---|---|---|---|---|
PMMA milled | 51.18 ± 8.03 | 48.93 ± 14.19 | 69.24 ± 14.16 | 51.18 ± 8.38 | 0.307 |
ABS printed | 111.85 ± 23.83 | 104.48 ± 19.58 | 107.89 ± 20.29 | 110.08 ± 18.76 | 0.823 |
PLA printed | 108.75 ± 21.90 | 101.32 ± 19.80 | 106.89 ± 20.49 | 109.17 ± 18.94 | 0.642 |
p-value | 0.0001 ¶ | 0.0001 ¶ | 0.0001 ¶ | 0.0001 ¶ |
Groups | Walls | Difference in Rank Sum | p-Value |
---|---|---|---|
PMMA& PLA | Buccal | −66.87 | <0.0001 ¶ |
Lingual | −85.4 | <0.0001 ¶ | |
Mesial | −70.07 | <0.05 ¶ | |
Distal | −95.67 | <0.0001 ¶ | |
PMMA & ABS | Buccal | −97.07 | <0.0001 ¶ |
Distal | −107.3 | <0.0001 ¶ | |
Lingual | −97.13 | <0.0001 ¶ | |
Mesial | −69.27 | <0.0001 ¶ | |
ABS & PLA | Buccal | 30.2 | ns |
Lingual | 11.73 | ns | |
Mesial | −0.8 | ns | |
Distal | 11.67 | ns |
Resin Pattern Groups (n = 15) | Cervical (1) (IG-C1) | Buccal (IG-B) | Occlusal (1) (IG-O1) | Occlusal (2) (IG-O2) | Lingual (IG-L) | Cervical (2) (IG-C2) | p-Value |
---|---|---|---|---|---|---|---|
PMMA milled | 112.52 ± 12.11 | 108.39 ± 10.99 | 117.59 ± 9.27 | 119.44 ± 9.16 | 111.11 ± 11.77 | 116.09 ± 9.04 | 0.732 |
ABS printed | 108.71 ± 9.77 | 108.00 ± 9.01 | 116.50 ± 7.95 | 118.31 ± 7.44 | 110.64 ± 7.29 | 115.42 ± 8.15 | 0.428 |
PLA printed | 108.10 ± 8.17 | 106.81 ± 8.67 | 115.36 ± 7.01 | 113.81 ± 6.48 | 107.84 ± 9.43 | 113.29 ± 9.45 | 0.503 |
p-value | 0.528 | 0.896 | 0.687 | 0.108 | 0.638 | 0.753 |
Resin Pattern Groups (n = 15) | Cervical (3) (IG-C3) | Mesial (IG-M) | Occlusal (3) (IG-O1) | Occlusal (4) (IG-O2) | Distal (IG-D) | Cervical (4) (IG-C4) | p-Value |
---|---|---|---|---|---|---|---|
PMMA milled | 113.50 ± 11.93 | 111.05 ± 13.59 | 119.78 ± 8.66 | 118.81 ± 10.28 | 112.43 ± 8.86 | 117.24 ± 11.17 | 0.427 |
ABS printed | 111.21 ± 7.41 | 108.37 ± 10.51 | 116.75 ± 7.33 | 116.52 ± 7.55 | 111.87 ± 5.08 | 115.72 ± 7.00 | 0.322 |
PLA printed | 110.41 ± 10.05 | 107.05 ± 10.71 | 115.89 ± 7.33 | 116.19 ± 6.96 | 110.16 ± 8.79 | 114.57 ± 7.58 | 0.765 |
p-value | 0.673 | 0.649 | 0.360 | 0.654 | 0.694 | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addugala, H.; Venugopal, V.N.; Rengasamy, S.; Yadalam, P.K.; Albar, N.H.; Alamoudi, A.; Bahammam, S.A.; Zidane, B.; Bahammam, H.A.; Bhandi, S.; et al. Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison. Materials 2022, 15, 6397. https://doi.org/10.3390/ma15186397
Addugala H, Venugopal VN, Rengasamy S, Yadalam PK, Albar NH, Alamoudi A, Bahammam SA, Zidane B, Bahammam HA, Bhandi S, et al. Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison. Materials. 2022; 15(18):6397. https://doi.org/10.3390/ma15186397
Chicago/Turabian StyleAddugala, Hemavardhini, Vidyashree Nandini Venugopal, Surya Rengasamy, Pradeep Kumar Yadalam, Nassreen H. Albar, Ahmed Alamoudi, Sarah Ahmed Bahammam, Bassam Zidane, Hammam Ahmed Bahammam, Shilpa Bhandi, and et al. 2022. "Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison" Materials 15, no. 18: 6397. https://doi.org/10.3390/ma15186397
APA StyleAddugala, H., Venugopal, V. N., Rengasamy, S., Yadalam, P. K., Albar, N. H., Alamoudi, A., Bahammam, S. A., Zidane, B., Bahammam, H. A., Bhandi, S., Shrivastava, D., Srivastava, K. C., & Patil, S. (2022). Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison. Materials, 15(18), 6397. https://doi.org/10.3390/ma15186397